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ABSTRACT

Automatic systolic array generation has long been an interesting
topic due to the need to reduce the lengthy development cycles of
manual designs. Existing automatic systolic array generation ap-
proach builds dependency graphs from algorithms, and iteratively
maps computation nodes in the graph into processing elements
(PEs) with time stamps that specify the sequences of nodes that
operate within the PE. There are a number of previous works that
implemented the idea and generated designs for ASICs. However,
all of these works relied on human intervention and usually gen-
erated inferior designs compared to manual designs. In this work,
we present our ongoing compilation framework named PolySA
which leverages the power of the polyhedral model to achieve the
end-to-end compilation for systolic array architecture on FPGAs.
PolySA is the first fully automated compilation framework for gen-
erating high-performance systolic array architectures on the FPGA
leveraging recent advances in high-level synthesis. We demonstrate
PolySA on two key applications—matrix multiplication and convo-
lutional neural network. PolySA is able to generate optimal designs
within one hour with performance comparable to state-of-the-art
manual designs.
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1 INTRODUCTION

With the advancement of CMOS technology, modern FPGAs are
equipped with more and more resource. For example, the latest
Xilinx FPGA deployed in Amazon AWS F1 instance [2] contains
approximately 2.5 million logic elements and 6,800 DSPs. With such
rich resource available, how to efficiently utilize them becomes an
important challenge.

Systolic array architecture, which consists of a group of iden-
tical processing elements (PEs) that are locally connected to each
other, turns out to be one of the promising solutions to overcome
the challenge [14]. The architecture is highly scalable. With local
connections and modular PEs, the design can be easily spread out
to the entire chip with high frequency. Moreover, the architecture is
highly energy-efficient. In contrast to conventional designs where
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Figure 1: The PolySA compilation framework.

PEs access data from on-chip global buffers through large crossbars,
PEs in systolic array can access data from neighbor PEs as well.
According to [23], fetching data from neighbor PEs costs 3x less
energy than fetching from on-chip global buffers.

Systolic array is applicable to a wide range of applications, e.g.,
linear algebra [17], machine learning [7, 12], dynamic program-
ming [10], etc. However, most of the above-mentioned works are
designed manually from scratch, which usually take rather long
development cycles. Research from Intel [20] shows that it takes
several months of effort (3-19 months) to implement these designs.
Such a problem has raised the needs of automating the design
generation process of systolic array.

There have been some initial efforts toward automating the gen-
eration of systolic array (e.g., [6, 15, 22, 25, 26]). However, they face
some limitations as follows: 1) Most works take manual inputs or
outputs and require user guidance for generating the design. 2) The
methodologies deployed in the compiler for mapping applications
to systolic array are limited in either generability or performance.
We aim to overcome these challenges in this work by presenting
PolySA (as shown in Figure 1), which is the first end-to-end compi-
lation framework for systolic array architecture on FPGAs, and it is
able to generate designs with comparable performance to manual
designs.

PolySA takes in applications written in high-level programming
languages (C/C++), performs the mapping of systolic array based
on polyhedral IR, and generates off-the-shelf FPGA IPs. PolySA ad-
dresses the above-mentioned issues with the following approaches:
1) PolySA takes in high-level programming languages and gener-
ates FPGA IPs. The whole compilation process is fully automated
without any user intervention. 2) PolySA leverages the polyhedral
framework to support various schedulings and efficient transfor-
mations to generate systolic array architecture. Overall, PolySA
makes following contributions:

e We build an end-to-end compilation framework for generat-
ing a systolic array architecture on FPGAs. The compilation
framework is fully automated to generate efficient systolic
array designs for FPGAs from applications written in C/C++.

o Inthe front end, we implement and extend a systematic trans-
formation methodology based on the polyhedral framework
to map designs to systolic array architecture on FPGAs. With
the help of such an approach, PolySA is able to identify all
design alternatives that cover all previous manual designs.



o In the back end, we leverage the high-level synthesis (HLS)
tools for fast design generation. We propose an analytical
model to analyze the performance and resource utilization
of designs that allows for a comprehensive design space
exploration for the optimal designs.

e We demonstrate PolySA on two key applications—matrix
multiplication and convolutional neural network. PolySA is
able to reduce the development cycles from several months
to within one hour, and generates high-performance designs
with a performance gap within 31% compared to state-of-
the-art manual designs.

