


• In the back end, we leverage the high-level synthesis (HLS)

tools for fast design generation. We propose an analytical

model to analyze the performance and resource utilization

of designs that allows for a comprehensive design space

exploration for the optimal designs.

• We demonstrate PolySA on two key applicationsÐmatrix

multiplication and convolutional neural network. PolySA is

able to reduce the development cycles from several months

to within one hour, and generates high-performance designs

with a performance gap within 31% compared to state-of-

the-art manual designs.

The remainder of this paper is organized as follows. Section

2 introduces the background of the polyhedral framework and

summarizes the related work. Section 3 presents the overview of the

PolySA framework. In Section 4 we walk through the compilation

flow with the example of matrix multiplication. Section 5 presents

experimental results. Finally, this paper is concluded in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Polyhedral Framework

The polyhedral compilation framework performs complex loop nest

restructuring for performance optimization [5]. The essence of the

polyhedral model is the use of parametric polyhedra as the internal

representation of programs. There are three key components in

the polyhedral model: iteration domain, scattering functions, and

access functions. Iteration domain is a set of all possible values of

the iteration vectors in the loop nest which defines the shape of the

polyhedron of the given problem. Scattering functions provide the

ordering information inside the iteration domain which describes

the order of loop instances to be executed relative to each other.

And access functions describe all the memory accesses of loop in-

stances. Each scattering function defines a unique scheduling of

the given program. We use these two terms (scattering function

and scheduling) interchangeably in the remaining sections of the

paper. The polyhedral compilation framework performs program

transformation by selecting different scattering functions (schedul-

ings) without breaking the original data dependency of the program.

More details about the polyhedral framework can be found in [3ś5].

PolySA embraces the polyhedral model as its internal IR for two

major reasons: 1) The great analysis power of polyhedral IR enables

efficient architecture transformation and design space exploration.

2) Instead of using other user-defined IRs, as in many previous

works, standard IR supports easy integrationwith other frameworks

(e.g., Tensor Comprehension [24]) and enables PolySA to leverage

the enormous legacy work from the polyhedral community.

2.2 Automatic Systolic Array Generation

Systolic array can be applied to a wide variety of applications [7,

10, 12, 17]. Recent success includes the Tensor Processing Unit

by Google [12] which implements a 2D systolic array to perform

matrix operations. Intel implements a 2D systolic array for sequence

alignment in the genomics pipeline [10].

Automatic systolic array compilation has long been an inter-

esting topic due to the enormous development efforts of manual

designs [6, 14ś16, 19, 22, 25, 26]. Wei et al. [25] proposed a compi-

lation framework to generate 2D systolic arrays for CNN. However,

the mapping approach is limited in terms of generality as the array

architecture is fixed, and the simple enumeration approach adopted

in the work fails to discover all design alternatives.

A more general approach named canonical mapping was pro-

posed to map algorithms to systolic arrays by performing affine

transformation [13, 14]. The approach searches for different pro-

cessor allocation and time scheduling functions to find the feasible

systolic array designs. Rajopadhye and Fujimoto [19] further ex-

tended the approach to generate systolic arrays with non-uniform

data flow. There have been many previous works that implemented

the canonical mapping [6, 15, 22, 26]. However, all of these ap-

proaches are half-automated and hard to use in practice as they

rely on manual inputs or outputs.

Lim and Lam [1, 16] proposed an elegant and general approach

for identifying both synchronization-free parallelism and pipelined

parallelism on parallel multiprocessors. The proposed approach

aimed to extract the maximal parallelism to transform the input

code to the output code with fully permuted loops at the outer-

most level, so that it can be mapped to pipelined architectures

with maximal freedom. The pipelined architecture can be further

transformed to systolic array architectures with the constraint of

non-zero delays between PEs. The work in [1] did not explore dif-

ferent processor and time assignments which will lead to on-chip

designs with different area and performance.

PolySA adopts the canonical mapping and further extends it

to generate high-performance designs. Details of the canonical

mapping will be covered in Section 4.

3 FRAMEWORK OVERVIEW

Figure 1 presents the full compilation flow of PolySA. The compiler

is composed of two partsÐfront end and back end. In the front end,

PolySA takes in applications written in C/C++ and compiles them

into polyhedral IR. Then, the compiler selects different schedul-

ings to map algorithms to the systolic array architecture based on

canonical mapping in the stage of Polyhedral Transformation. The

outputs of the front end, which are named Virtual Systolic Array

(VSA), are different systolic array design alternatives described by

polyhedral IR. The VSA serves as a standard interface between the

front-end and back-end and helps to improve the portability of the

framework.

