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Abstract

Scan statistics is one of the most popular approaches for
anomaly detection in spatial and network data. In practice,
there are numerous sources of uncertainty in the observed data.
However, most prior works have overlooked such uncertainty,
which can affect the accuracy and inferences of such meth-
ods. In this paper, we develop the first systematic approach
to incorporating uncertainty in scan statistics. We study two
formulations for robust scan statistics, one based on the sam-
ple average approximation and the other using a max-min
objective. We show that uncertainty significantly increases
the computational complexity of these problems. Rigorous
algorithms and efficient heuristics for both formulations are
developed with justification of theoretical bounds. We evaluate
our proposed methods on synthetic and real datasets, and we
observe that our methods give significant improvement in the
detection power as well as optimization objective, relative to a
baseline.

1 Introduction
Identifying anomalous “hotspots” or outliers is an impor-
tant problem in the analysis of spatio-temporal and network
data, with a large number of applications in areas such as
disease surveillance, security, systems biology and social
network analysis. One of the popular methods for anomaly
detection is the scan statistics approach e.g., (Kulldorff 1997;
Neill 2012). Informally, this involves formalizing a notion
of “anomalousness” by a form of hypothesis testing, based
on either an underlying model of the expected data (referred
to as parametric methods), or based on historical values of
the data (i.e., non-parametric methods). One of the earliest
uses of scan statistics was for finding unusual disease clusters
(Kulldorff 1997). See (Akoglu, Tong, and Koutra 2014) for a
survey and Section 7 for more details.

Most existing work in anomaly detection for network data
typically assumes that the datasets are taken “as is”, which
is often not a realistic assumption. The observed counts in
data have uncertainty and do not exactly match the real world
due to reporting errors, geocoding errors, missing entries, etc.
All these sources of uncertainty would affect the problem
formulations and algorithms for anomaly detection, but they
are especially relevant when using scan statistics because the
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anomaly score is formalized in terms of the log likelihood
of occurrence of observed data. One of the very few results
on the impact of uncertainty in scan statistics is by (Malizia
2013), who observes that uncertainty exists and that it can
affect the quality of the clusters discovered by scan statistics,
but this study does not propose any methods for taking uncer-
tainty into account. To the best of our knowledge, the only
scan-statistics-based method that incorporates uncertainty is
the Bayesian scan statistic proposed in (Neill et al. 2009)
and later extended to the multivariate case (Neill and Cooper
2010)—though the authors do not explicitly motivate their
work as a solution to uncertainty. Both papers assume simple
conjugate priors and thus are able to derive closed-form ex-
pressions. However, in general, more complex distributional
assumptions for uncertainty would lead to expressions that
do not have a closed form and can only be approximately
optimized via sampling. In this paper, we use methods from
the theory of stochastic optimization to formally character-
ize scan statistic maximization with uncertainty and develop
novel algorithms and heuristics for this problem. Our contri-
butions are summarized below.

• Scan Statistics with Uncertainty. We propose two ap-
proaches for taking uncertainty into account: a sam-
ple average approximation (SAA) and a max-min for-
mulation (Shapiro, Dentcheva, and Ruszczyński 2009;
Bertsekas 1995; Prékopa 2013), and show that these are
well motivated for scan statistics by analyzing instances
with stochastic perturbations. When we account for un-
certainty, the anomaly detection task becomes much more
challenging. We show that, even without any connectivity
constraints, finding clusters based on scan statistics that op-
timize the max-min objective function is NP-hard, whereas
it can be done in linear time if there is no uncertainty.

• Rigorous Algorithms and Theoretical Bounds. We de-
velop rigorous algorithms and heuristics for optimizing
the scan statistics in both these formulations. For the SAA
formulation, our algorithm AGGREGATESAA gives rig-
orous bounds on the approximation guarantee for finding
solutions of a given “effective” size k, with or without
connectivity constraints, and is a fixed parameter tractable
algorithm. For the max-min formulation, we present two
algorithms: (1) MAXMINLPROUND for the case of no
connectivity constraints, using linear programming round-
ing, which yields rigorous approximation bounds, and



(2) a heuristic, BESTMAX, for the case with connectiv-
ity. Both AGGREGATESAA and BESTMAX use the tech-
nique known as color coding for counting trees, which
was adapted for scan statistics by (Cadena, Chen, and Vul-
likanti 2017).