The remainder of this paper is organized as follows. Section
2 introduces the background of the polyhedral framework and
summarizes the related work. Section 3 presents the overview of the
PolySA framework. In Section 4 we walk through the compilation
flow with the example of matrix multiplication. Section 5 presents
experimental results. Finally, this paper is concluded in Section 6.

2 BACKGROUND AND RELATED WORK
2.1 Polyhedral Framework

The polyhedral compilation framework performs complex loop nest
restructuring for performance optimization [5]. The essence of the
polyhedral model is the use of parametric polyhedra as the internal
representation of programs. There are three key components in
the polyhedral model: iteration domain, scattering functions, and
access functions. Iteration domain is a set of all possible values of
the iteration vectors in the loop nest which defines the shape of the
polyhedron of the given problem. Scattering functions provide the
ordering information inside the iteration domain which describes
the order of loop instances to be executed relative to each other.
And access functions describe all the memory accesses of loop in-
stances. Each scattering function defines a unique scheduling of
the given program. We use these two terms (scattering function
and scheduling) interchangeably in the remaining sections of the
paper. The polyhedral compilation framework performs program
transformation by selecting different scattering functions (schedul-
ings) without breaking the original data dependency of the program.
More details about the polyhedral framework can be found in [3-5].

PolySA embraces the polyhedral model as its internal IR for two
major reasons: 1) The great analysis power of polyhedral IR enables
efficient architecture transformation and design space exploration.
2) Instead of using other user-defined IRs, as in many previous
works, standard IR supports easy integration with other frameworks
(e.g., Tensor Comprehension [24]) and enables PolySA to leverage
the enormous legacy work from the polyhedral community.

2.2 Automatic Systolic Array Generation

Systolic array can be applied to a wide variety of applications [7,
10, 12, 17]. Recent success includes the Tensor Processing Unit
by Google [12] which implements a 2D systolic array to perform
matrix operations. Intel implements a 2D systolic array for sequence
alignment in the genomics pipeline [10].

Automatic systolic array compilation has long been an inter-
esting topic due to the enormous development efforts of manual
designs [6, 14-16, 19, 22, 25, 26]. Wei et al. [25] proposed a compi-
lation framework to generate 2D systolic arrays for CNN. However,

the mapping approach is limited in terms of generality as the array
architecture is fixed, and the simple enumeration approach adopted
in the work fails to discover all design alternatives.

A more general approach named canonical mapping was pro-
posed to map algorithms to systolic arrays by performing affine
transformation [13, 14]. The approach searches for different pro-
cessor allocation and time scheduling functions to find the feasible
systolic array designs. Rajopadhye and Fujimoto [19] further ex-
tended the approach to generate systolic arrays with non-uniform
data flow. There have been many previous works that implemented
the canonical mapping [6, 15, 22, 26]. However, all of these ap-
proaches are half-automated and hard to use in practice as they
rely on manual inputs or outputs.

Lim and Lam [1, 16] proposed an elegant and general approach
for identifying both synchronization-free parallelism and pipelined
parallelism on parallel multiprocessors. The proposed approach
aimed to extract the maximal parallelism to transform the input
code to the output code with fully permuted loops at the outer-
most level, so that it can be mapped to pipelined architectures
with maximal freedom. The pipelined architecture can be further
transformed to systolic array architectures with the constraint of
non-zero delays between PEs. The work in [1] did not explore dif-
ferent processor and time assignments which will lead to on-chip
designs with different area and performance.

PolySA adopts the canonical mapping and further extends it
to generate high-performance designs. Details of the canonical
mapping will be covered in Section 4.

3 FRAMEWORK OVERVIEW

Figure 1 presents the full compilation flow of PolySA. The compiler
is composed of two parts—front end and back end. In the front end,
PolySA takes in applications written in C/C++ and compiles them
into polyhedral IR. Then, the compiler selects different schedul-
ings to map algorithms to the systolic array architecture based on
canonical mapping in the stage of Polyhedral Transformation. The
outputs of the front end, which are named Virtual Systolic Array
(VSA), are different systolic array design alternatives described by
polyhedral IR. The VSA serves as a standard interface between the
front-end and back-end and helps to improve the portability of the
framework.

