Testing Phase Space Properties of Synchronous Dynamical Systems with Nested Canalyzing Local Functions

Daniel J．Rosenkrantz
University at Albany－SUNY
Albany，NY
drosenkrantz＠gmail．com
S．S．Ravi ${ }^{\dagger}$
Biocomplexity Institute of Virginia Tech
Blacksburg，VA
ssravi0＠gmail．com

Madhav V．Marathe＊
Biocomplexity Institute of Virginia Tech
Blacksburg，VA
mmarathe＠vt．edu

Richard E．Stearns
University at Albany－SUNY
Albany，NY
thestearns2＠gmail．com

Abstract

Discrete graphical dynamical systems serve as ellective formal models for simulations of agent－based models，propagation of contagions in social networks and study of biological phenom－ ena．A class of Boolean functions，called nested canalyzing functions（NCFs），has been used as a good model of cer－ tain biological phenomena．Motivated by these biological applications，we study a variety of analysis problems for synchronous graphical dynamical systems（SyDSs）over the Boolean domain，where each local function is an NCF．We present intractability results for some properties as well as ell cient algorithms for others．In several cases，our results clearly delineate intractable and ell ciently solvable versions of problems．

KEYWORDS

Discrete dynamical systems，Boolean functions，Nested cana－ lyzing functions，Phase space properties，Complexity，Algo－ rithms．

ACM Reference Format：

Daniel J．Rosenkrantz，Madhav V．M arathe，S．S．Ravi，and Richard E．Stearns．2018．Testing Phase Space Properties of Synchronous Dynamical Systems with Nested Canalyzing Local Functions．In Proc．of the 17th International Conference on Autonomous Agents and Multiagent Systems（AAMAS 2018），M．Dastani，G．Suk－ thankar，E．Andre，S．K oenig（eds．），Stockholm，Sweden，July 2018，IFAAMAS， 10 pages．

1 INTRODUCTION

1．1 M otivation

Discrete graphical dynamical systems，which are generaliza－ tions of cellular automata（CA）［16，45］，serve as an ellective formal model for multi－agent systems（see，e．g．，［41，46］）．

[^0]They have also been used in many other contexts，including simulations of agent－based models，propagation of contagions in social networks，study of biological phenomena，and game theoret ic settings（see，e．g．，［9，10，21，23，32，34，43］）．Here， we focus on synchronous discrete dynamical systems（SyDSs）． Informally，a SyDS consists of an undirected graph whose vertices represent entities（agents）and edges represent local interactions among entities．Each vertex 퓯has a Boolean state value and a local transition function 哣e whose inputs are the current state of 亚and those of its neighbors；the output of 폴 is the next state of 吾 The vector consisting of the state values of all the nodes at each time instant is referred to as the con liguration of the system at that in－ stant．In each time step，all nodes of a SyDS compute and update their states synchronously．Starting from a（given） initial con园guration，the time evolution of a SyDS consists of a sequence of successive conlgurations．The SyDS formalism with di lerent classes of local transition functions has been used in applications such as disease propagation in urban areas，dillusion of innovations，etc．（see，e．g．［6，10，43］）．

In this paper，we study a class of graphical dynamical systems motivated by applications in systems biology．Many researchers have analyzed such models（see e．g．，［14，31，39］）； others have investigated their stability（see e．g．，［17，20，26， 37］）．Since the work by Waddington［44］，the term canaliza－ tion has been used to describe the stability of a biological system with changes in external conditions．In 1969，Kaul－ man［17］introduced a Boolean network model to explain the stability of gene regulat ory networks．Kaulman found that the use of one class of Boolean functions（which he called can－ alyzing Boolean functions）in the model captured many observed properties of gene regulatory networks，including stability．The subclass of nested canalyzing functions （NCFs）was introduced later by Kaulman et al．［19］to facil－ itate a rigorous analysis of the Boolean network model for gene regulatory networks．A precise dellition of NCFs（and a more general version of NCFs）is given in Section 2．1．Many researchers have studied mathematical properties of NCFs and have alluded to the importance of NCFs in modeling biological phenomena（e．g．，［19，20，26－30］）．

We consider several analysis problems for graphical dy－ namical systems whose node functions are NCFs．We use the

Problem	Result（s）
Reachability	PSPA CE－complete even when the maximum node degree and the treewidth of the under－ lying graph are bounded（Section 3）．
Predecessor Existence	NP－complete even when the maximum node degree is 3 ．The corresponding counting problem is \＃P－complete（Section 4）．（The problem and the counting version are e⿴囗⿱一一⿴囗⿱一一⿱⿴囗十丌 solvable when the maximum node degree is 2 ［25］．）
Fixed Point Existence	NP－complete even when the maximum node degree is 3 ．The corresponding counting problem is \＃P－complete（Section 5）．（The problem and its counting version are e⿴囗大 ciently solvable when the maximum node degree is 2 ［35］．）
Garden of Eden Existence	E울 ciently solvable；when the answer is＂yes＂，such a conllguration can also be found ell ciently（Section 6）．

Table 1：Summary of Results Presented in the Paper
term NCF－SyDS to denote a SyDS where each local transi－ tion function is an NCF．Such analysis problems are studied by considering the phase space of the SyDS，which is a di－ rected graph with one vertex for each possible con liguration
 SyDS can transition from the conliguration corresponding to 亚to the one corresponding to 恶in one time step．When an NCF－SyDS has a one step transition from a conllguration 풀 to a con国guration 풀 we say that 풀is the successor of 풁 and that 풁 is a predecessor of 풂 Since NCF－SyDSs are deterministic，each con国guration has a unique successor； however，a conllguration may have zero or more predecessors． Each self loop in the phase space of a SyDS represents a Txed point of the actual system，that is，a conđlguration in which the system will stay forever．Also，any vertex in the phase space with no incoming edges represents a Garden of Eden（GE）con国guration．Such a con国guration cannot be reached during the evolution of a SyDS；it can only occur as an initial con国guration．

