
Achieving Resilient Data Availability in Wireless

Sensor Networks

Xin Xu, Haitao Zhang, Tianxiang Li and Lixia Zhang

Computer Science Department, University of California, Los Angeles

Email: xinxu129, haitao, tianxiang, lixia@cs.ucla.edu

Abstract—Currently, most Wireless Sensor Networks (WSNs)
utilize sleeping mechanisms to conserve energy, which introduces
the problem of data availability. To address this problem, we de-
signed DSSN, a Dataset Synchronization protocol for WSN with
Sleeping sensors over Named Data Networking (NDN). DSSN
divides sensors into groups, each has a shared dataset; through
dataset synchronization within each group, DSSN ensures that
the group’s latest dataset is always accessible from its active
sensors. DSSN utilizes State Vector to enable reliable dataset
synchronization, and utilizes NDN’s Interest aggregation and Data

caching to optimize energy consumption. We evaluated DSSN
through extensive simulation experimentation, and our results
show that DSSN ensures data availability close to 100% under
various network conditions with negligible overhead.

I. INTRODUCTION

Energy consumption is one of the most important issues

in wireless sensor networks (WSNs) with battery-powered

sensors. WSNs usually adopt sleeping mechanisms to conserve

energy and extend network lifetime. Therefore each sensor can

be in one of the two states at any time: active or sleep. In active

state, a sensor communicates with other sensors to make its

data available; in sleeping state, a sensor turns off its radio

and stops communication, making its data unavailable.

One way to solve this problem is to let a sensor replicate

its Data with other active sensors before it goes to sleep.

Named Data Networking (NDN) [1], [2], a proposed Internet

architecture, can greatly facilitate data replication in WSN.

NDN replaces TCP/IP’s host-oriented communication model

with a data-centric communication model, enabling retrieval of

named Data regardless of its location. Motivated by NDN’s

attractive feature, NDN+CoCa [3] developed a distributed

cooperative Data caching solution over NDN to improve WSN

data availability. However, [3] performs best-effort caching

rather than reliable data replication, thus it ensures data

availability only to certain extent.

In this paper, we present DSSN, a dataset synchronization

protocol for WSN with sleeping sensors over NDN, which

enables reliable data replication in WSN. The design of DSSN

is inspired by VectorSync [4], where each producer names

its Data by a unique prefix and a monotonically increasing

sequence number; such naming convention enables the use of

a sequence number vector to represent one’s knowledge about

the shared dataset in a compact way. However different from

VectorSync which assumes that all nodes would be online,

DSSN must operate reliably even when not all the sensors are

active at any given time. Therefore, DSSN removes the group

management mechanism of VectorSync, which requires con-

sensus from all the group members; instead DSSN performs

dataset state synchronization by explicitly enumerating sensor

names together with their data sequence numbers, which we

call State Vector. Compared to Summary Vector in [5], which

has an unique identifier associated with each message, DSSN

State Vector uses a sensor ID plus data sequence number pair

to represent all the data produced by one sensor. DSSN also

makes use of NDN’s Interest aggregation and Data caching

to reduce packet transmissions, and adopts mechanisms for

collision avoidance, to lower its own energy consumption in

a wireless environment.

The rest of this paper is organized as follows. Section II

gives an overview of NDN and gives assumptions we make

in WSN. Section III describes the DSSN protocol design in

detail. Section IV presents the simulation results and analysis

on the performance of DSSN. Section V discusses our future

work. Section VI concludes the paper.

II. BACKGROUND

This section introduces the NDN architecture, a summary

of distributed dataset synchronization protocols in NDN, and

a WSN example used in this paper.

A. Named Data Networking

Named Data Networking (NDN) architecture utilizes the

fetching model to communicate. Consumers request Data by

sending an Interest which carries the name, or the prefix, of the

desired Data. The Data naming is unique, hierarchical struc-

tured, and semantically meaningful. An Interest is forwarded

based on names. NDN Forwarding Daemon (NFD) [6] running

on every NDN node implements NDN’s forwarding logic.