In the back end, different VSAs will be evaluated by the design
optimizer for certain performance metrics. Optimal designs are
picked and later fed into the code generator to generate synthesiz-
able code on FPGA. We adopt the HLS rather than RTL considering
both portability and productivity. The current version of PolySA
can only support Xilinx flow by generating code written in Xilinx
HLS C. Support for Intel OpenCL will be added in the future. In the
following section, we will use matrix multiplication as the example
to walk through the compilation process of PolySA in detail.

4 COMPILATION FLOW

4.1 Polyhedral Transformation

In the front end, PolySA takes algorithms written in C/C++ as
inputs. Figure 2 shows the example code of matrix multiplication.
Pragmas #pragma sa and #pragma endsa are added to mark the
code region that needs to be compiled to systolic array.



#pragma sa
for (int 1 = @; 1 < I; i++)
for (int j = 0; j < J3; j++){
C[i]1[]] = e;
for (int k = 0; k < K; k++)
C[i][3] += A[i][k] * B[Kk][3];

#pragma endsa

Figure 2: Input code of matrix multiplication.

The code is compiled to polyhedral IR, which includes three
key components: iteration domain D, scattering functions Fg, and
access functions F4. Let us denote the original algorithm that is
represented by the polyhedral model as ®. ® is a triple of three key
components, i.e., d = (5, Fs, Fy).

Figure 3a presents these three components. Both scattering and
access functions are presented in the matrix format.

e The iteration domain D of matrix multiplication is a three-
dimensional polyhedron (i.e., a cube). Each node in the cube
corresponds to one loop instance in the original code, which
can be located using an iteration vector 7 that is a tuple of
the three iterators in MM, i.e., ! = (i, J, k). In the example
of MM, each node performs one multiply-and-accumulate
(MAC) operation (C[i][j] += A[il[k] * B[kI[jJ).

e The scattering function Fs(7) generates logical stamps S for
each node which describe the execution order of nodes, i.e.,
S = Fs(it) X 1. The logical stamps generated by the default
scheduling are marked in the cube.

e The access functions F4(7) define the array reference Re f
to be accessed by each node, i.e., Ref = F4(7) X 1.

Given one scattering function, we can directly map the polyhe-
dron to an array processor using the following approach. We assign
different semantics to different dimensions of the logical stamps
generated by the scheduling. For example, for the polyhedron in
Figure 3a, the first two dimensions of the logical stamps are devoted
to space mapping that assigns the node to different PEs in the array.
And the last dimension is devoted to time scheduling that assigns
the execution order of nodes inside the PE. This will yield a simple
2D array which is able to finish the computation by two cycles.
Details are depicted in Figure 3b.

Different scattering functions will generate different array ar-
chitectures. In theory, PolySA can support any feasible scattering
functions for systolic array generation. In this work, we use an
iterative mapping approach to generate scattering functions that
corresponds to the canonical mapping [13]. The space mapping and
timing scheduling in the canonical mapping are represented by the
projection vector d and scheduling vector s. Nodes of the original
polyhedron along the d are assigned to the same PE. All the nodes
on the same hyperplane, which is orthogonal to the scheduling vec-
tor §, are scheduled to execute at the same time. Such a relationship
can be summarized as follows:

Space mapping: The mapping of a node 7 in the N-dimensional
polyhedron onto a PE ¢ in the (N — 1)-dimensional mapped array
is done by:

¢=PTi 1)
where the processor basis P is an N x (N — 1) matrix consisting
of basis vectors in the mapped array that can be derived from the
projection vector d. In our MM example in Figure 3b, we choose
Tl = (0,0, 1). Therefore, we can pick up two vectors ﬁlT =(1,0,0)
and p}T = (0, 1,0) which will serve as new basis vectors in the

mapped array and compose the processor basis P as:

@

For example, node 717 = (0,1, 0) will be mapped to the PE ¢ as:

0] _ [0
ol 11

Time scheduling: For any node 7 in the polyhedron, its time
stamp to compute is calculated by:

E:PTﬁ:[é 0 g] ®)

i=3"n (@)

In our example, we choose 3T = (0,0, 1). For instance, the time
stamp for node 7l = (0,0, 1) to execute is 57 7 = 1. In the end, the
scattering function is derived by combining space mapping and
time scheduling together.