1．2 Contributions and Their Signillance

Our contributions（shown in Table 1）are explained below．
（1）The reachability problem asks whether a given NCF－ SyDS starting from a given conlolguration 풀will reach another given conlguration 풀．This problem formalizes the question whether a system modeled by an NCF－SyDS may reach an undesirable con国guration in the future．（For example，in the disease propagation context，풀 may represent a situation in which a large number of agents are infected．）In Section 3， we show that the reachability problem for NCF－SyDSs is PSPACE－complete even when the maximum node degree and the treewidth［11］of the underlying graph are constants．
（2）Given a con liguration 풂 the goal of the predecessor existence problem is to determine whether 풂has a predeces－ sor con国guration．An algorithm for this problem is useful in determining how a system reached the con目guration 풂 if 풂 is an undesirable one（e．g．，one in which many agents are infected），measures to prevent the system from reaching 풀 can be undertaken．In Section 4，we show that the predeces－ sor existence problem for NCF－SyDSs is N P－complete even when the maximum node degree of the underlying graph is
three．The reduction used in the proof also enables us to conclude that the problem of counting the number of pre－ decessors of an NCF－SyDS is \＃P－complete．This result is tight since it is known that when the maximum node degree is two，the predecessor exist ence problem as well as the cor－ responding counting version can be solved e⿴囗⿰丿⺄⿱㇒⿱中⿰㇀丶冂力 ciently for any SyDS，regardless of the local transition functions［7，25］．
（3）Recall that a ⿴囗xed point of a SyDS is conllguration 풂which is its own successor；thus，if a SyDS reaches 풂 it stays in that conlguration forever．Again，in the context of epidemics，四xed points in which only a small number of agents are infected are useful，since the number of infections does not grow once the system reaches such a con国guration． In Section 5，we consider the llxed point existence problem for NCF－SyDSs．We show that this problem is N P－complete even when the maximum node degree of the underlying graph is three．The reduction also enables us to conclude the hardness of the counting version of the problem．This result is also tight；when the maximum node degree is two，the 目xed point existence problem as well as the corresponding counting
 the local transition functions［35］．
（4）In Section 6，we consider the Garden of Eden（GE） existence problem for NCF－SyDS．In contrast to the other analysis problems，we show that the GE existence problem
 generalized NCFs．（This class of NCFs is delned in Sec－ tion 2．1．）Our result（Theorem 6．1），which characterizes the existence of GE conflgurations in SyDSs with generalized NCFs，leads to a simple algorithm for the GE existence ques－ tion．However，the proof of the result requires an intricate analysis．

Due to length restrictions，only proof sketches are given in the paper．A complete version that includes all proofs is available as［36］．

1．3 Related Work

Computational aspects of testing phase space properties of discrete dynamical systems and multi－agent systems have been addressed by many researchers．For example，Barrett et al．$[4,5,8]$ studied reachability problems as well as existence
 sequential update model；here，a permutation of the vertices is also given，and state updates are carried out in the or－ der specilled by the permutation．Bounds on the lengths of transients and cycles in restricted versions of dynamical systems under the sequential update model are established in ［32］．A good discussion of complexity results for multi－agent systems appears in the well known text by Wooldridge［46］．
 problems for systems with special forms of local transition functions．Kosub and Homan［24］presented dichotomy results that delineate comput at ionally intractable and ell ciently solv－ able versions of counting lixed points，based on the class of allowable local transition functions．The predecessor exis－ tence problem for deterministic and stochastic SyDSs was considered in［6，7］．These references present hardness results for various restricted graph struct ures（e．g．，grid graphs）and for various restricted families of local transition functions （e．g．，푘threshold functions for any 푁 ≥ 2 ）．Problems similar to predecessor existence have al so been considered for cellular aut omat a［12，15］．

We［35］introduced the notion of graph predicates to specify very general forms of phase space properties．There，it was shown that for many graph predicates（e．g．，those which model problems such as ⿴囗十ed point and GE existence），the analysis problem can be solved in polynomial time when the underlying graph is treewidth－bounded and the local transition functions are 庴symmetric ${ }^{1}$ for some 围xed integer吾 As we explain in Section 2．4，NCFs are，in general，not
 for GE existence（Section 6）does not require any restriction on the underlying graph．Thus，our result for GE existence is not implied by the results of［35］．

The class of Boolean networks int roduced in［19］to model many biological phenomena is also a variant of the SyDS model．Results for many analysis problems under the Boolean network model appear in［1，2，18，39，40］．In［33］，the reacha－ bility problem for SyDSs was shown to be PSPA CE－hard for the Boolean network model where each local function is from \｛AND，OR\}. Since AND and OR are both NCFs, this shows the computational intractability of reachability for dynamical systems under the Boolean network model where the local functions are NCFs．It should be noted that in the Boolean network model，the underlying graph of a dynamical system is directed while our work uses undirected graphs．Moreover， our result holds for a very restricted class of graphs，namely those whose maximum node degree and treewidth are both constants．It is not clear whether the result in［33］can be readily modi $\mathrm{Hed}_{\text {to }}$ hold for this restricted class．

[^1]
2 DEFINITIONS AND PROBLEM FORM ULATIONS

2．1 Nested Canalyzing Functions

As mentioned earlier，the class of nested canalyzing func－ tions（NCFs），was introduced in［19］to model the behavior of certain biological systems．We follow the presentation in ［26］in dellning such a Boolean function．（For a Boolean value 필 the complement is denoted by 폴힣
 Boolean variables．Let 흃be a permutation of $\{1,2, \ldots$ ，퐇．A

 if 핏can be expressed in the following form：

For convenience，we will use a computational notation introduced in［38］to represent NCFs．For $1 \leq$ 퐂ㄴ 푛 line 新bf our representation has the following form：

 and canalyzed values in line 폿as before， $1 \leq$ 퐂ㄴ 푛 The above
 the value of the function is 站 otherwise，we consider the next line in the description．We refer to each such line as a
 we have line 퐇＋ 1 with the＂Default＂rule for which the canalyzed value is 폴：

Default：폴ㅍㄹ
We will refer to the above specilcation of an NCF as the simplilled representation and assume（without loss of generality）that each NCF is specilled in this manner．The simpli国ed representation provides the following convenient computational view of an NCF．Lines dellning an NCF are considered sequentially in a top－down manner．The compu－ tation stops at the llrst line where the specilled condition is satisfled，and the value of the function is the canalyzed value on that line．We now present an example of an NCF using the two representations mentioned above．
Example 1：Consider the Boolean function 푓 严，亚，覀）＝

 $1,1,1$ and canalyzed values $1,0,1$ ．We lilst show how this
function can be expressed using the syntax of Deßnition 1.

