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Abstract—Spherical harmonics form an orthogonal basis for
functions that live on the surface of a sphere and are useful
for solving partial differential equations and for numerical
integration. The complexity of transforming a set of function
samples to their corresponding spherical harmonic coefficients is
largely dominated by the computation of the associated Legendre
transform. This associated Legendre transform requires the
computation of (L + 1) dense matrix-vector products where
L is the order of the spherical harmonic expansion. Since
the number of rows and columns of each of these matrices
depends on L, this step is essentially O(L3). In this paper, we
explore the GPU parallelism available to improve the butterfly
compression approach. We present some preliminary results
showing performance increases for large problem sizes and
eventually plan to release the MonarchSHT library for GPU
spherical harmonic transforms.

I. INTRODUCTION

Representing functions with the Fourier basis is a very use-
ful and well studied technique for solving PDEs, numerically
evaluating integrals, and for processing and analyzing signals.
Unfortunately, the Fourier basis is not suitable for representing
functions that live on the surface of a sphere and thus a
spherical basis is necessary. The spherical harmonic basis is
one such representation and is analogous to the Fourier basis
in that each basis function is an eigenfunction of the Laplace
operator and satisfies many of the same properties.

The Spherical Harmonic Transform can then be used for
many of the same things the Fourier transform can be used

for. For instance, for a time-dependent PDE defined on the
surface of a sphere, the SHT can be analytically applied to
the problem to get an ODE in terms of the spherical harmonic
coefficients. Then by solving these ODEs for the coefficients,
the solution can be reconstructed using an SHT.

Another potential application for SHTs is in computer
generated graphics. Fourier transforms can be used to generate
fractal noise which makes realistic looking terrain. Using the
same process, SHTs can be used to create fractal noise over
a sphere to get realistic looking planets or asteroids. A toy
example of this can be seen in the title graphic which was
produced using a small value of L. Typically this method isn’t
used much since SHTs can be expensive to compute without
efficient algorithms.

For 3D models that are topologically like a sphere, each
vertex can be thought of as a point on the sphere that has
been displaced by some vector. In this case, these shapes
can be transformed into spherical harmonic coefficients. This
is potentially useful in shape analysis by performing SHT
on many such models and then using statistical analysis on
the resulting coefficients to find ways of classifying different
shapes. [1]

In order to reduce the amount of time required to compute
a spherical harmonic transform (forward or backward), the
choice of discretization goes a long way. By choosing points
on the sphere surface such that they form horizontal rings, the
transform can be decomposed into a series of matrix-vector
products followed by a fast Fourier transform, resulting in
an algorithm with reduced complexity compared to the naive
transformation. [2] This improvement is widely used among
fast SHT algorithms and is fairly standard practice. There
are then two algorithms that improve on this standard fast
algorithm using two different approaches.

The first of these is the algorithm used by the S2hat
[3] software library that takes this fast SHT algorithm and
utilizes GPU parallelism to further reduce the complexity
of the direct transform. Then there is Wavemoth [4] which
uses a butterfly compression scheme to reduce the amount
of data needed to compute and store the associated Legendre
transform to O(L2 logL) but does so without utilizing GPU
parallelism. The goal of this paper is to combine the Wavemoth
compression idea with GPU acceleration to create a highly
scalable, fast, spherical harmonic transform.



II. BACKGROUND

A. Spherical Harmonic Transform

Similar to the Fourier basis, a discrete function defined on
the surface of a sphere can be represented exactly as an infinite
sum of spherical harmonic coefficients multiplied by the basis
functions typically denoted by Y ml . Then by assuming that the
basis functions evaluate to 0 for basis functions with degree
larger than some parameter L, a function f can be written as
the following finite sum

f(θk, φk,j) =

L∑
m=−L

L∑
l=|m|

almY
m
l (θk, φk, j) (1)

The spherical harmonic basis functions can then be sep-
arated such that Y ml (θ, φ) = P

m

l (cos(θ))eimφ where P
m

l

are the normalized associated Legendre functions. This then
means that the spherical harmonic expansion (1) can be
rewritten to get (2).

f(θk, φk,j) =

L∑
m=−L

eimφk,j [

L∑
l=|m|

almP
m

l (θk, φk,j)] (2)

From here it can be seen that the inner summation is the
matrix-vector product seen in (3) where Λm is the matrix of
size (Nrings×L+1−|m|) and the k, l-th entry is P

m

l (cos θk).

q(k)m =

L∑
l=|m|

P
m

l (cos θk)al,m qm = Λmam (3)

Then using the computed qm, the spherical harmonic ex-
pansion reduces to (4). At this point, if there are L evenly
spaced points on the ring starting at φ = 0, this can be com-
puted simply by using the standard FFT. For more interesting
discretizations, this step requires a bit more processing before
it is ready for FFT but as long as the points are arranged in
horizontal rings, this step can be accelerated using FFT. This
is the traditional first reduction in complexity for fast SHT
algorithms. [4], [5], [2], [6], [7]