- pT
Fs(d 3) = [ET

®)

And using the given scattering function, we calculate the logical
stamps for the new polyhedron as:

PT
§T

S= [?J = Fs(iyx i = | 5r | [7] ©

where ¢ is an (N — 1)-dimensional vector which describes the PEs
that nodes in the original polyhedron are mapped to, and ¢ is a
1-dimensional vector (scalar) which describes the execution order
of nodes that are mapped to PEs. For illustration, in Figure 3c, we
present another scheduling which uses a different set of projection
and scheduling vectors.

With the help of the canonical mapping, the scattering func-
tion is chosen based on the projection and scheduling vectors d
and §. And each scattering function will generate a different array
architecture. PolySA enumerates different combinations of (J, 5)
to explore different design alternatives. Note that not all (c? §) are
feasible choices, as the generated design must follow the original
data dependency. Besides, systolic array designs require at least
one unit of delay associated with each edge. Therefore, for any
dependency arc €y in the graph, the scheduling vector § needs to
satisfy:

sTey>o0 ()
Meanwhile, all the nodes mapped to the same PE cannot operate at
the same time. This is constrained by:

dTs>o0 ®)
PolySA applies feasible checks along with the mapping to filter out
illegal array designs. More details of the feasibility check can be
found in [13, 19]. The current PolySA chooses d from the candidate
set {can|can = X€;} where ¢; is an N-dimensional unit vector
whose i-th dimension is 1 and the rest are all zeros. And we choose
5 with coefficients from the set {0, 1}.

The above-mentioned scheduling maps an N-dimensional poly-
hedron to an (N — 1)-dimensional array. Let us denote the polyhe-
dron ® which represents an N-dimensional array as . We derive
a new polyhedron ®N~1 which represents an (N — 1)-dimensional
array using the scattering function Fs, as shown in Figures 3b
and 3c. The mapping flow is summarized as:

Fs, (dy,51)
oN &, oN-1 )
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Figure 3: Polyhedral transformation of MM example (I = ] = K = 2).

In principle, this method can be applied K times and thus reduce
the dimension of the array to N — K. For example, when mapping
designs from @V~ to ®V2, we can choose the scheduling F. s, by:

Pl 0
F. 7’21-
Sy = |2 0 (10)
0 1

Thus we can calculate the logical stamps for the polyhedron
ON2 as:

52=[L—.>2 =F52>< i

ty

(11)

where ¢ is an (N — 2)-dimensional vector for space mapping and >
is a 2-dimensional vector for time scheduling in the newly mapped
(N - 2)-dimensional array represented by ®~~2. The principle of
this approach is straightforward. We use the formula 5 to project
the (N — 1)-dimensional array in ®V = to an (N — 2)-dimensional
array and generate the new timestamp. Meanwhile, all the old
timestamps generated in the previous mappings are inherited and
left untouched. Note that d; and s are (N — 1)-dimensional vectors.

We can apply the multi-projection iteratively to reduce the di-
mension of the generated array as:

Fg, (d},57) Fg, (d3,53)
oV 2 pN-1 2 oN-2 (12)

Starting from an N-dimensional polyhedron, the semantics of the
generated logical stamps for nodes in the polyhedron change accord-
ingly, along with the multi-projection. For ®N =X the leading N —K
dimensions of the logical stamps are devoted to space mapping, and
the rest of the K dimensions are devoted to time scheduling. Fig-
ure 3d presents an example where we apply another new scheduling
Fs, based on the scheduling Fs, in Figure 3c to generate a 1D array
for matrix multiplication. In the mapped array, the first dimension
of the logical stamp assigns the PE. And the last two dimensions of
the logical stamp assign the execution order of nodes inside PE. For
instance, there are four nodes mapped to PEO. Inside PEO, we follow
the lexicographic order (0,0,0) — (0,0,1) — (0,1,1) — (0,1,2) to
execute the four nodes based on the last two dimensions of their
logical stamps.