• Numerical Evaluation of the Proposed Methods. We
evaluate our proposed methods in two popular benchmarks
for scan statistics with known events. Both the SAA and
max-min approaches lead to fairly robust scan statistics,
and our algorithms have a clear improvement in perfor-
mance, compared to a natural baseline, over a wide range
of signal-to-noise ratio regimes. For regimes with high
noise in the data, we see up to two-fold improvement in
F1 score. Similarly, the objective score improves in all
experimental settings, especially when the signal-to-noise
ratio is low, where we see gains over the baseline by more
than a factor of 2.

2 Preliminaries
It is known that scan statistics have been mostly applied to
spatial data (Kulldorff 1997). Here, we consider the more gen-
eral version of scan statistics on networks, which has attracted
attention recently (McFowland, Speakman, and Neill 2013;
Neill 2012; Speakman and others 2015; Leiserson and others
2015; Hansen and Vandin 2016). Let us define an undirected
graph G = (V,E) with n = |V | nodes and m = |E| edges.
For each node v V , we have an event count c(v) and a
baseline count b(v).
Using scan statistics, the detection of anomalous clusters

can be posed as a hypothesis testing problem. The null hy-
pothesis H0 is that there is no anomalous cluster. That is,
the event counts for all nodes are generated independently
from the same distribution—proportionally to the baseline
counts. Under the alternative hypothesisH1(S), there exists
a small connected subset of nodes S, such that event counts
in S are generated at a higher rate than counts elsewhere
(i.e., in V \ S). A scan statistic is an anomalousness function
F : S R that evaluates how much a subset S deviates
from the null hypothesis. Here, we focus on a commonly
used scan statistic based on the likelihood ratio test as

F (S) =
Pr(H1(S)|Data)
Pr(H0|Data)

=
Pr(H1(S)|C(S), B(S), C(V \ S), B(V \ S))

Pr(H0|C(V ), B(V ))
,

where C(S) = v S c(v) is the total count of S, and
B(S) = v S b(v) is the baseline count.
Depending on the type of data (i.e., counts, positive real

values, etc.) and the statistical assumptions about the process
generating the event counts (i.e., Poisson, Normal, etc.), the
scan statistics can be broadly summarized in two categories:
Parametric scan statistics. It assumes that observations

follow a parameterized distribution, usually from the ex-
ponential family, such as Poisson or Normal. For exam-
ple, the Kulldorff scan statistic for count data, commonly
used in disease surveillance (Kulldorff 1997; Duczmal, Kull-
dorff, and Huang 2006; Kulldorff, Tango, and Park 2003;
Neill 2012), is defined as

F (S) =C(S) log
C(S)

B(S)
+ (C(V ) − C(S)) log

C(V ) − C(S)

B(V ) − B(S)

− C(V ) log
C(V )

B(V )

if C(S)/B(S) > C(V )/B(V ) and 0 otherwise.
Nonparametric scan statistics. The observations are not

assumed from a specified distribution. The main idea is to
compute the empirical distribution of the counts based on
multiple snapshots of the graph. First, one can define a p-
value p(v) for each vertex v by comparing the current val-
ues of c(v) and b(v) to past observations. Then, a hypoth-
esis test can be performed to check whether the empirical
p-values are uniformly distributed on [0, 1] (Qian, Saligrama,
and Chen 2014; Sharpnack, Krishnamurthy, and Singh 2013;
Neill 2012). For example, in the Berk-Jones scan statistic (BJ)
(Berk and Jones 1979), a node is declared to be significant
if p(v) < for a given significance level . The weight of a
node with respect to is w(v, ) is 1 if v is significant and 0
otherwise. We use w(v) when is clear from context. Then,
the weight of a set S isW (S) = v S w(v). The baseline
count is b(v) = 1 for all nodes, so B(S) = |S|. The BJ scan
statistic is defined as