When forwarding an Interest, NFD first check its Content

Store (CS) for previously cached Data matching the Interest

name. If a match is found, NFD returns the cached Data and

stops forwarding process. If no match is found, NFD looks up

its Pending Interest Table (PIT), which lists all the Interests

received recently but not yet satisfied, and the interfaces where

it was received from. If a matching Interest is found in the

PIT, NFD aggregates the Interests. Otherwise NFD adds the

newly received Interest in the PIT. Then it looks up the

forwarding table (FIB) containing next hop information and

applies a forwarding strategy to forward the Interest. The Data

is returned to the consumer by following reversely along the

should do so only before it goes to sleep. First, this guarantees

that there is no Data stored only in sleeping sensors. Second,

as the union of datasets stored on all active sensors covers the

entire shared dataset, i.e., data availability is 100%, there is

no synchronization needed at other time points.

D. Dataset Synchronization

This section illustrates DSSN from three key design aspects

mentioned in Section II-B, and takes sensor sleeping into

account. We also show an dataset synchronization example.

1) Group Communication Namespace: In the example,

each group has already got a communication namespace “/edu

/ucla/boelter/<room number>”. To ease group communica-

tion, every sensor sends and receives Interests and Data under

its group namespace through one-hop multicast, so other

sensors in the same group can receive all its packets and it

can receive the packets of all the other sensors, in the absence

of packet loss. The packet is sent via multicast face, layer 2

send frames using broadcast address, layer 3 multicasts using

group name to do packet filtering.

2) Dataset State Representation: Since the sequence num-

ber of each sensor’s Data increments monotonically, we could

represent a sensor’s knowledge about its group’s dataset using

a State Vector. A State Vector is a vector of [sensor ID :

sequence number] pairs, where sensor ID represents a sensor

in the group, and sequence number is the latest sequence

number the State Vector owner knows of Data generated

by that sensor. The [sensor ID : sequence number] pair

allows the State Vector to explicitly list group members and

distinguish each member in the list, thus avoiding the need to

have a separate group membership management mechanism

as required in VectorSync [4]. Note that, a sensor has the

knowledge about a dataset, i.e., a State Vector, does not mean

it has fetched all Data packets in the dataset, whether and

when to fetch a specific Data packet is a separate problem.

Figure 3 shows an example of the State Vector [A:128, B: 127,

D: 129, E: 127], which is owned by sensor A in room 4809.

/edu/ucla/boelter/4809/A/1

A: 128 B: 127

[A: 128, B: 127, D: 129, E: 127]
State

Vector

Shared

Dataset
/edu/ucla/boelter/4809/A/128

……
/edu/ucla/boelter/4809/B/127

/edu/ucla/boelter/4809/B/1

……
/edu/ucla/boelter/4809/D/1

/edu/ucla/boelter/4809/D/129

/edu/ucla/boelter/4809/D/1

/edu/ucla/boelter/4809/D/127

…… ……

D: 129 E: 127

Fig. 3. Sensor A’s State Vector. Sensor A has the knowledge about Data

of B, D, E and itself. The latest sequence number sensor A knows of Data

published by itself is 128, and 127 for B, 129 for D, 127 for E.

3) Dataset Synchronization Mechanism: A sensor re-

questing to start the synchronization process is called a

sync-requester, other active sensors in the same group

are sync-responders. When knowledge about the group’s

dataset is not synced up among all sensors in the group,

different sensors may have different State Vectors. Moti-

vated by this, the dataset synchronization consists of two

steps. First, the sync-requester sends a SYNC Interest,

which is named “/[group-name]/sync/[sync-requester-id]

/[encoded-sync-requester-state-vector]”. The last com-

ponent is used to announce the sensor’s latest State Vector, so

that other active sensors in the group can learn the new Data

by deducting its own State Vectors with the sync-requester’s,

and update its State Vectors by merging the two.1 See the

following example for how to perform deducting and merging.

Second, each sync-responders constructs pending Interest list

for new Data and sends them to fetch Data.

4) Dataset Replication Success Notification: As discussed

in section III-C, a sync-requester only starts the dataset

synchronization process before going to sleep. A sync-

requester can only go to sleep after it confirms that its dataset

has been replicated successfully. This is achieved when a

sync-responder, which has fetched all the missing Data from

the sync-requester, sends SYNCACK Interest “/[group-name]

/syncACK/[sync-requester-id]/[encoded-sync-requester-

state-vector]/[sync-responder-id]”to the sync-requester,

and the sync-requester receives the SYNCACK Interest.