A simplilled representation of the same function is as follows．

$$
\begin{aligned}
& \text { 㶾: } 1 \longrightarrow 1 \\
& \text { 严: } 1 \rightarrow 0 \\
& \text { 不: } 1 \rightarrow 1 \\
& \text { Default: } 0
\end{aligned}
$$

Additional conventions regarding NCFs：The cana－ lyzed value for the rule labeled＂Default＂is always the com－ plement of the canalyzed value on the line that immediately precedes that rule．So，for simplicity，we will omit the＂De－ fault＂rule in specifying an NCF．To save space in presenting examples and proofs，we list successive rules along a line separated by commas．Thus，a linear representation of the NCF shown in Example 1 （with the＂Default＂rule omitted） is as follows：亚： $1 \rightarrow 0$ ，亚： $1 \rightarrow 0$ ，严： $1 \rightarrow 1$ 。
Generalized NCFs：One of the problems considered in this paper involves determining whether a given NCF－SyDS has a GE conlguration．To extend the applicability of this algorithm，we allow local functions to be in the form of generalized NCFs，where rules are specifled only for a subset of the variables．A precise deØnition of generalized NCFs is given below．

Definition 2．A generalized NCF is a function repre－ sented as either a constant or an NCF representation of a subset（not necessarily proper）of the function＇s variables．

Thus，every NCF is a generalized NCF；however，the con－ verse is not true．We note that 1 －decision list s studied in the context of computational learning［22］are the same as generalized NCFs．
Example 2：The constant function which takes on the value 0 for every combination of inputs can be represented as a generalized NCF using the following single rule：

Default： 0
As another example，a generalized NCF specillcation for a

$$
\begin{aligned}
& \text { 亚: } 0 \rightarrow 1 \\
& \text { 严: } 1 \rightarrow 1 \\
& \text { Default: } 0
\end{aligned}
$$

In this case，the function does not depend on the values of variables 严 and 严．

If a generalized NCF specilles a constant function（i．e．， a function which has the value 0 for all inputs or 1 for all inputs），we will indicate that using just the＂Default＂rule． Otherwise（i．e．，there is at least one rule involving a variable）， we can assume without loss of generality that the canalyzed value speci led in the＂Default＂rule is the complement of that specilled on the line that immediately precedes the＂Default＂ rule；in such cases，we omit the＂Default＂rule for simplicity．

2．2 Synchronous Boolean Dynamical Systems

Let B denote the Boolean domain $\{0,1\}$ ．A Synchronous Dynamical System（SyDS）풮 over B is specilled as a pair 풒＝（퐺， \mathscr{F} ），where（i）팾（픽 퐸），an undirected graph with ｜필｜$=$ 핗 represents the underlying graph of the SyDS，with node set 폴 and edge set 퐀，and（ii） $\mathscr{F}=\{$ 펏，폰，\ldots ，퐇ㅎㅎㅎㅇ $\}$ a set of functions in the system，with 퐃ㅊㅊㅇ․ denoting the local

Each node of 팾 has a state value from B．Each function 퐃 speci ${ }^{\text {Fes }}$ the local interaction between node 票and its neighbors in 팾．The inputs to function 퐃ㅊㅊㅇㅢ are the state of
 each combination of inputs to a value in B ．This value be－ comes the next state of node 票 It is assumed that each local function is specilled as an NCF or generalized NCF using the notation discussed in Section 2．1．In a SyDS，all nodes compute and update their next state synchronously．Other update disciplines（e．g．，sequential updates）for discrete dy－ namical systems have also been considered in the literat ure （e．g．，［5，32］）．At any time 吾the con $⿴ 囗 ⿰ 丿 ㇄$

Example 3：Consider the graph shown in Figure 1．In delln－ ing local transition functions for the corresponding SyDS as NCFs，we use the name of a node to be the variable representing its state．
（1）The function 폿 at 吾 is the OR function（i．e．，晋 \vee 吾 \vee 吾） with the following NCF description：吾： $1 \rightarrow 1$ ，
晋： $1 \rightarrow 1$ ，恶： $1 \rightarrow 1$ ．
（2）The function 퐁 at 吾 is the AND function（i．e．，吾 \wedge 亚 \wedge吾 \wedge 吾）with the following NCF description：吾： $0 \longrightarrow 0$ ，
晋： $0 \rightarrow 0$ ，恶： $0 \longrightarrow 0$ ，晋： $0 \longrightarrow 0$ ．
（3）The function 푕 at 晋is 吾 \vee 要 \vee 恶 \vee 晋 whose NCF description is：吾： $1 \rightarrow 1$ ，吾： $0 \longrightarrow 1$ ，吾： $1 \rightarrow 1$ ，
晋： $0 \rightarrow 1$ ．
（4）The function 폿 at 恶 is the AND function（i．e．，亚 \wedge 晋 \wedge 㶾） with the following description：吾： $0 \longrightarrow 0$ ，吾 ： $0 \longrightarrow 0$ ，
晋： $0 \longrightarrow 0$ ．
（5）The function 罣 at 吾 is 㶾 \wedge 票 whose NCF representation is：吾 ： $1 \rightarrow 0$ ，吾 ： $1 \longrightarrow 0$ ．

We specify a conllguration by listing the states of the nodes in the order 吾 through 吾．Assume that the initial con园guration of the system is（ $0,1,0,1,1$ ）．During the Trst time step，贾 remains in state 0 while the states of the ot her nodes change in the following manner：吾 changes to 1 （since its neighbor 晋 is in state 1），亚 changes to 0 （since its neighbor 吾 is in state 0 ），晋 changes to 0 （since its neighbor亚 is in state 0 ）and 吾 changes to 0 （since both 晋 and 吾 are in state 1）．Thus，the con国guration at time 1 is（ $1,0,0,0,0$ ）． The conlguration at time 2 can be seen to be（ $1,0,1,0,1$ ）． Subsequently，while the state values of nodes 吾 through 吾 remain unchanged，the state value of 苛 gets complemented at each time step．Thus，the system cycles between the two con周gurations（ $1,0,1,0,1$ ）and（ $1,0,1,0,0$ ）．

Figure 1：An Example of a SyDS．

2．3 Problem Formulations

We consider a number of analysis problems for SyDSs whose local functions are specilled as NCFs（or generalized NCFs）． Precise dellnitions of these problems are given below．