F (S) = max
max

|S| W (S)

|S| log
W (S)/|S|

+ 1 − W (S)

|S| log
1 − W (S)/|S|

1 −

ifW (S)/|S| > and 0 otherwise.
Thus, the anomaly detection problem in the network can

be posed as a constrained optimization problem. Given a
graph G = (V,E), a scan statistic F (·), and the associated
counts for vertices, C and B, the objective is to find a con-
nected subset S V , such that F (S) = F (C(S), B(S)) is
maximized.
Example. Consider an instance of lung cancer cases in a

population within a state. We consider a graph G = (V,E)
with the set V representing the counties in the state, and E
consisting of edges between counties sharing a boundary. The
baseline count b(v) is the number of inhabitants in county v,
and c(v) is the number of lung cancer cases in v. A cluster of
counties in which the incidence counts are significantly dif-
ferent from what is expected based on the population would
have a high Kulldorff score.

3 Network Scan Statistics With Uncertainty
The observed data is affected by different sources of uncer-
tainty including unreported cases, inaccurate data collection,
measurement error, etc., and how to account for such uncer-
tainty is a crucial question. Let C be a vector of unobserved
real counts, such that c(v) is the count associated with node v.
Similarly, letX be the vector of observed “noisy” counts. We
model uncertainty on X as a distribution parameterized by
the unobserved real counts C. This distribution could be, for
instance, Gaussian noise, such that X = C + , where cap-
tures our belief about the magnitude of uncertainty. Or a mul-
tivariate Gamma distribution with mean C and variance spec-
ified by a domain expert. We also define p(C| ) as a prior
distribution on C controlled by hyperparameters , which
could be inferred from past data or from a domain expert’s
knowledge. More generally, letX = (x(v1), . . . , x(vn)) and
C = (c(v1), . . . , c(vn)) be the vectors of observed and real
counts, respectively. Then, X|C (C). In most of the
existing work, the observed counts are taken as the ground
truth; that is, X = C deterministically.



3.1 Problem Formulations
In this work, we consider two approaches to account for
uncertainty. The first method is based on the sample aver-
age approximation (SAA) method (Shapiro, Dentcheva, and
Ruszczyński 2009). The second is based on a max-min formu-
lation (Bertsekas 1995), which is referred as the worst-case
scenario in the stochastic optimization (Prékopa 2013).
Scan statistics under sample average approximation. The
key idea is taking the expectation of F (S) to account for the
uncertainty in scan statistics. That is, given a graph G =
(V,E), a scan statistic F (·), and the associated counts for
vertices, X and B, the objective is to find a connected subset
S V that maximizes

E[F (S)|X ] =
∫

F (S )
(F (S)|X )p(F (S)|X )dF (S)

=
∫

C
(F (S)|X ) p(X |C)p(C)

p(X )
dC.

Equivalently, we want to maximize
C
(F (S)|X)p(X|C)p(C)dC, since P (X) is a constant.
The idea of SAA is to generate samples from the dis-

tribution for the input and optimize over the set of sam-
ples (Swamy and Shmoys 2006). Specifically, maximizing
E[F (S)|X] can be approximated by maximizing the average
of N samples in the following manner:
1. for i = 1 to N :
(a) Sample the ith vector of real counts Ci with probability

proportional to p(Ci)

(b) Sample the ith vector of estimate counts Xi from (Ci)

(c) Compute Fi(S) = F (Xi(S), B(S)) for all connected
S

2. Return S that maximizes the sample average: S =

argmaxS
1
N

N
i=1 Fi(S)

Problem 1 Given a graphG = (V,E), a scan statistic F (·),
and N sets of counts for vertices—Xi for i = 1 to N—find a
connected subset S V that maximizes the average score,

1

N

N

i=1

Fi(S) =
1

N

N

i=1

F (Xi(S), B(S)).

Scan Statistics under the Max-Min Formulation. Rather
than taking the average for accounting the uncertainty, an
alternative approach to address uncertainty in scan statistics
is to consider the minimum score over all the samples. This
gives us the following formulation.

Problem 2 Given a graphG = (V,E), a scan statistic F (·),
and N sets of counts for vertices—Xi for i = 1 to N—find a
connected subset S V , that maximizes the minimum over
all samples,

min
i=1,...,N

Fi(S) = min
i=1,...,N

F (Xi(S), B(S)).