In the back end, different VSAs will be evaluated by the design

optimizer for certain performance metrics. Optimal designs are

picked and later fed into the code generator to generate synthesiz-

able code on FPGA. We adopt the HLS rather than RTL considering

both portability and productivity. The current version of PolySA

can only support Xilinx flow by generating code written in Xilinx

HLS C. Support for Intel OpenCL will be added in the future. In the

following section, we will use matrix multiplication as the example

to walk through the compilation process of PolySA in detail.

4 COMPILATION FLOW

4.1 Polyhedral Transformation

In the front end, PolySA takes algorithms written in C/C++ as

inputs. Figure 2 shows the example code of matrix multiplication.

Pragmas #pragma sa and #pragma endsa are added to mark the

code region that needs to be compiled to systolic array.

2









Table 2: Problem configuration of CNN.

Denotation Explanation Configuration

IN_NUM, OUT_NUM input/output feature map number 2, 4

IN_IMG_H, IN_IMG_W input feature map height/width 5, 5

OUT_IMG_H, OUT_IMG_W output feature map height/width 3, 3

P, Q weight kernel height/width 3, 3

In PolySA, we solve the optimization problem as stated in Equa-

tion 14 by enumeration with pruning based on the resource usage.

This approach suffices for our project given the complexity of the

design space. In Section 5 we present the runtime breakdown of

PolySA in detail.

5 EXPERIMENTAL RESULTS

5.1 Experiment Setup

In this section we evaluate the PolySA framework in detail. The

current PolySA uses the Clan compiler [4] to parse C/C++ code into

polyhedral IR. The front end and back end are written in Matlab.

The compiler runs on our server which is equipped with Intel Xeon

E7-4807 CPU and 128 GBmemory. All of the designs are synthesized

and implemented using Xilinx Vivado 2017.4.

5.2 Front-End Evaluation

We use two key applicationsÐmatrix multiplication (MM) and con-

volutional neural network (CNN)Ðto assess the framework. For

CNN, we take the 6-level nested loop for one single convolutional

layer as the input of PolySA. The sample code can be found in [25].

Note that both algorithms are fully permuted nested loops and

therefore can be transformed to systolic array architecture accord-

ing to [1].

In this section we use two simple examples to evaluate the front-

end of PolySA. For MM, we set I = J = K = 2. The problem

configuration of CNN is shown in Table 2. The front end of PolySA

generates different design alternatives for the given algorithm. Fig-

ures 6 and 7 present all possible systolic array design alternatives

that PolySA generates for these simple MM and CNN examples.

The array dimension is marked alongside the array. The legends for

data interconnects are shown in Figure 6f and 7p for MM and CNN,

respectively. For example, for the design MM 1 in Figure 6a, the

array shape is I × K . Data from matrix A and B are fed downward

to PEs. Intermediate results of matrixC are accumulated across PEs

rightward. And final results of matrix C are collected from the last

column of PEs in the array.

The major observation here is that with the help of the polyhe-

dral transformation, PolySA performs a systematic array mapping

process and is able to discover all possible design candidates for

the given algorithm, which is a superset of different systolic array

architectures implemented by previous manual works. In these two

examples, PolySA identifies 5 different systolic array designs for

MM and 15 different systolic array designs for CNN. Designs that

are implemented by manual works are noted with an asterisk mark

in the figure.

Apart from designs covered by previous work, PolySA identifies

1 and 13 more new designs for MM and CNN, respectively. Previous

manual designs usually only identify one or several design points

as a tip of the iceberg. This could lead to designs with suboptimal

performance. In contrast, PolySA provides a systematic and efficient

Table 3: Design comparison.

(a) MM

MM BRAM DSP FF LUT MHz GFLOPs
Projected
GFLOPs

PolySA 89% 89% 39% 49% 228.8 555.4 758.5

Baseline [17] - - - - 312.5 800.0

(b) CNN

CNN BRAM DSP FF LUT MHz GFLOPs
Projected
GFLOPs

PolySA 71% 89% 39% 49% 229.5 548.39 603.55

Baseline [25] 47% 81% 40% 59% 252.6 600.27

approach to identify the complete design space and therefore allows

for a comprehensive search for the optimal designs.

5.3 Back-End Evaluation

In the back end, PolySA uses the design optimizer to perform design

space exploration and picks up the optimal design with the lowest

latency. The design is generated by the code generator and wrapped

as an HLS IP. We compare the generated designs from PolySA to

state-of-the-art designs for both applications. Baselines of MM and

CNN are chosen from [17] and [25], respectively. Both baselines

are implemented on Intel Arria 10 GX1150, which is not supported

by PolySA so far. We choose the Xilinx UltraScale+ VU9P as the

target platform for our designs, which contains similar amounts of

resource compared to Arria 10 GX1150. For MM, we set the problem

size as I = J = K = 1024. For CNN, we choose the third layer of

the VGG-16 model [21].