I．Reachability Problem：

Instance：An NCF－SyDS 풮 with underlying graph 팾（필 팻）； two conllgurations \nexists and \mathcal{B} of 풮．
Question：Does 풒 starting from \Rightarrow reach \mathbb{B} ？
II．Fixed Point Existence：
Instance：An NCF－SyDS 풒 with underlying graph 팾（필 팼）． Question：Does 폎 have a ㄴxed point，that is，a con国guration 풀such that the successor of 풂is 풂itself？
III．Predecessor Existence：
Instance：A NCF－SyDS 풒 with underlying graph 팾（푈 팼）；a conlguration 풂of 풀
Question：Does 풀have a predecessor，that is，a conflguration 풀 such that the successor of 풀 is 풀？
IV．Garden－of－Eden Existence：
Instance：A SyDS 풮 with underlying graph 퓿（폴 팼）and generalized NCF local functions．
 uration 풀which has no predecessor？

2．4 NCFs and Symmetric Functions

As mentioned in Section 1．3，several references have addressed the analysis problems formulated above for 不symmetric Boolean functions（e．g．，［3，4，6，7，25，35］）．A Boolean func－ tion 폿with linputs is symmetric if the value of the function depends only on the number of inputs which have the value 1 and not on the order in which the values are specilled． Examples of symmetric functions include AND，OR，NAND， NOR，XOR，etc．A Boolean function 푓with ℓ inputs is 贾 symmetric if the inputs can be partitioned into 贾subsets such that the value of the function depends only on the number of 1 －valued inputs in each subset．For example，it is observed in［25］that the class of bi－threshold functions is 2 －symmetric．The results for analysis problems presented in the above references assume that each local function is贾symmetric for some $\begin{aligned} & \text { lixed 严 We present an example to }\end{aligned}$ show that NCFs are，in general，di ilerent from 贾symmetric functions for Wxed values of 䙲

 given in Example 1．The function is not symmetric since

폿 $(1,0,0)=1$ while 폿 $(0,1,0)=0$ ．We can also argue that function 폿is not 2 －symmetric by considering each possible

 폿 $0,1,0)=0$ ；in both assignments，the number of 1 －valued inputs in the subset \｛ 亚，亚\} is 1 ．In a similar way，we can rule out the ot her partitions of $\{$ 亚，亚，严\} into two subsets.

The above example can be generalized to show that there are NCFs with 핗variables which are not 퐇－ 1 －symmetric． Thus，the results presented in this paper for NCF－SyDSs are not implied by the known results［35］for SyDSs with贾symmetric functions for 四xed 贾

3 COMPLEXITY OF REACHABILITY

Here，we establish the computational intractability of the reachability problem for NCF－SyDSs．To prove this result， we use a reduction from the Linear Bounded A utomat on （LBA）Acceptance problem（i．e．，given a deterministic LBA 푀 and a string 門 does 푀 accept 퓰？）which is known to be PSPA CE－complete［13］．

Theor em 3．1．There exist constants 폽 and 苛 such that the Reachabil it y problem for NCF－SyDSs is PSPACE－ complete，even when the maximum node degree of the under－ lying graph is 푑 and the treewidth of the graph is \leq 不．

Proof：It is easy to see that the problem is in PSPACE．We show the PSPACE－hardness of reachability via a reduction from the LBA accept ance problem．Suppose the LBA con－ tains 핗cells．Then，the underlying graph of the constructed SyDS consists of 핗clusters of nodes，with the 퐂 cluster representing the 弆 cell of the LBA tape．This node cluster encodes the tape symbol on the 亲 cell，as well as whether the tape head is residing on that cell，and if so，the state of the LBA．Thus，the SyDS con园guration corresponds to an instantaneous description of the LBA．The transition function of the LBA is capt ured by appropriate NCF local transition functions so that successive conllgurations of the SyDS correspond to successive instantaneous descriptions of the LBA．In each step of the SyDS，the state of a given node of the SyDS changes if and only if the corresponding element in the LBA＇s inst ant aneous description changes．In the simulation of the LBA by the constructed SyDS，the LBA accepts its input string in 垔steps if and only if the SyDS reaches a specilled con国guration in 装steps．Details of this construction are given below．

Let 푀＝（푄，Σ, Σ^{\prime} ，吾，恶，팽）denote the given determinis－ tic LBA where 핀 is the（目nite）set of states，Σ is the tape alphabet，$\Sigma^{\prime} \subset \Sigma$ is the input alphabet，覂 \in 푄 is the initial state，푹 \in 핀 is the accepting state and 팽：（푄 $\times \Sigma$ ）\rightarrow （핀 $\times \Sigma \times$ \｛ 퍃폰，폰 $)$ is the transition function．Given the cur－ rent st at e and the current symbol scanned by the（read－write） head，팽 specilles the next state，the symbol to be written on the cell scanned by the head and the direction of head movement（left or right by one tape cell or stay on the same cell）．Let 퓱＝푈필．．．포릴 be the input string given to 푀 with 푈＝\＄and 피릴（ © being the endmarkers．

An instantaneous description（ID）of 푀 consists of the current state，the contents of the tape cells and the position of the head．푀 starts at 更 with its head on the tape cell containing 푈＝\＄．We represent the ID at time zero by the

 symbols on the tape cells between the endmarkers with the symbol／폴 moves the head to the cell containing \＄，and cycles in state 垩．Thus，the unique accepting ID can be represented

 accepts 矴

 clusters，each with 吾＋舞nodes．Within cluster 퐃 $1 \leq$ 퐂ㄴ 푛
 to as passive nodes．Also within cluster 퐂here are 퓨⿰⿱一廾刂

 tape cell 퐃containing symbol 픽 and node 푼푗필 having value 1 corresponds to the tape head residing on tape cell 퐃n state 퐃 with tape cell 퐃containing symbol 푘
 the following three conditions：（1）For each cluster 퐂 exactly one of the passive nodes in the cluster has value 1．（2）Exactly