4 Motivation for the two formulations and
challenges arising from uncertainty

We use a simple stochastic perturbation model to show that
the two formulations, Problem 1 and 2, are well motivated.

We consider a simple model using the BJ statistic on an
instance G = (V,E) constructed in the following manner.
Let V be partitioned into V = V1 V2, with w(v) = 1 for
v V1, and w(v ) = 0 for v V2. We also have |V1| = k,
so that V1 is the optimal solution maximizing the BJ statistic
for this instance. Next, we assume a simple noise model, in
which each non-anomalous node (i.e., those with weight 0)
becomes anomalous with a small probability p.

Observation 1 For the above stochastic model, both the SAA
and Max-Min formulations correctly identify the optimal
cluster V1, if the number of samples N 2 lnn

ln 1/p . In contrast,
the optimal solution for any sample is a subset of V2, with
high probability, missing the real anomalous subgraph V1.

Uncertainty makes scan statistics much harder. Neill (Neill
2008) observed that many scan statistics (without any uncer-
tainty), including the BJ-statistic can be solved in linear time
if there are no connectivity constraints, because of the “linear
time subset scanning” property. As a result, the optimum
solution of a given size can be found by considering the items
in the order of their counts. In contrast, we show below that
under uncertainty, the Max-Min formulation of Problem 2 is
NP-complete. We note that maximizing scan statistic score
with connectivity constraints was shown to be NP-Hard in
(Cadena, Chen, and Vullikanti 2017).

Lemma 1 For any non-parametric scan statistic F (·), find-
ing a subset S V without any connectivity requirement,
and of size at most k, that maximizes mini Fi(S) is NP-
complete.

The proof is by a many-to-one reduction from the set multi-
cover problem (Chekuri, Clarkson, and Har-Peled 2012), and
the main idea is that the optimum solution to the Max-Min
objective requires a certain number of anomalous nodes in
each sample. By guessing this number, and mapping each set
to a sample, the reduction can be made to work. The proof is
discussed in the Supplementary Material (Cadena and others
2018).

5 Proposed Methods
We describe our algorithms for the SAA and Max-Min objec-
tives. We focus on non-parametric functions here, though our
methods extend to parametric functions in a natural manner.
The approximation bounds depend on the specific functions,
and here we derive those for the BJ-statistic (see Section 2).
For the rest of the section, we use wi(v, ) to denote the
weight of node v—defined in Section 2—in the ith replicate.
For brevity, many of the details and proofs are presented in
the Supplementary Material.

5.1 Algorithm for the Sample Average
Approximation Formulation

Algorithm 1 describes AGGREGATESAA for finding a solu-
tion to problem 1. Our method builds on the work of (Cadena,
Chen, and Vullikanti 2017), and uses the color-coding tech-
nique of Alon et al. (Alon, Yuster, and Zwick 1995). This
algorithm finds an optimal subgraph of size at most k, where
k is a parameter, in time O(akpoly(n,m)), for some con-
stant a—i.e., the running time is polynomial on the size of



1: Input: Instance (G(V, E ), {w i : i = 1, . . . , N },αm ax ),
parameters k,

2: Output: Set S∗ of size at most k
3: Let A be the set of p-values of nodes in V below αm ax

4: for α A
5: Let w be a weight vector with w(v) =

∑ N
i = 1 wi (v,α)

6: {S∗
j (α) : j = 1, . . . , k} = MAXWT(G,w , k, n 2 )

7: S∗ = ar gmaxj K ,α A
1
N

∑ N
i = 1 Fi (S

∗
j (α))

8: return S∗

9:
10: procedure MAXWT(G(V, E ),w , k, ′)
11: Input: Instance (G(V, E ),w ) and parameters k, ′

12: Output: {S∗
j : j K }, such that S∗

j has weight ψj
13: Let ψj = − for all j K
14: for ` = 1 to ek log (1/ ′)
15: For each node v, pick random color col(v) K
16: for v V, s K
17: M (v, {s}) = w(v) if col(v) = s; − otherwise
18: for v V and T K , with |T | 2
19: M (v, T ) = maxu N br ( v )