5.3.1 Design Space Exploration. Figure 8 depicts the design

space of MM and CNN. The optimal design is marked in red color.

The height of each point equals the reciprocal of the latency of

the design. Therefore, the lower the latency is, the higher the node

locates in the figure. And the x-y coordinates correspond to the

BRAM and DSP utilization of the design. For the ease of illustration,

for designs with the same usage of BRAM and DSP, we pick up

the design with the lowest latency as the representative node to

draw in the figure. Overall, there are approximately 113K and 17K

valid design points in MM and CNN, respectively. The design opti-

mizer searches the optimal design with the lowest latency, given

the resource constraints.

5.3.2 Resource and Latency model. For both applications, we

pick up the top-three designs with the lowest latency and synthesize

them on FPGAs. We compare the resource usage of these designs

to estimation results from our resource models. Additionally, we

collect latency results from hardware emulation and compare them

to estimation results from our latency models. All the area numbers

here are post-synthesis results. Detailed comparison results are

shown in Figure 9. Overall, the latency and resource models are

highly accurate, with a relative error within 10% for all designs.

5.3.3 Design Comparison. For MM the optimal design from

PolySA implements the shape of MM3 in Figure 6c. The generated

design contains 19 rows and 8 columns for single-precision floating

point. As for CNN, the optimal design picks the shape of design

CNN 8 in Figure 7h, and contains 8 rows and 19 columns for single-

precision floating point. In addition, both designs implement SIMD

for MAC units inside PEs as similar as baselines. The current design

sets the SIMD factor as 8.

6





Table 4: Runtime breakdown for design examples.

Polyhedral
Transformation

Design
Optimizer

Code
Generator

Total
Time

MM 2.5s 18min 8min 26min

CNN 23min 5min 8min 37min

takes a much longer time than MM during the stage of polyhedral

transformation. The reason is that CNN starts from a 6-dimensional

polyhedron and takes four times of multi-projection to generate a

2D systolic arrayÐwhereas MM starts from a 3-dimensional poly-

hedron, and can be mapped to a 2D systolic array by one single

projection. The design space of scattering functions for CNN grows

exponentially and takes a much longer time to finish compared to

MM. In the future, we will explore approaches like [6, 18] to help

improve the efficiency of the polyhedral transformation. Mean-

while, in our examples, CNN takes a shorter time to finish than MM

in the design optimizer. Although PolySA generates more systolic

array candidates from the front end for CNN compared to MM, as

presented in Section 5.2, most of CNN designs are limited in array

size which is bounded by small factors such as P and Q . These

designs usually lead to suboptimal performance and will be quickly

pruned during the design space exploration.

Overall, PolySA helps to significantly reduce the development

cycles of systolic array designs. Compared to manual designs which

normally take months of effort to finish [20], PolySA is able to

finish the generation of systolic array designs within one hourÐ

which brings several orders of magnitude speed-up in terms of

development cycles.

6 CONCLUSION

In this paper we present PolySA, an end-to-end compilation frame-

work for generating systolic array architecture. PolySA performs

polyhedral-based transformation to map algorithms to systolic ar-

ray architecture. We leverage the power of canonical mapping to

enable efficient selection of scattering functions through the map-

ping process. PolySA is able to pick up the optimal design from the

design space and generate off-the-shelf design IPs that can be eas-

ily integrated with other designs. This is the first fully automated

framework for generating the systolic array architecture on FPGAs.

We demonstrate PolySA on two important applicationsÐmatrix

multiplication and convolutional neural network. PolySA identifies

all the different design alternatives which cover all state-of-the-art

manual designs. It is able to generate systolic array designs with

comparable performance to well-tuned manual designs. The entire

compilation flow finishes within an hour, which helps save the

development efforts by several orders of magnitude.

In the end, we believe PolySA is a significant advance toward

improving the programmability of FPGAs by providing a highly

efficient solution to generating high-performance systolic array

designs that can be applied to a wide range of applications. PolySA

is an ongoing effort and we are making improvements in multiple

fronts, including better scattering functions, more general back end

support such as for Intel FPGA platforms, and demonstrating the

framework on more applications.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable

comments and helpful suggestions. The authors also thank Monica S. Lam

and Louis-Noël Pouchet for helpful discussions on the early systolic array

synthesis and the polyhedral theory. This work is partially supported by

the CAPA Program jointly funded by the NSF (CCF-1436827) and Intel, and

the ICN-WEN Award jointly funded by NSF (CNS-1719403) and Intel.