We delline a bijection 휓from IDs of 푀 onto the set of valid
 tape cell 퐃cont ains tape symbol 푁 and node 푼폋푈 $h a s ~ v a l u e ~$ 1 i 园 the tape head resides on tape cell 퐂n state 푗 with tape cell 퐂containing symbol 푁

 followed by con目guration ㅎ⿱⿱亠䒑日\zh20 폾）．

The nodes in each cluster are interconnected as a clique， and are connected to all the nodes in adjacent clusters．Thus， the maximum node degree 폽 is 3 平票 1）-1 ，and the treewidth更 is at most 2平严＋1）－ 1 。
 ing how they operate when evaluated on a valid conliguration． First，we give the NCF representation for a passive node，say
 all the active nodes in cluster 푗 If any of these nodes has value 1，then the transition function of LBA 푀 determines the new contents of tape cell 핓M ore specillally，the line in the NCF representation that tests variable 要非列 ${ }^{\prime \prime}$ is

푼푗푐 ： $1 \longrightarrow$ 필
where 폴is 1 i 圈 팽 퐃푘）＝（퐃，푁푑 for some 퐃 and 푑
 canalyzing variables in the above lines will equal 1，the above lines can be written in any order．

If the above 舞canalyzing variables are all 0 ，then the tape head is not on cell 퐃so the contents of tape cell 퐃will be unchanged by the next LBA transition．So，the next three
lines of the NCF represent ation keep the value of node 포리치릴 unchanged．Let 푘 and 폴 be two tape symbols di国erent from tape symbol 퐄 Note that in any valid con国guration，at least
 lines of the NCF representation are：포뢰칠 $: 1 \rightarrow 1$ ，

Note that for any valid conflguration，at least one of the above 舞＋ 3 lines will satisfy its test condition，so the re－ maining lines of the NCF representation can be arbitrary．

We now give the NCF representation for an active node， say node 椎폋필．The Trst 舞lines of the NCF representation test all the active nodes in cluster 푗If any of these nodes has value 1，then the transition function of LBA 푀 determines the new value of node 퓬푗필．More specillally，the line in the NCF representation that tests variable 要装，颜

韭襞，필： $1 \rightarrow$ 폴

If the above 舞canalyzing variables are all 0 ，then the tape head is not on cell 핒so the contents of tape cell 퐂will be unchanged by the next LBA transition．The next 표－ 1 lines of the NCF representation check whether the current contents of tape cell 핓is not tape symbol 픽 in which case the contents of tape cell 퐃after one transition is not 푘 Thus，

If all the above tests fail，and this point in the NCF evalu－ ation is reached，then 푁is the tape symbol on cell 퐃and the tape head is not on cell 퐂So，we next test whether the tape head will move onto cell 퐂in state 푗

If 폭• 1，we have an NCF line for each possibility of the tape head moving to the right onto cell 핓in state 핓 Thus， for each（푗，푁）such that 퐹（퐃，푁）$=$（핓푁＇，폰）for some 픽＇， we have the line：要 1 ，裂，贸： $1 \rightarrow 1$ ．

If 퐂ㅊ 푛 we have an NCF line for each possibility of the tape head moving to the left onto cell 퐃in state 푗 Thus，for each（푗，푁）such that 팽（퐃ㅊ，푘）$=$（퐃푁＇，퍃ㅎ $)$ for some 픽＇，we have the line：要 1 ，型，到 $: 1 \rightarrow 1$ ．

If all the above tests fail，and this point in the NCF eval－
 next two lines of the NCF representation accomplish this． Let 奌be the index of an adjacent cluster，and let 푘 and 폴 be any two tape symbols．The next two lines of the NCF

Note that for any valid conflguration，at least one of the above lines will satisfy its test condition，so the remaining lines of the NCF representation can be arbitrary．

 ID $f_{\text {푀 }}$ ，so we construct $f_{\text {푛 }}$ to be 휓 $f_{\text {푀 }}$ ）．Similarly，the Inal

 required con国guration $\mathcal{B}_{\text {핀 }}$ i圈 푀 accepts 丕

4 PREDECESSOR EXISTENCE

Theor em 4．1．The predecessor exi stence problem for NCF－ SyDSs is N P－complete even when the maximum node degre of the underlying graph is 3 ．

Proof sketch：It is easy to see that the predecessor existence problem is in NP．We show NP－hardness via a parsimonious reduction from 3SAT．

Suppose the given 3SAT formula 푓has 핗variables and 푚 clauses．The reduction constructs an NCF－SyDS 퐇 and a con周guration 팺．The underlying graph 퐺 of 핀contains 퐇 + 핖 nodes．For each variable，there is a node，which we denote

 for a clause and the nodes for the variables occurring in that clause．

We Frst describe the local transition function for the nodes corresponding to the variables of the 3SAT formula 폿 For each node 票 the llrst line of the NCF representation for the local transition function at 謤is：剽： $0 \rightarrow 1$ ．
 clause in which the variable corresponding to 覀appears．For each such clause node 蔄 such that the variable corresponding to 覃appears in the clause corresponding to 覀 the local

We now describe the local transition function for the nodes corresponding to the clauses of the 3SAT formula 푓 For each

This line is followed by a line for each literal occurring

The constructed con国guration 폾 has the value 1 for every node．It is easy to see that the construction can be carried out in polynomial time．It can be verifled that the conllguration 퐚 has a predecessor i圈 the given 3SAT inst ance is sat is国able．

It is well known that 3SAT is NP－complete even when each variable occurs in at most three clauses［13］．Using a reduction from this restricted version of 3SAT，it can be verifled that in the underlying graph of the SyDS resulting from the above construction，the maximum node degree is 3．Thus，the predecessor problem remains N P－complete for NCF－SyDSs even when the maximum node degree is 3 ．

Theorem 4.1 is tight with respect to maximum node degree of the underlying graph．This is because when the maximum node degree is 2 ，the predecessor exist ence problem can be solved ell ciently for all local transition functions［25］．

It can be also seen that the above reduction is parsimonious； that is，the number of predecessors of the con国guration 폾 constructed in the above proof is equal to the number of satisfying assignments of the 3SAT formula 푓 Since the counting problem for 3SAT is \＃P－complete，we have：

Corollary 1．The problem of counting the number of predecessors of a given conllguration of an NCF－SyDS is \＃P－complete．

5 FIXED POINT EXISTENCE

Theor em 5．1．The $⿴ 囗 十$ xed point existence problem for NCF－ SyDSs is NP－complete even when the maximum node degre of the underlying graph is 3 ．