T1 ,T2 T
{M (v, T1) + M (u, T2)}

20: If M (v, T ) > ψ|T | update ψ|T | = M (v, T )
21: return {S∗

j :
∑

v Sj
w(v) = ψj , for j K }

Algorithm 1: AGGREGATE-
SAA((G(V,E), max), k, ).

the graph, but exponential on the solution size. In contrast,
a “brute force” approach would need n

k = O(nk) time to
examine every possible connected subset of nodes of size at
most k.
Intuition behind the algorithm. The main idea is to color
the nodes of the graph usingK = {1, . . . , k} colors and re-
strict the search to “colorful” solutions, which are subgraphs
with distinctly colored nodes. This immediately leads to an
efficient algorithm because: (1) colorful solutions can be
computed using a simple dynamic program, and (2) if the
coloring is done randomly, there is a reasonable probability
that the optimal solution is colorful. (Cadena, Chen, and Vul-
likanti 2017) show that the scan statistics problem can be
solved by such a dynamic program. Further, combined with
a graph compression technique, one can discover solutions
with hundreds of vertices while keeping k below 10. The final
algorithm is randomized, and it returns an optimal solution
with probability (1− ) in time O((2 )km log(1/ )), where
k is solution size after such a compression. Problems for
which such algorithms exist are said to be fixed parameter
tractable.
Overview of Algorithm AGGREGATESAA.
• The for loop in lines 4-6 tries out each potential value of

. For each candidate , the aggregate weight vector w is
computed following the process described in Section 2.

• The subroutine MAXWT (from Cadena, Chen, and Vul-
likanti) is called in line 6, and it returns a candidate solu-
tion Sj ( ) for each , and each size j k. It uses color
coding to find the optimal solution by dynamic program-
ming.

Theorem 1 Suppose the solution S computed by Algo-
rithm AGGREGATESAA corresponds to Sj ( ) for some

j K. Suppose N
i=1 v Sj ( ) wi(v) c jN , for a

constant c > 1. Then, the score of S is within a factor of
c log 1/

c log c+(1−c ) log 1−c
1−

of the optimum score, with probabil-

ity at least 1 − for any (0, 1). The total running time
and space used areO(2kek|A|Nm log (n2/ )), andO(2kn),
respectively.

Proof: (Sketch) The proof relies on the convexity of
the function F (·) for non-parametric functions. Since

N
i=1 v Sj ( ) wi(v) c jN , the minimum value

i Fi(Sj ( )) can take is when the weight in each replicate
is the average, namely c j. Therefore,

i

Fi (S
∗
j (α))/ N cα logc + (1− cα) log

1− cα
1− α

Since Sj ( ) maximizes the total weight
N
i=1 v Sj ( ) wi(v), it follows that for any other

set S , N
i=1 v Sj ( ) wi(v)

N
i=1 v S wi(v). The

maximum value that can be achieved by i Fi(S ) is when
the total weight in some replicates is close to j and 0 in the
rest (See (Cadena and others 2018)). Therefore,

i

Fi (S
′)/ N

∑ N
i = 1

∑
v S wi (v)
j N

log1/ α = cα log1/ α

The approximation factor is therefore bounded by the ratio
of these, which proves the theorem.
Performance guarantee in practice. The performance guar-
antee in Theorem 1 depends on how far the average weight
of the sets is from , over the samples. Empirically, we find
that the approximation bound decreases with both c and ,
and is very close to 1 in our experiments in Section 6.

5.2 Algorithm for the Max-Min Formulation
The basic idea of our algorithm is to “guess” the total weight
z of the anomalous nodes in the optimal solution in the min-
imum sample, and then find a solution that has at least weight
z in each sample—this corresponds to a multi-cover prob-
lem, as in the reduction in the proof of Lemma 1. We use the
linear programming rounding method of Kolliopoulos et al.
(Kolliopoulos and Young 2005) for finding such an approxi-
mate solution. Algorithm 2 describes MAXMINLPROUND
for this problem.

Lemma 2 Let Sz be the solution returned by Algorithm 2.
Then, mini Fi(Sz ) KL(z /(k log n), )

KL(z (1− )/k, ) for any (0, 1).