By using the FFT, the total complexity of the spherical
harmonic transform is dominated by applying the matrices Λm
of associated Legendre coefficients. The butterfly compression
scheme that follows is an attempt to reduce the complexity of
this step, allowing for larger transforms to be computed in a
reasonable amount of time.

f(θk, φk,j) =

L∑
m=−L

q(k)m eimφk,j (4)

Computing the spherical harmonic coefficients given func-
tion samples is slightly more complex. Instead of simply eval-
uating a sum, the integral in equation (5) must be evaluated.
This can be done by choosing a discretization such that the
value of cos(θk) for each ring is the k-th Legendre quadrature
node and then evaluating the sum seen in (6).

alm =

∫
f(θ, φ)P̃ml (cos(θ))e−imφ (5)

This sum can again be separated like in the inverse trans-
form. Then computing the coefficients is simply a matter of
computing the inverse FFT along each ring, and then applying
the transpose of Λm in addition to the quadrature weights.∑

j

wjf(θj , φj)P̃
m
l (cos(θj))e

−imφj (6)

B. Butterfly Compression

The first property of Λm to note is that each of these
matrices is dense, with no non-zero entries. They are also full
rank and can’t be compressed using usual techniques such as
singular value decomposition or interpolative decomposition.
However, for m ∈ {0, 1, ...,M}, Λm can be broken into two
rows and q columns of blocks as seen in (7) such that each
block Aj is rank deficient.

Λm =

[
A0 A1 ... Aq−2 Aq−1
Aq Aq+1 ... A2q−2 A2q−1

]
(7)

For the Λ’s that satisfy this property, a technique known
as butterfly factorization [4], [8] can be applied to reduce the
memory needed to store Λ in addition to reducing the number
of operations necessary to apply Λ to a vector.

According to Tygert (2010) [9], the amount of data needed
to store the compressed Λm is roughly O(L logL). Since there
are O(L) matrices, the total amount of work to apply the
compressed associated Legendre transform is O(L2 logL).

Since each of the blocks that make up Λm are rank deficient,
they can be factored into the form seen in (8) using interpola-
tive decomposition (ID). The output of this factorization is the
three matrices Âij , T

i
j , and P ij . The permutation matrix P ij can

be encoded as a vector and in this form will be referred to as
pij .

A
(i)
j = (Â [I|T ]P )

(i)
j = Â

(i)
j S

(i)
j P

(i)
j (8)

The compression scheme then works by computing the
ID of each block, storing the Ãj matrices and permutations
for later use in multiplication and then joining the column
skeletons to form the next set of blocks for step i, Aij . The
full process is outlined below in Algorithm 1.

Algorithm 1 Butterfly Compression
1: procedure BUTTERFLYCOMPRESS
2: Input: Matrix A of size m× n
3: Break A into 2q blocks A(0)

j

4: for i ∈ {1, ..., Q} do
5: for j ∈ {0, 1, ..., 2q − 1} do
6: Compute interpolative decomposition of A(i−1)

j

7: Store Ã(i)
j and p(i)j

8: si = 2Q−i+1

9: join-and-split(i, si) to get Ai



Fig. 1. Block structure of compressed matrix

The final compressed matrix is then of the form seen in
(9) where each matrix A(i) contains the stored matrices T̃ (i)

j

and permutation vectors p(i)j . Then A(Q) is the block diagonal
matrix where each block is Âj and Âj+sQ joined vertically.

A = A(Q)P (Q−1)A(Q−1)P (Q−2)A(Q−2) · · ·P (0)A(0) (9)

Si =
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(10)

After each round of interpolative decompositions, the col-
umn skeletons are joined horizontally and then split vertically
(12) resulting in the next round of blocks to be factorized. The
way the blocks are indexed, the j-th skeleton is joined with
the (j + 1)-th and then given a new index depending on si
and x(i)k as seen in (11).

si = 2Q−i+1 x
(i)
k = 2Q−ibk2i

q
c+ k (11)

[
Â

(i−1)
2k Â

(i−1)
2k+1

]
=

 A
(i)

x
(i)
k

A
(i)

x
(i)
k +si

 ∀k ∈ {0, 1, ..., q − 1}

(12)
Finally, the permutation matrices P (i) are applied to their

corresponding A(i) matrix to get S(i) and each sub-block’s
location within S(i) is recorded for use in multiplication.
For example, if Q = 2, then the compressed matrices block
structure will be as seen in Figure 1.

III. METHOD

In order to explore the GPU parallelism available in this
algorithm, we developed a C library that will be referred to as
MonarchSHT in this paper. The details of this implementation
can be seen below.