During the polyhedral transformation, every time when choos-
ing a new scattering function, we will need to update the access
functions in the newly generated polyhedron. New access functions
in ®VK are calculated by:

Fay =Fa,_, xFg, (13)
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Figure 4: Different array designs of MM example.

F;kl is the inverse matrix of Fg, in the matrix format. If there is no
inverse matrix existing for the given Fs,, PolySA will terminate
the multi-projection and start again from a different Fs, instead.

With the help of access functions, PolySA analyzes the data
transfer scheme for the mapped array and adds the data transfer
modules and interconnects to the mapped design. Figure 4a, 4b,
and 4c present the complete array architectures with data transfer
modules and interconnects for designs derived from Figure 3b, 3c,
and 3d, respectively. For the ease of illustration, we will name these
three designs in Figure 4 as design A, B, and C, respectively. In these
designs, we add data transfer modules including data feeders (DF)
and data collectors (DC). DF fetches data from the on-chip global
buffers and feeds PEs which it connects to. DC collects final results
from PEs and writes them back to the on-chip global buffers.

In design A, as all four PEs consume different data at the same
time according to its scheduling, we allocate four DFs for both
matrix A and B. Moreover, all four PEs generate final results at the
same time, therefore, we allocate four DCs for matrix C as well. As
for design B, based on the access functions, we find that data from
matrix A are reused between PEs vertically, and data from matrix
B are reused between PEs horizontally. Therefore, only 2 DFs are
allocated for each matrix, and data will be passed through PEs by
local interconnects. Similarly, we derive the design C.

In systolic array designs, it is more favorable to feed data through
boundary PEs, as the global wires introduced by the interior I/O
usually lead to long delays that cause inferior performance. The
three designs generated so far all contain interior I/O that introduces



Table 1: Basic design modules in Code Generator.

Module Name | Functionality

op_trans transfers operands between neighbor PEs
int_store stores local intermediate results

int_trans_in fetches intermediate results from neighbor PEs
int_trans out | writes out intermediate results to neighbor PEs

res_trans transfer final results between neighbor PEs

compute performs the computation

DF fetches data from global on-chip buffers and feeds PEs

DC collects data from PEs and writes back to global on-chip buffers

global interconnects with long delays. Manual designs [11, 17]
implement double buffers inside PEs to perform the data transfer
through local interconnects. Such designs are shown in Figure 4d
and 4e. In PolySA, we perform the interior I/O elimination to reduce
the global interconnects. We follow the similar approach as used in
the manual designs by adding double buffers inside PEs to transfer
data through neighbor PEs without impacting the design latency.
In our examples as shown in Figure 4, the design B and C can be
further optimized to the design D and E, respectively. The design A
fails to be optimized without the cost of increasing latency. Such
designs will be filtered out from the design space.

The front end of PolySA usually generates numerous systolic
array design candidates. These designs are named as Virtual Sys-
tolic Array, which are described by Polyhedral IR with metadata.
The metadata include the information of data transfer modules
and interconnects as mentioned above. VSAs contain the complete
information about the functionalities and the architecture of the
generated systolic array design. The back end of the PolySA will
pick up the optimal design among them by different performance
metrics in the design optimizer and generate the synthesizable code
for FPGA using the code generator. This will be presented in the
next two sections.

4.2 Code Generator

The code generator in PolySA generates designs written in high-
level synthesis (HLS) C [8] based on its high productivity and porta-
bility compared to RTL. As different coding styles in HLS play an
important role in the design performance, the code directly gen-
erated from the polyhedral tools is usually hard to generate high-
performance designs. Therefore, in PolySA we adopt a template-
based code generation approach, similar as the work [25].

To begin with, we define the basic design module templates that
are used in the systolic array designs. Table 1 shows the complete
list of these modules and explains their functionalities in detail.