Next, we describe the heuristic BESTMAX for problem
2 with connectivity constraints. Proving its approximation
guarantee remains an open problem; here, we analyze its
running time.

Lemma 3 Algorithm BESTMAX takes time
O(2kek|A|Nm log (n2/ )) and uses space O(2kn),
where A is the set defined in line 3 of the algorithm.



1: Input: Instance V,w i , i = 1, . . . , N and parameter k
2: Output: Instance S V that maximizes mini Fi (S) with

|S| = k
3: for z [1,maxi

∑
v wi (v)] in powers of (1 + )

4: Construct matrix A R
N × |V | with Ai v = wi (v) and

b R
N with bi = z

5: Find a solution x {0, 1}V that minimizes
∑

i x i and
satisfies Ax bwith the algorithm of (Kolliopoulos and
Young 2005)

6: if a solution x exists, let Sz = {i : x i = 1}
7: return Sz = {i : x i = 1} for the maximum z∗ for which

there is a solution

Algorithm 2: MAXMINLPROUND(V,w , k) for Max-
Min formulation without connectivity constraints.

1: Input: Instance (G(V, E ), {w i : i = 1, . . . , N },αm ax ),
parameters k,

2: Output: Set S∗ of size k
3: Let A be the set of p-values of nodes in V below αm ax

4: for α A
5: {S∗

j (i ,α) : j = 1, . . . , k} =
MAXWT(G(V, E ),w i, k, / n2)

6: S∗ = ar gmaxj K , i ,α A minNi = 1 Fi (S
∗
j (i ,α))

7: return S∗

Algorithm 3: BESTMAX((G(V,E), max), k, ) for
Max-Min formulation with connectivity constraints.

6 Experiments
Our experiments are motivated by the following questions:

• Detection and optimization power. Does accounting for
uncertainty improve detection of anomalous clusters com-
pared to the deterministic case? How do our algorithms
AGGREGATESAA and BESTMAX perform for the objec-
tive functions in Problems 1 and 2?

• Effect of the number of replicates How does detection
power vary with the number of replicates N?

• Approximation guarantee in practiceWhat are the prac-
tical implications of Theorem 1? What is the empirical
approximation bound of AGGREGATESAA?

We evaluate our algorithms for scan statistics with uncer-
tainty on the Kulldorff statistic (Kulldorff 1997) and the BJ
statistic (Berk and Jones 1979), which are examples of para-
metric and non-parametric scan statistics, respectively. We
evaluate the event detection power in terms of accuracy, preci-
sion, recall, and the F1 score. Let R be the set of nodes in the
anomalous subgraph we discover and let S be the detected
subgraph; then, we define
(1) Accuracy(R,S) = |R S|

|R S| ,

(2) Precision(R,S) = |R S|
|S| ,

(3) Recall(R,S) = |R S|
|R| , and

(4) F1 score = 2 Precision(R,S)·Recall(R,S)

Precision(R,S)+Recall(R,S)
. We mainly

discuss results for the F1 score below, but plots for the other
metrics can be found in (Cadena and others 2018).

Baselines. For the evaluation, we compare our algorithms to
the following baseline: GivenN count vectors as in Problems
1 and 2, we select one of these vectors uniformly at random
and return the connected set S that maximizes the scan statis-
tic in the selected counts. The baseline for Problem 1, referred
to as B-SAA, returns the SAA objective value for S. Simi-
larly, the baseline for Problem 2, referred to as B-MAX-MIN,
returns the Max-Min objective value for S. These baselines
reflect the current practice of ignoring uncertainty.