Proof sketch：It is easy to see that the lued point existence for SyDSs is in NP．We show NP－hardness via a parsimo－ nious reduction from 3SAT．Wit hout loss of generality，we assume that each variable of the given 3SAT instance occurs （positively or negatively）in at least one clause．

Suppose the given 3SAT formula 푓has 핗variables and 핖 clauses．The reduction constructs a SyDS 핗whose underlying graph 팾 contains 푛＋핖 nodes．For each variable，there is a node，which we denote as 퓩ㄴ $1 \leq$ 퐂ㄴ 핗 For each clause，
 is an edge between each node for a clause and the nodes for the variables occurring in that clause．

We lirst discuss the NCF representation of the functions at the nodes corresponding to the variables of the given 3SAT instance．For each 亚 the Irst line of the NCF for㶾誓： $0 \rightarrow 0$ ．

The subsequent lines of the NCF representation for the function at 丕笑are constructed as follows．For each clause

We now present the NCF representation of the functions at the nodes corresponding to the clauses of the given 3SAT instance．For each clause node 豐 the lirst line of the NCF

This is followed by a line for each literal occurring in clause 푗 If a given literal is positive，say 亚耑 then the corresponding line is：襄： $1 \rightarrow 1$ ；if a given literal is negative，say 吾， then the corresponding line is：吾 ：0 $\rightarrow 1$ ．

It can be seen that the construction can be carried out in polynomial time．It can be shown that the resulting SyDS has a llixed point il the given 3SAT inst ance is sat isllable．

It is known that 3SAT is NP－complete even when each variable occurs in at most three clauses［13］．Using a reduction from this restricted version of 3SAT，it can be veri园ed that the maximum node degree of the underlying graph is 3 ．Thus， the lixed point existence problem for NCF－SyDSs is NP－ complete when the maximum node degree is 3 ．

The above hardness result is also tight with respect to maximum node degree since it follows from the results in［35］ that when the maximum node degree is 2 ，the $⿴ 囗 ⿰ 丿 ㇄$ existence can be solved e⿴囗⿱一一⿱⿻土一⺝⿱⺈⿻⺕亅㇒ ciently．Further，it can also be seen that the above reduction is parsimonious．Thus：

Corollary 2．The problem of counting the number of国xed points of an NCF－SyDS is \＃P－complete．

6 GARDEN OF EDEN EXISTENCE

We now consider the Garden－of－Eden（GE）existence problem． To develop our algorithm for this problem，we need to ⿴囗十介 delline a new operation（called projection）on NCFs．

Definition 3．Given a Boolean function 폿 a variable 퓱 and a Boolean value 푉 the projection of 핏 on 퓱＝폶
 whose value on any assignment 훼to these variables is the value of 폿when 훼is extended to a complete assignment for 푓by setting the variable 䏸to the value 폴

The projection operation is used in the proof of our result for the GE existence problem for SyDSs whose local functions are generalized NCFs．A statement of this result is as follows．

Theor em 6．1．A SyDS whose local transition functions are all generalized NCFs has a GE conllguration unless the generalized NCF for each node involves exactly one canalyzing variable，and each node occurs as a canalyzing variable in exactly one of these generalized NCFs．

Moreover，when the local transition functions are speci Ted as generalized NCFs，if a GE conlilguration exists，then such a con国guration can be constructed in linear time．

Before presenting a proof sketch for Theorem 6．1，we note that the lirst part of the theorem provides the following simple two－step algorithm to check whet her a GE con国guration exists in a SyDS where each node function is a generalized NCF．

1．If there is any local function whose number of variables is ／＝1，output＂Yes＂and stop．
2．（Here，each local function has exactly only one variable．） If a node occurs in two or more local functions，output＂Yes＂； otherwise，out put＂No＂．

A proof of Theorem 6.1 and the construction of a GE conllguration when one exists，require an intricate analysis involving the edges of the graph and the local functions of the nodes．A sketch of the proof is given below．
Proof sketch for Theorem 6．1：Let 폎 be a given SyDS where each local transition function is specilled as a gener－ alized NCF．Let 푛denote the number of nodes of 풮，and 푋 denote the set of nodes．For convenience，we let 퓰칯 핇 denote both a node and its corresponding variable．Let 풀 denote the set of con目gurations of 풜．For any conllguration 팹，we let 폰퐵）denote the successor con周guration of 퐵．

For a con国guration 폾 of 풮 and a conlguration 퐷풜 on a set of variables 푈ㄷ 폷，we say that 폾 and 퐷꿜 are compatible

We now describe an algorithm to construct a GE con国gura－ tion．The algorithm proceeds in stages．Stage 1 might report that no GE conlguration exists，and then exit the algorithm． Otherwise，a given stage either returns a GE conflguration and exits the algorithm，or the given stage is completed，and the next stage begins．

After Stage 퐃where 퐃ㄹ 0 ，the following objects will have been constructed：（i）A set of 핓nodes，which we refer to as predecessor nodes，and denote as 포⿰习习习习ㅊㅊ．（ii）A set of 핓 nodes，which we refer to as successor nodes，and denote as 폴칯．（Sets 폷핓 and 폴핓 are not necessarily disjoint．）（iii） A conlguration 팹핓 on node set 포⿰习핓．We refer to 퐵핓 as a predecessor pattern．（iv）A conlguration 폽핒잉 n node set 폴칯．We refer to 팹핒ㅁ as a successor pattern．

Initially，포⿰ᆲ ${ }^{0}$ and 폴 ${ }^{0}$ are empty，and 퐙 ${ }^{0}$ and 팞 ${ }^{0}$ contain no components．For each node 䠇，let 部贾， 0 denote the given NCF representation of the transition function for 群．At

transformed into a generalized NCF function，denoted as
 in 폷－폷핓 obtained by setting each variable in 폷핒 to its value in 팹퐃

Let $\beta^{\text {핓 }}$ be the set of con $\|$ gurations of 폎that are compatible

 We refer to the conllgurations in $\mathcal{B}^{\text {至 }}$ as eligible con ${ }^{\text {In }}$ gura－ tions，and those in 풀－ $\mathcal{B}^{\text {浐 }}$ as ineligible con ligurations．

The constructed objects can be seen to have the following two properties：（i）For every ineligible con国guration 퐵 \in 품－ $\mathcal{B}^{\text {핓 }}$ ，its successor 푛팹）is incompatible with 팺씻．（ii）If
 at least one eligible con国guration 퐵 $\in \mathcal{B}^{\text {펮 }}$ whose successor
 incompatible with 폿핏．