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[2] Amazon. 2018. Amazon EC2 F1 Instances. (2018). https://aws.amazon.com/ec2/
instance-types/f1

[3] Cédric Bastoul. 2011. OpenScop: A Specification and a Library for Data Exchange
in Polyhedral Compilation Tools. Technical Report. Paris-Sud University, France.

[4] Cédric Bastoul, Albert Cohen, Sylvain Girbal, and et al. 2003. Putting Polyhedral
Loop Transformations to Work. In LCPC. College Station, Texas, 209ś225.

[5] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, and et al. 2010. The
Polyhedral Model is More Widely Applicable Than You Think. In ETAPS
(CC’10/ETAPS’10). Springer-Verlag, Berlin, Heidelberg, 283ś303.

[6] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2007. Automatic Mapping
of Nested Loops to FPGAS. In PPoPP. ACM, New York, NY, USA, 101ś111.

[7] Y. H. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks. In ISCA. 367ś379.

[8] J. Cong, Bin Liu, S. Neuendorffer, and et al. 2011. High-Level Synthesis for FPGAs:
From Prototyping to Deployment. Trans. Comp.-Aided Des. Integ. Cir. Sys. 30, 4
(April 2011), 473ś491.

[9] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. 2018. Latte: Locality
Aware Transformation for High-Level Synthesis. In FCCM.

[10] Intel. 2017. Accelerating Genomics Research with OpenCL™ and FPGAs.
(2017). https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/
literature/wp/wp-accelerating-genomics-opencl-fpgas.pdf

[11] Ju-Wook Jang, S. Choi, and V. Prasanna. [n. d.]. Energy- and time-efficient matrix
multiplication on FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 13, 11 ([n. d.]), 1305ś1319.

[12] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, and et al. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In ISCA. 12.

[13] S. Y. Kung. 1987. VLSI Array Processors. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

[14] Dominique Lavenier, Patrice Quinton, and Sanjay Rajopadhye. 1999. Advanced
Systolic Design. (1999).

[15] Hervé Le Verge, Christophe Mauras, and Patrice Quinton. 1991. The ALPHA
language and its use for the design of systolic arrays. Journal of VLSI signal
processing systems for signal, image and video technology 3, 3 (01 Sep 1991), 173ś
182.

[16] Amy W. Lim and Monica S. Lam. 1997. Maximizing Parallelism and Minimizing
Synchronization with Affine Transforms. In POPL. ACM, New York, NY, USA,
201ś214.

[17] Duncan Moss, Srivatsan Krishnan, Eriko Nurvitadhi, and et al. 2018. A Customiz-
able Matrix Multiplication Framework for the Intel HARPv2 Platform - A Deep
Learning Case Study. In FPGA.

[18] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. 2008.
Iterative Optimization in the Polyhedral Model: Part Ii, Multidimensional Time.
In PLDI. ACM, New York, NY, USA, 90ś100.

[19] Sanjay V Rajopadhye and Richard M Fujimoto. 1990. Synthesizing systolic arrays
from recurrence equations. Parallel Comput. 14, 2 (1990), 163 ś 189.

[20] Hongbo Rong. 2017. Programmatic Control of a Compiler for Generating High-
performance Spatial Hardware. CoRR abs/1711.07606 (2017). arXiv:1711.07606

[21] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
arXiv:1409.1556

[22] Andrew Stone and Elias S. Manolakos. 2000. DG2VHDL: A Tool to Facilitate the
High Level Synthesis of Parallel Processing Array Architectures. Journal of VLSI
signal processing systems for signal, image and video technology (01 Feb 2000).

[23] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer. 2017. Efficient Processing of Deep
Neural Networks: A Tutorial and Survey. Proc. IEEE 105, 12 (Dec 2017), 2295ś
2329.

[24] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, and et al. 2018.
Tensor Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions. CoRR abs/1802.04730 (2018). arXiv:1802.04730

[25] Xuechao Wei, Cody Hao Yu, Peng Zhang, and et al. 2017. Automated systolic
array architecture synthesis for high throughput CNN inference on FPGAs. In
DAC.

[26] Jinn-Wang Yeh, Wen-Jiunn Cheng, and Chein-Wei Jen. 1996. VASSÐA VLSI array
system synthesizer. Journal of VLSI signal processing systems for signal, image
and video technology (01 May 1996).

8