6.1 Datasets
The Northeastern USA Benchmark (NEast). This
dataset (Kulldorff, Tango, and Park 2003) corresponds to oc-
currences of cancer in a network of 245 counties in the North-
eastern part of USA. Under the null model (i.e., no significant
cluster), each node v has a count c(v) Poisson(pb(v)),
where p = 2.03× 10−5. We simulate anomalous clusters in
this network as follows: A cluster consists of a node selected
at random and all its neighbors. We generated three such clus-
ters, which can be found in (Cadena and others 2018). These
clusters vary in difficulty of detection—easy, medium, and
hard. The counts for a node v inside the cluster are sampled
from Poisson(qb(v)). We perform experiments with values
of q of the form q = p, where > 1 is a parameter that
we call signal strength. Intuitively, nodes in the anomalous
clusters have times as many expected counts as nodes out-
side the cluster. In Section 6.2, we discuss the effect of this
parameter.
Then, we perturb the counts generated above using Gaus-

sian noise. That is, for each node v, we sample and round
down a count x(v) N (c(v), 2), where 2 is a noise
parameter. Notice that one could have a different noise pa-
rameter for each node, but we only consider uniform noise in
our experiments.
Battle of the Water Sensor Networks (BWSN) This

dataset (Ostfeld and others 2008) was originally used to eval-
uate different sensor network designs in terms of early detec-
tion of contaminants in a water system. The dataset includes
“ground truth” subgraphs representing parts of the network
that are contaminated at different points in time—there is one
ground truth graph for each snapshot. We control the noise
on the sensors with a parameter . With probability , the real
p-value of a sensor in the network is replaced by a random
p-value uniformly sampled from the interval [0, 1]. We show
results for three clusters; these are typical for other clusters
as well.

6.2 Evaluation
Detection and optimization performance. First, we dis-
cuss the performance of our methods on the NEast bench-
mark. We evaluate performance for a wide range of signal
( ) and noise ( 2) parameters (defined in Section 6.1). In
Figure 1, we show results for SAA (left), Max-Min (center),
and Baseline (right) in the medium-difficulty instance. The
heatmaps correspond to different combinations of signal and
noise, with darker colors indicating a higher F1 score. We
observe that our algorithms for SAA and Max-Min obtain
higher scores than the baseline for a larger range of - 2

combinations.



Figure 1: F1 score for various combinations of signal strength and noise for one of the clusters in the NEast dataset, using the
AGGREGATESAA and BESTMAX algorithms, and the baseline (darker color means better performance).

Figure 2: Relative improvement of AGGREGATESAA and BESTMAX over the baseline on the F1 score (left plots) and objective
score (right plots) in the NEast dataset. The y-axis corresponds to the fraction of cells in Figure 1, for which our algorithms have
a certain level of improvement over the baselines (x-axis). Higher is better.

In Figure 2, we provide an alternative way to summarize
the performance gain for both formulations. The plots show
the fraction of signal-noise combinations for which our al-
gorithms have a given percentage of improvement over the
baseline. For example, with the SAA formulation (left plot),
we obtain at least a 20% improvement (x-axis) over the base-
line on 25% (y-axis) of the signal-noise combinations from
Figure 1 for the medium-difficulty cluster (green line). The
two leftmost plots in Figure 2 reveal that we have larger
improvement on F1 score over the baseline on the medium-
difficulty instance than in the other two. If a subgraph is easy
to discover, accounting for uncertainty may not offer a signif-
icant advantage. On the other hand, if an instance is hard to
discover, performance is affected in all methods. However,
we observe an improvement in performance in all clusters.
Finally, here, we can see that the Max-Min formulation has
higher improvement for the same instance. The same trends
are observed for the objective score (two rightmost plots).

Next, we discuss results for the BJ statistic. In Figure 3
(top), we show the detection performance on the BWSN
dataset with the BJ statistic as a function of noise, for three
clusters. As expected, performance degrades for all methods
as noise increases. However, our algorithms have a better
performance than B-SAA and B-MAX-MIN for all levels of
noise, and they degrade with the level of noise gradually. In
contrast, the baselines show a very inconsistent performance.
AGGREGATESAA and BESTMAX also show improved objec-
tive score compared to the baseline. In particular, for Problem
2, BESTMAX performs significantly better, typically giving
over 20% improvement over B-MAX-MIN.

Effect ofN on performance. In Figure 4, we show the F1
score as a function of N , the number of replicates for the
BWSN dataset. We observe that the detection power improves
as we use more samples for both the SAA and the Max-Min
formulation. However, the baseline does not benefit from a
larger N .