These basic design modules serve as building blocks to compose
different PE modules. Depending on the way that intermediate
results are processed in the systolic array, in the code generator, we
classify systolic arrays into three categories and implement three
different PE templates:

e Local designs. Designs in which intermediate data of results
are all locally accumulated inside PEs.

o Global designs. Designs in which intermediate data of results
are all globally accumulated between PEs.

o Mixed designs. Designs in which intermediate data of results
are both locally and globally accumulated among PEs.

Figure 5 depicts the architecture of PE templates of these three
different designs. Above the level of PEs, the code generator imple-
ments an array template which consists of PEs and data transfer
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Figure 5: PE templates for different designs.
modules, and connects them based on the array shape and data
interconnection, which can be inferred from VSAs, as shown in
Figure 4.

All the basic design modules are written in HLS. The PE and
array templates are written in RTL to provide full flexibility. All
the templates are parametric. PolySA parses VSAs and instantiates
these templates to generate the final systolic array design. The
entire design is eventually wrapped up as an HLS IP with AXI
interface to enable easy integration with other designs.

4.3 Design Optimizer

The design optimizer in PolySA evaluates all systolic array candi-
dates generated from the front end and picks up the optimal design
based on certain performance metrics. In the current design opti-
mizer, we will pick up the design with the lowest latency given the
limited resource constraints. The optimization problem is defined
as:
mi‘rll%srrfllize L = max(Leomps Lcomm)
;mfchip (14)

where i = FF, LUT, BRAM, DSP

subjectto  resource;(VSA) < resource

All data transfer modules in the templates are double-buffered.
Therefore, the systolic array can immediately begin to prepare the
data for the next job at the beginning of the computaion of the
current job. The latency of each job L is therefore dominated by the
bottleneck between computation latency Lcomp and data transfer
latency Leomm, as calculated by L = max(Lcomp» Leomm)-

The computation latency Leomp can be estimated based on scat-
tering functions. We count the number of computation nodes mapped
to each PE multiplied by the computation latency of each node. The
communication latency L¢omm is estimated based on the amount of
data transferred between systolic array and on-chip global buffers.

As for the resource models, the template-based code generation
approach enables highly efficient and accurate resource modeling.
We designed a suite of micro-benchmarks which help build up ana-
lytical models for the parametric templates. For each VSA generated
by the front end of PolySA, we extract the design parameters and
plug them into the parametric resource models to quickly estimate
the resource consumption of each design.

Overall, our latency and resource models achieve the relative
error within 10%. Details are presented in Section 5. Note that for
problems with a large size, PolySA will generate a large systolic
array which could be impossible to fit on-chip given the limited
FPGA resource. In such case, PolySA applies array partitioning to
partition the original array into smaller-size arrays and execute the
tiled tasks in sequence on the newly generated array. The tiling
parameters will be explored by the design optimizer as well.



Table 2: Problem configuration of CNN.

Denotation Explanation Configuration
IN_NUM, OUT_NUM input/output feature map number 2,4
IN_IMG_H, IN_IMG_ W input feature map height/width 55
OUT _IMG _H, OUT IMG W | output feature map height/width 3,3
P,Q weight kernel height/width 3,3

In PolySA, we solve the optimization problem as stated in Equa-
tion 14 by enumeration with pruning based on the resource usage.
This approach suffices for our project given the complexity of the
design space. In Section 5 we present the runtime breakdown of
PolySA in detail.

5 EXPERIMENTAL RESULTS
5.1 Experiment Setup

In this section we evaluate the PolySA framework in detail. The
current PolySA uses the Clan compiler [4] to parse C/C++ code into
polyhedral IR. The front end and back end are written in Matlab.
The compiler runs on our server which is equipped with Intel Xeon
E7-4807 CPU and 128 GB memory. All of the designs are synthesized
and implemented using Xilinx Vivado 2017.4.

5.2 Front-End Evaluation

We use two key applications—matrix multiplication (MM) and con-
volutional neural network (CNN)—to assess the framework. For
CNN, we take the 6-level nested loop for one single convolutional
layer as the input of PolySA. The sample code can be found in [25].
Note that both algorithms are fully permuted nested loops and
therefore can be transformed to systolic array architecture accord-
ing to [1].