A consequence of these two properties is that after the completion of stage 핒where 폭＞ 0 ，there is at least one con 1 lg － uration that is an extension of 폾ㄲㅊㅈ，and is a GE conllguration． From Property 1，if a con iguration that is compatible with 폿핒 has a predecessor，this predecessor must be an eligible con目guration．However，there are only $2^{\text {弯－师 }}$ eligible conlg－ urations．From Property 2，the successor of at least one of the eligible con国gurations is incompatible with 팺핑．Thus，
 compatible with 팺짓．Since there are $2^{\text {푛－핓 }}$ con国gurations that are compatible with 폽핓，at least one of these con目gurations

Each st age that completes without exiting adds one more variable to the successor pattern．If a given stage 票exits with a GE con国guration，this GE conllguration is an extension of the current successor pattern 팺핓．Additional details and an e目cient implementation of the algorithm appear in［36］．

7 FUTURE WORK

There are two useful fut ure research directions．One direction is to consider restrictions on the dynamical system that can lead to e elo cient algorithms for the analysis problems considered in this paper．Another direction is to develop algorithms that work well in practice，even though their running times may be exponential in the worst case．For
 to see if the algorithms can be extended to more general versions along the lines of［35］．
A cknow ledgments：We thank the referees of AAMAS 2018 for providing valuable suggestions．This work has been par－ tially supported by DTRA CNIMS（Contract HDTRA1－11－D－ 0016－0001），NSF DIBBS Grant ACI－1443054 and NSF BIG DATA Grant IIS－1633028．The U．S．Government is autho－ rized to reproduce and distribute reprints for Government al purposes notwithstanding any copyright annotation thereon． Disclaimer：The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the o cial policies or endorsements， either expressed or implied，of the U．S．Government．