Approximation bound in practice. We analyze the empir-
ical performance of AGGREGATESAA, compared with the
worst case bound derived in Theorem 1. For each snapshot
of the BWSN dataset, we compute the approximation ratio
given in Theorem 1 for the subgraphs discovered by our algo-
rithm. Figure 5 shows the empirical worst-case guarantee for
different noise levels (i.e., each box in the plot) and each snap-
shot of the dataset (i.e., data points used to draw the box). We
see that, for almost all the cases, the approximation guarantee
is at least 80%. Further, we observe that the approximation
generally becomes worse and has higher variance as noise
increases. The increase in the two highest levels of noise
may seem counterintuitive, but it is explained by the fact that
the bound derived in Theorem 1 is with respect to the size
of the solution discovered. As noise increases, the heuristic
discovers smaller solutions, which are easier to approximate.

7 Related Work
Our paper is related to the broad area of anomaly detection
for network data, and we refer to Akoglu et al. (Akoglu, Tong,
and Koutra 2014) for a comprehensive survey on this topic.
For brevity, we only discuss work on scan statistics. There
are a number of parametric scan statistics, depending on the
specific assumption about the observations, e.g., Positive Ele-
vated Mean Scan Statistic (Qian, Saligrama, and Chen 2014),



Figure 3: F1 score (top) and objective score (bottom) of AGGREGATESAA and BESTMAX, as a function of the noise level,
compared to the baseline for three clusters in the BWSN dataset. Higher is better.

Figure 4: F1 score as a function of N for the BWSN dataset. Detection power increases with the number of replicates for our
algorithms, but not for the baseline.

Figure 5: Empirical approximation guarantee of AGGREGATESAA for the BJ statistic (left) and size of the discovered subgraph
(right) in the BWSN dataset.

Expectation-based Poisson Scan Statistic (Neill 2012), and
Expectation-based Gaussian Scan Statistic (Neill 2012), in
addition to the Kulldorff Scan Statistic (Kulldorff 1997) dis-
cussed in Section 2. In general, optimizing these functions is
challenging in the presence of network constraints, and a num-
ber of heuristics have been proposed, e.g., branch-and-bound
methods (Speakman and others 2015), Additive GraphScan
(Speakman, Zhang, and Neill 2013) based on shortest paths
in the graph, semi-definite programming (Qian, Saligrama,
and Chen 2014) and Steiner tree heuristics (Rozenshtein and
others 2014). The color-coding based algorithm of (Cadena,
Chen, and Vullikanti 2017) gives rigorous results for all these
functions. Similarly, in addition to the Berk-Jones (Berk
and Jones 1979) described in Section 2, there are a num-
ber of non-parametric scan statistics, such as Higher Criti-

cism (Donoho and Jin 2004), Kolmogorov-Smirnov (Wilcox
2005) and Anderson-Darling (Eicker 1979). There are several
heuristics to optimize such functions, (McFowland, Speak-
man, and Neill 2013; Neill and Lingwall 2007; Neill 2008;
Chen and Neill 2014). The approach of (Cadena, Chen, and
Vullikanti 2017) extends to these functions as well.

However, as discussed in Section 1, none of the above
methods deal with data uncertainty. Malizia (Malizia 2013)
is one of the few papers considering the effect of uncertainty
on scan statistics, but not how how to account for it. The only
method that we are aware of for incorporating uncertainty is
the Bayesian scan statistic proposed in (Neill et al. 2009;
Neill and Cooper 2010)—though the authors do not ex-
plicitely motivate their work as a solution to uncertainty.
The authors propose a Bayesian extension of the Kulldorff



statistic assuming a Gamma-Poisson conjugate model, which
allows them to derive a closed-form scan statistic. However,
the methods that we develop are more general because we
don’t require a closed-form expression.

8 Conclusions
Scan statistics are used extensively in anomaly detection, but
most previous works do not incorporate data uncertainty. We
propose the first characterization of the effects of uncertainty
on scan statistics using two formulations from stochastic
optimization, and we design rigorous algorithms and heuris-
tics for these problems. Our evaluation shows that both ap-
proaches give clear improvement on the detection power
relative to a natural baseline. We expect our methodology can
help incorporate the effects of uncertainty in other problems
as well.
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