In this section we use two simple examples to evaluate the front-
end of PolySA. For MM, we set I = J = K = 2. The problem
configuration of CNN is shown in Table 2. The front end of PolySA
generates different design alternatives for the given algorithm. Fig-
ures 6 and 7 present all possible systolic array design alternatives
that PolySA generates for these simple MM and CNN examples.
The array dimension is marked alongside the array. The legends for
data interconnects are shown in Figure 6f and 7p for MM and CNN,
respectively. For example, for the design MM 1 in Figure 6a, the
array shape is I X K. Data from matrix A and B are fed downward
to PEs. Intermediate results of matrix C are accumulated across PEs
rightward. And final results of matrix C are collected from the last
column of PEs in the array.

The major observation here is that with the help of the polyhe-
dral transformation, PolySA performs a systematic array mapping
process and is able to discover all possible design candidates for
the given algorithm, which is a superset of different systolic array
architectures implemented by previous manual works. In these two
examples, PolySA identifies 5 different systolic array designs for
MM and 15 different systolic array designs for CNN. Designs that
are implemented by manual works are noted with an asterisk mark
in the figure.

Apart from designs covered by previous work, PolySA identifies
1 and 13 more new designs for MM and CNN, respectively. Previous
manual designs usually only identify one or several design points
as a tip of the iceberg. This could lead to designs with suboptimal
performance. In contrast, PolySA provides a systematic and efficient

Table 3: Design comparison.

(a) MM
MM BRAM | DSP | FF | LUT | MHz | GFLOPs | Lrojected
z $ | GFLOPs
PolySA 89% | 89% | 39% | 49% | 2288 | 5554 7585
Baseline [17] - - - - 312.5 800.0
(b) CNN
CNN BRAM | DSP | FF | LUT | MHz | GFLOPs | Lrojected
z $ | GFLOPs
PolySA 71% | 89% | 30% | 49% | 2205 | 54839 | 603.55
Baseline [25] | 47% | 81% | 40% | 59% | 252.6 | 600.27

approach to identify the complete design space and therefore allows
for a comprehensive search for the optimal designs.

5.3 Back-End Evaluation

In the back end, PolySA uses the design optimizer to perform design
space exploration and picks up the optimal design with the lowest
latency. The design is generated by the code generator and wrapped
as an HLS IP. We compare the generated designs from PolySA to
state-of-the-art designs for both applications. Baselines of MM and
CNN are chosen from [17] and [25], respectively. Both baselines
are implemented on Intel Arria 10 GX1150, which is not supported
by PolySA so far. We choose the Xilinx UltraScale+ VU9P as the
target platform for our designs, which contains similar amounts of
resource compared to Arria 10 GX1150. For MM, we set the problem
size as I = J = K = 1024. For CNN, we choose the third layer of
the VGG-16 model [21].

5.3.1 Design Space Exploration. Figure 8 depicts the design
space of MM and CNN. The optimal design is marked in red color.
The height of each point equals the reciprocal of the latency of
the design. Therefore, the lower the latency is, the higher the node
locates in the figure. And the x-y coordinates correspond to the
BRAM and DSP utilization of the design. For the ease of illustration,
for designs with the same usage of BRAM and DSP, we pick up
the design with the lowest latency as the representative node to
draw in the figure. Overall, there are approximately 113K and 17K
valid design points in MM and CNN, respectively. The design opti-
mizer searches the optimal design with the lowest latency, given
the resource constraints.

5.3.2  Resource and Latency model. For both applications, we
pick up the top-three designs with the lowest latency and synthesize
them on FPGAs. We compare the resource usage of these designs
to estimation results from our resource models. Additionally, we
collect latency results from hardware emulation and compare them
to estimation results from our latency models. All the area numbers
here are post-synthesis results. Detailed comparison results are
shown in Figure 9. Overall, the latency and resource models are
highly accurate, with a relative error within 10% for all designs.