REFERENCES

［1］T．Akutsu，M．Hayashida，W．Ching，and M．K．Ng．2007．Control of Boolean Networks：Hardness results and algorithms for tree structured networks．Journal of Theoretical Biology 244 （2007）， 670－679．
［2］T．Akutsu，S．K osub，A．Melkman，and T．Tamura．2012．Finding a Periodic Attractor of a Boolean Network．IEEE／ACM Trans． Comput．Biol．Bioinformatics 9， 5 （Sep．2012），1410－1421．
［3］C．L．Barrett，H．B．Hunt III，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，and R．E．Stearns．2003．On Special Classes of Se－ quential Dynamical Systems．Annals of Combinatorics 7 （2003）， 381－408．Issue 4.
［4］C．L．Barrett，H．B．Hunt III，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，and R．E．Stearns．2003．Reachability problems for sequential dynamical systems with threshold functions．Theor． Comput．Sci． 295 （2003），41－64．
［5］C．L．Barrett，H．B．Hunt III，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，and R．E．Stearns．2006．Complexity of Reachability
 Sci．72， 8 （2006），1317－1345．
［6］C．L．Barrett，H．B．Hunt III，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，and R．E．Stearns．2011．Modeling and Analyzing Social Network Dynamics Using Stochastic Discrete Graphical Dy－ namical Systems．Theoretical Computer Science 412， 30 （2011）， 3932－3946．
［7］C．L．Barrett，H．B．Hunt III，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，R．E．Stearns，and Mayur Thakur．2007．Predeces－ sor Existence Problems for Finite Discrete Dynamical Systems． Theoretical Computer Science 386，1－2（2007），3－37．
［8］C．L．Barrett，H．B．Hunt III，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，R．E．Stearns，and P．T．Tosic．2001．Gardens of Eden and Fixed Points in Sequential Dynamical Systems．In DM－CCG．HAL－INRIA，Paris，France，95－110．
［9］C．L．Barrett，H．S．Mortveit，and C．M．Reidys．2000．Elements of a theory of simulation II：Sequential Dynamical Systems．Appl． M ath．Comput．107，2－3（2000），121－136．
［10］C．L．Barrett and C．M．Reidys．1999．Elements of a theory of simulation I：Sequential CA Over Random Graphs．AppI．Math． Comput．98， 3 （1999），241－259．
［11］H．L．Bodlaender．1993．A Tourist Guide through Treewidth． Acta Cybernetica 11，1－2（1993），1－22．
［12］B．Durand．1995．A Random NP－Complete Problem for Inversion of 2D Cellular Automata．Theor．Comput．Sci．148， 1 （1995）， 19－32．
［13］M．R．Garey and D．S．Johnson．1979．Computers and Intractabil－ ity：A Guide to the Theory of NP－Completeness．W．H．Freeman and Co．，San Francisco，CA．
［14］A．Gha⿴囗⿰丨丨⿹勹冫 plying attractor dynamics to infer gene regulatory interactions involved in cellular dillerentiation．Biosystems 155 （2017），29－41．
［15］F．Green．1987．NP－Complete Problems in Cellular Automata． Complex Systems 1， 3 （1987），453－474．
［16］H．Gutowitz．1989．Cellular Automata：Theory and Experiment． North Holland，Ameterdam，The Netherlands．
［17］S．K aulman．1969．Metabolic Stability and epigenesis in randomly constructed genetic nets．J．Theoretical Biology 22， 3 （1969）， 437－467．
［18］S．Kaulman．1993．The Origins of Order：Self－Organization and Selection in Evolution．Oxford University Press，New York， NY．
［19］S．K autiman，C．Peterson，B．Samuelsson，and C．Troein． 2003. Random Boolean network models and the yeast transcriptional network．Proc．National Academy of Sciences（PNAS）100， 25 （Dec．2003），14796－14799．
［20］S．K aullman，C．Peterson，B．Samuelsson，and C．Troein． 2004. Genetic networks with canalyzing Boolean rules are always st able． Proc．National Academy of Sciences（PNAS）101， 49 （Dec．2004）， 17102－17107．
［21］M．Kearns．2008．Graphical Games．In Algorithmic Graph Theory， N．Nissan，T．Roughgarden，E．Tardos，and V．Vazirani（Eds．）． Cambridge University Press，New York，NY，Chapter 7，159－178．
［22］M．J．K earns and V．V．Vazirani．1994．An Introduction to Computational Learning Theory．MIT Press，Cambridge，MA．
［23］D．Kohler and N．Friedman．2009．Probabilistic Graphical M odels： Principles and Techniques．MIT Press，Cambridge，MA．
［24］S．K osub and C．M．Homan．2007．Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems．In Proc．ICTCS． World Scientitc，Singaore，163－174．
［25］C．J．Kuhlman，A．Kumar，M．V．Marathe，S．S．Ravi，D．J． Rosenkrantz，and R．E．St earns．2013．Analysis Problems for Spe－ cial Classes of Bi－threshold Dynamical Systems．In Proc．Work－ shop on Multi－Agent Interaction Networks（MAIN 2013）．ACM Sheridan Press，New York，NY，26－33．（Held in conjunction with the 12th IntI．Conference on Autonomous Agents and Multiagent Systems（AAMAS））．
［26］L．Layne．2011．Biologically Relevant Classes of Boolean Func－ tions．Ph．D．Dissertation．Department of M athematics，Clemson University．
［27］L．Layne，E．Dimitrova，and M．Macauley．2012．Nested Cana－ lyzing Depth and Network Stability．Bulletin of M athematical Biology 74， 2 （2012），422－433．
［28］Y．Li and J．O．Adeyeye．2012．Sensitivity and Block Sensitivity of Nested Canalyzing Functions．arXiv：1209．1597v1［cs．DM］．（Sept． 2012）．
［29］Y．Li，J．O．Adeyeye，and R．C．Laubenbacher．2011．Nest ed Canalyzing Functions And Their Average Sensitivities．arXiv： 1111．7217v1［cs．DM］．（Nov．2011）．
［30］Y．Li，J．O．Adeyeye，D．Murrugarra，B．Aguilar，and R．C． Laubenbacher．2013．Boolean nest ed canalizing functions：A com－ prehensive analysis．Theoretical Computer Science 481 （2013）， 24－36．
［31］A．A．Melkman and T．Akutsu．2013．An improved satislability algorithm for nested canalyzing functions and its application to determining a singleton attractor of a Boolean network．Journal of Computational Biology 20， 12 （2013），958－969．
［32］H．S．Mortveit and C．M．Reidys．2007．An Introduction to Sequential Dynamical Systems．Springer，Berlin，Germany．
［33］M．Ogihara and K．Uchizawa．2015．Computational Complex－ ity Studies of Synchronous Boolean Finite Dynamical Systems． In Theory and Applications of Models of Computation－12th Annual Conference，TAMC 2015，Singapore，May 18－20，2015， Proceedings．Springer，New York，NY，87－98．
［34］C．H．Papadimitriou and T．Roughgarden．2003．Equilibria in Symmetric Games．Report，St anford University．（2003）．
［35］D．J．Rosenkrantz，M．V．M arathe，H．B．Hunt III，S．S．Ravi，and R．E．Stearns．2015．A nalysis Problems for Graphical Dynamical Systems：A Unilled Approach Through Graph Predicates．In Pro－ ceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems，AAMAS 2015，Istanbul，Turkey， May 4－8，2015．ACM Sheridan Press，New York，NY，1501－1509．
［36］D．J．Rosenkrantz，M．V．M arathe，S．S．Ravi，and R．E．Stearns． 2017．Testing Phase Space Properties of Synchronous Dynamical Systems with Nested Canalyzing Local Functions．Technical Report，Biocomplexity Institute of Virginia Tech．（2017）．
［37］C．Seshadhri，A．M．Smith，Y．Vorobeychik，J．R．Mayo，and R．C． Armstrong．2016．Characterizing short－term stability for Boolean networks over any distribution of transfer functions．Physical Review E 94， 1 （2016）， 012301.
［38］R．E．Stearns，D．J．Rosenkrantz，S．S．Ravi，and M．V．M arathe． 2017．An Elementary Proof of the Upper Bound on the Average Sensitivity of Nested Canalyzing Functions．Technical Report， Network Dynamics and Simulation Science Laboratory，Biocom－ plexity Institute of Virginia Tech，Blacksburg，VA．（2017）．
［39］T．Tamura and T．Akutsu．2007．An 푁（1．787 㪯）－Time Algorithm for Detecting a Singleton Attractor in a Boolean Network Con－ sisting of AND／OR Nodes．In Fundamentals of Computation Theory，16th International Symposium，FCT 2007，Budapest， Hungary，August 27－30，2007，Proceedings．Springer，New York， NY，494－505．
［40］T．Tamura and T．Akutsu．2008．An Improved Algorithm for Detecting a Singleton Attractor in a Boolean Network Consisting of AND／OR Nodes．In Algebraic Biology，Third International Conference，AB 2008，Castle of Hagenberg，Austria，July 31－ August 2，2008，Proceedings．Springer，New York，NY，216－229．
［41］P．T．Tosic．2010．On the complexity of enumerating possible dynamics of sparsely connected Boolean network aut omat a with simple update rules．In Automata 2010－16th Intl．W orkshop on CA and DCS．HAL－INRIA，Paris，France，125－144．
［42］P．T．Tosic．2017．Phase Transitions in Possible Dynamics of Cellular and Graph Automata Models of Sparsely Interconnected Multi－Agent Systems．In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems，AAMAS 2017， São Paulo，Brazil，M ay $8-12,2017$ ．ACM Sheridan Press，New York，NY，474－483．
 of innovations．Social Networks 18 （1996），69－89．
[44] C. H. Waddington. 1942. Canalyzation of development and the inheritance of acquired characters. Nature 150, 14 (1942), 563565.
[45] S. Wolfram. 1987. Theory and Applications of Cellular Automata. World Scientilic, Singapore.
[46] M. Wooldridge. 2002. An Introduction to Multi-Agent Systems. John Wiley \& Sons, West Sussex, UK.

[^0]: ＊Also with the Computer Science Department at Virginia Tech．
 ${ }^{\dagger}$ Also with the University at Albany－SUNY．
 Proc．of the 17th International Conference on Autonomous Agents and Multiagent Systems（AAMAS 2018），M．Dastani，G．Sukthankar， E．Andre，S．K oenig（eds．），
 ，July 2018，Stockholm，Sweden．© 2018 International Foundation for Autonomous Agents and Multiagent Systems（www．ifaamas．org）． All rights reserved．

[^1]: ${ }^{1}$ The dellnition of 不symmetric functions is given in Section 2．4．