A sync-requester can go to sleep after receiving the first

SYNCACK, ensuring that one sync-responder has fetched all

its Data, or go to sleep later, ensuring more than one sync-

responders have fetched all its Data. Those different choices

do not affect data availability, because each active sensor does

not necessarily contain all Data published by the group; as

long as the union of active sensors’ local dataset covers Data

of the entire group, including Data generated by sleeping sen-

sors, the sink node can always retrieve all Data successfully2.

Based on when, or say, after how many SYNCACK Interests

are received, the sync-requester goes to sleep, DSSN could

achieve different replication levels: replicate its Data on one

or more active sensors. More replications will bring higher

data reliability, but at the same time increase average data

replication time. The tradeoff between the two is discussed

in Section IV. Figure 4 illustrates the dataset synchronization

process.

E. Handling Packet Loss

Packet loss happens frequently in WSN. In our scenario, it

is mainly caused by collision3 and intermittent connectivity.

1) Collision Avoidance: We make use of two types of

timers, delay timer (DT for short) and waiting timer (WT for

short), aiming to maintain only one Interest-Data exchange

round at any given time. DT is a random timer used to delay

packet transmission in order to reduce collision rate. WT is

set for the sensor to wait for replied Data before sending

consecutive messages and retransmitting the same Interest.

First, each sensor has a DT for each Interest or Data to be

sent out; if the DT times out, it sends out the Interest or Data.

Second, after sending out an Interest, a sensor sets a WT for

receiving the corresponding Data; if a sensor’s WT times out,

which means either the Interest or the Data was lost, it sets a

1Per the assumptions, all sync-responders can receive the SYNC Interest.
2Assume network connectivity can be guaranteed.
3Since all packets are transmitted through multicast channel, lower layers

cannot handle collision perfectly.

Active

Sleeping

Sleeping

Sync-requestor

Active

State Vector = [A: 127, B: 127, C: 129, D: 127, E: 128]

2. A receives SYNC Interest. A’s pending Interest list:

 Updates State Vector = [A: 128, B: 128, D: 130, E: 128].

D-130

5. A receives ‘B-128’ data. Remove from pending Interest list.

B-128

B-128

1. Sync Interest:

/edu/ucla/boelter/4809/sync/B

/[encoded-B-state-vector]

4. D
ata

:

/edu/ucla
/boelte

r/4
809/B

/128A

D

E

B

C

3. Send Interest:
/edu/ucla/boelter/4809/B/128

3. Send Interest:

/edu/ucla/boelter/4809/B/128

State Vector =
[A: 128, B: 127, D: 129, E: 127]

2. C receives SYNC Interest. C’s pending Interest list:

 Updates State Vector = [A: 127, B: 128, C: 129, D: 130, E: 128].

5. C receives ‘B-128’ data. Remove from pending Interest list.

State Vector =
[A: 127, B: 128, D: 130, E: 128]

E-128

D-130 E-128

D-130D-128 D-129B-128

B-128

D-128 D-129 D-130

Fig. 4. Data Synchronization Process. There are 5 sensors in room 4809.
D and E are sleeping, A, B, and C are active. B is the sync-requester, A
and C are sync-responders. Their State Vectors are shown in the figure. B
first sends SYNC Interest named “/edu/ucla/boelter/4809/sync/B/[encoded-B-
state-vector]”. Upon receiving B’s SYNC Interest, A and C generate pending
Interest lists representing the missing Data needed to be fetched and then
update their State Vectors. Next A and C start to send the Interest for ‘B-128’.
After they receive data sent back from B, they remove Interest for ‘B-128’
from pending Interest lists and start to fetch the next missing Data. When
either A (or C)’s pending Interest list is empty, it sends a SYNCACK Interest:
“/edu/ucla/boelter/4809/syncACK/B/[encoded-B-state-vector]/A”, to inform B
that its Data has been synced up successfully. Then B goes to sleep.

DT for its own next packet (either Interest retrasmission, see

Section III-E2, or a new packet) to be sent out.