5.3.3 Design Comparison. For MM the optimal design from
PolySA implements the shape of MM3 in Figure 6c. The generated
design contains 19 rows and 8 columns for single-precision floating
point. As for CNN, the optimal design picks the shape of design
CNN 8 in Figure 7h, and contains 8 rows and 19 columns for single-
precision floating point. In addition, both designs implement SIMD
for MAC units inside PEs as similar as baselines. The current design
sets the SIMD factor as 8.
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Figure 9: Resource and latency model evaluation.
Table 3 presents the detailed comparison results. All the area

and timing statistics here are post-implementation results. The

throughput is calculated by dividing the computation complexity of
the given algorithm by the latency measured from XSim. Compared
to manual designs, designs generated by PolySA have a performance
gap of 31% and 9% for MM and CNN, respectively. This gap is
mainly due to the design frequency gap. This could be caused by:
1) Code implementation. Both baselines use well-tuned code for
targeted applications. The MM baseline uses the well-optimized
SystemVerilog code and the CNN baseline uses specialized OpenCL
templates. PolySA employs a general code template with more
design overheads which could lead to the frequency degradation. 2)
Platform. The current designs are implemented on a Xilinx platform,
whereas the baselines are implemented on an Intel platform. More
evaluations on Intel platforms are needed to understand the impacts
of FPGA architecture and technology on the design performance. In
the future, we will adopt frequency optimization approaches like [9]
to mitigate the design overheads and evaluate our designs on the
Intel platform. Finally, for comparison, we calculate the projected
throughput of our designs with the same frequency as baselines, as
shown in Table 3. The performance difference between the baselines
and our designs is reduced to around 5% for both applications.

5.4 Runtime Analysis

Table 4 presents the runtime breakdown of the PolySA compilation
flow for generating the optimal designs in Section 5.3. The total
time is measured starting from the C/C++ inputs to the completion
of the generation of HLS IPs. As can be seen from Table 4, CNN



Table 4: Runtime breakdown for design examples.

Polyhedral Design Code Total
Transformation | Optimizer | Generator | Time
MM 2.5 18min 8min 26min
CNN 23min 5min 8min 37min
takes a much longer time than MM during the stage of polyhedral

transformation. The reason is that CNN starts from a 6-dimensional
polyhedron and takes four times of multi-projection to generate a
2D systolic array—whereas MM starts from a 3-dimensional poly-
hedron, and can be mapped to a 2D systolic array by one single
projection. The design space of scattering functions for CNN grows
exponentially and takes a much longer time to finish compared to
MM. In the future, we will explore approaches like [6, 18] to help
improve the efficiency of the polyhedral transformation. Mean-
while, in our examples, CNN takes a shorter time to finish than MM
in the design optimizer. Although PolySA generates more systolic
array candidates from the front end for CNN compared to MM, as
presented in Section 5.2, most of CNN designs are limited in array
size which is bounded by small factors such as P and Q. These
designs usually lead to suboptimal performance and will be quickly
pruned during the design space exploration.

Overall, PolySA helps to significantly reduce the development
cycles of systolic array designs. Compared to manual designs which
normally take months of effort to finish [20], PolySA is able to
finish the generation of systolic array designs within one hour—
which brings several orders of magnitude speed-up in terms of
development cycles.

6 CONCLUSION

In this paper we present PolySA, an end-to-end compilation frame-
work for generating systolic array architecture. PolySA performs
polyhedral-based transformation to map algorithms to systolic ar-
ray architecture. We leverage the power of canonical mapping to
enable efficient selection of scattering functions through the map-
ping process. PolySA is able to pick up the optimal design from the
design space and generate off-the-shelf design IPs that can be eas-
ily integrated with other designs. This is the first fully automated
framework for generating the systolic array architecture on FPGAs.

We demonstrate PolySA on two important applications—matrix
multiplication and convolutional neural network. PolySA identifies
all the different design alternatives which cover all state-of-the-art
manual designs. It is able to generate systolic array designs with
comparable performance to well-tuned manual designs. The entire
compilation flow finishes within an hour, which helps save the
development efforts by several orders of magnitude.

In the end, we believe PolySA is a significant advance toward
improving the programmability of FPGAs by providing a highly
efficient solution to generating high-performance systolic array
designs that can be applied to a wide range of applications. PolySA
is an ongoing effort and we are making improvements in multiple
fronts, including better scattering functions, more general back end
support such as for Intel FPGA platforms, and demonstrating the
framework on more applications.
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