Before a sensor’s DT or WT times out, if it receives an

Interest or a Data, it should act accordingly, as shown in Figure

5. (1) If the sensor receives an Interest from other sensors

before its DT or WT times out, which means another sensor

initialized a new Interest-Data exchange round, it cancels the

current DT or WT. If the sensor has the Data requested by the

Interest, it sets a new DT for sending out the requested Data.

If the sensor does not have the Data requested by the Interest,

it adds the Interest in its PIT, and sets a WT for receiving the

corresponding Data. (By doing this, sensors interested in the

same Data avoids sending the same Interest to fetch the Data.

We call this Interest Suppression). (2) If the sensor receives

a Data from other sensors before its DT or WT times out,

which means another Interest-Data exchange round has just

finished, it cancels its DT or WT, and sets a new DT for the

next Interest, entering the next Interest-Data exchange round.

Delay Timer (DT) Wait Timer (WT)

(1) Cancel Current DT or WT
(2) Check if it has the Data requested by Interest?
 Yes: set a new DT for sending out the requested Data
 No: add Interest in PIT, set a WT for receiving the corresponding Data

(1) Cancel Current DT or WT
(2) Sets a new DT for the next Interest, entering the Interest-Data
exchange round.

Interest

Data

Before

TimeoutPacket

Received

Fig. 5. Handling Different Messages before Timer Timeout

2) Recovering from Packet Loss: Collision avoidance

mechanisms reduces the probability of collision but not elim-

inates it; meanwhile, there are other factors leading to packet

loss like intermittent connectivity, which may be the result of

obstacles located between two sensors, and radio interference

from other electronic devices such as microwave oven.

DSSN utilizes Interest retransmission mechanism to resolve

this problem. NDN adopts the communication model of fetch-

ing Data by names; it is the consumers’ responsibility to

ensure that they have received the requested Data packets

successfully. Therefore, in DSSN design, if a sensor doesn’t

receive the Data it requested for, it needs to retransmit the

corresponding Interest.

IV. PERFORMANCE EVALUATION

This section uses a prototype implementation to evaluate

the performance of DSSN.

A. Implementation and Simulations

The prototype is implemented on ndnSIM (version 2.3)

[8]. To implement collision prevention and retransmission

mechanisms, we changed NFD packet processing logic.

DSSN is tested with a single sensor group, where the num-

ber of sensors ranges from 5 to 15. All sensors communicate

with each other directly using IEEE 802.15.4 2.4GHz radio

transceivers. Each active sensor publishes Data periodically,

between 1s to 8s. The average Data packet size is 570 bytes

and the average Interest packet is 274 bytes. To guarantee

that sensors generate enough Data packets and have enough

dataset synchronization rounds, each single simulation lasts

20 minutes. To simulate packet loss, we configure sensors to

randomly drop received packets at a pre-configured error rate.

A simple sleeping strategy is adopted. Every 4 seconds,

a sensor wakes up and another sensor goes to sleep; the

number of active sensors is either 4 (3 sync-responders and

1 sync-requester) or 3 (if the sync-requester goes to sleep).

A sync-requester goes to sleep when it receives the number

of SYCACK Interest it needs, or when it is time for another

sensor to wake up. To maintain balanced per-sensor accumu-

lative sleeping time, sensors take turns to wake up and go to

sleep, periodically, according to pre-defined orders. With this

sleeping strategy, each time a sensor wakes up, it works for

12∼16s (12s for normal working, the reset for replicating data

before going to sleep), then goes back to sleep again.

B. Evaluations

1) Data Availability and Data Replication Time Overhead:

We define data availability (DA) to be the ratio of the number

of Data packets available in active sensors to the total number

of Data packets published by the group; data replication time

(DRT) to be the time a sensor spends on replicating its data

before going to sleep, or say, the time between a sensor sends

the first SYNC Interest and it receives a certain number of

SYNCACK Interests and then goes to sleep; data replication

time overhead (DRTO) to be the ratio of a sensor’s DRT to

its total working time. We explore how DA and DRTO are

affected by packet loss rate, group size, and DT threshold4.

Figure 6 shows the cumulative distribution function (CDF)

of DRT under different packet loss rates. The red lines

4DT threshold: DT is determined by a random timed-out number between
0ms to threshold. WT is always set to DT threshold + 3.