Fig. 2. Matrix Generation: Column Recurrence

A. GPU Parallelism

Since transferring data to and from the GPU can be a very
time-consuming process, these transfers are to be avoided
whenever possible. For this implementation of the spherical
harmonic transform, the goal is to then only transfer the input
coefficients to the device, and then the output function values
back to the host machine. This means that the generation and
compression of the matrices, and the matrix-vector products,
all happen within a single device’s memory. In the distributed
setting, an extra step of moving the data from each device to
the root node is required but it is negligible in comparison to
the complexity of the rest of the algorithm.

1) Matrix Generation: Since each matrix Λm is of size
(Nrings × L+ 1−m), a single buffer of size (Nrings × L+ 1)
can be used to store each uncompressed Λm until it is either
multiplied against the input coefficients or compressed using
the butterfly factorization then written to file.

The first column of the first matrix Λ0 is simply the
normalizing constant

√
1
4π . Then each thread in a block of the

GPU handles a single row and computes the values for each
column using the associated Legendre recurrence relation.
Then for the next matrix generation, the first column contains
Pm−1m−1 which is used to generate Pmm and then the process
repeats.

Using this approach, each matrix can be computed using
a single kernel launch which helps reduce overhead. Using
Magma or cuBLAS to update each column as a daxpy opera-
tion needs many small kernel launches and ends up incurring
a large amount of kernel launch overhead.

2) Matrix Compression: In order to compress a given Λm,
the matrix is partitioned into blocks based on the input Q and
then each block is factored using interpolative decomposition.
Then the interpolation matrices T ij and permutation vectors pij
are written to a file for later use. The remaining column skele-
tons are then joined together horizontally and split vertically
to form the next round of blocks to factor. The final round of
column skeletons are simply discarded since they consist only
of columns of the original matrix which can be generated as
needed.



Once each block has been processed by column pivoted
QR, the resulting triangular R matrix must be observed to
approximate the rank of the block. For a given matrix with
rank k, in exact arithmetic, R would be of the form seen in
(13). However, in finite precision, the bottom right block will
not be exactly the zero matrix. The approximate rank of a
given block is the value of k such that the top-left block is k
by k and the bottom-right block has Frobenius norm less than
some tolerance. By using a binary search, this rank can be
approximated in a relatively small amount of time to arbitrary
precision.

R =

[
R11 R12

0 0

]
(13)

For compression that is as close to lossless as possible,
this rank needs to be computed very accurately. However, if a
lossy compression is acceptable, the tolerance can be reduced,
resulting in an approximate rank less than the true rank. For the
experiments in this paper, the compression is computed to be
as lossless as possible. Wavemoth’s precomputation also has a
tolerance parameter that determines how lossy the compression
is and is set to be as lossless as possible.

Since each block requires some data movement followed
by column pivoted QR and then a triangular system solve, the
goal is to interleave the kernels so that data for one block
is being moved while another block is being processed using
dgeqp3 or dtrsm. Unfortunately, Magma’s column pivoted QR
(dgeqp3) doesn’t naturally have support for multiple streams
and required modification. Specifically, unlike other Magma
routines, dgeqp3 does not take a CUDA stream and operates
on the default stream. Magma’s column pivoted QR launches a
large number of small single operation kernels that depend on
the results from previous kernels. This means that even with
our modification, very little overall concurrency is achieved
for the matrix compression and is apparent in the resulting
performance.

3) Matrix-Vector Multiplication: For the Λm that are not
compressed, applying the matrix is simply a matter of calling
Magma’s dgemv routine. For the matrices that are compressed,
the process is more complex. Recall that the butterfly algo-
rithm results in a factorization of the form (14).

A = AQSQ−1...S0 (14)

This compressed matrix-vector multiplication can be broken
up into a number of operations. Applying Si (15) to a vector
requires applying each permutation pij and then T ij for each
of its blocks. The final block matrix AQ does not have any
permutations encoded in the blocks and can be applied simply
with dgemv.

yj = Sijxj =
[
I T ij

] [ xuj
xlj

]
= xuj + T ijx

l
j (15)

The data that is stored during the precomputation has to
be read in from file and then moved to the GPU memory.

Fig. 3. Example of the GPU concurrency. Each uncompressed operation
needs to wait for file reads on the CPU, the GPU is kept busy by applying
the matrices that don’t need CPU file reads. (Not to scale)

CPU

Stream 0

Stream 1 

Stream 2 

Stream 3 

Stream 4 

Read p1 Read S1 Read p2 Read S2 Read p3 Read S3 Read p4 Read S4

Apply Lambda Apply Lambda Apply Lambda Apply Lambda Apply Lambda Apply Lambda

p1 S1 AQ1

p2 S2

AQ2

p3 S3 AQ3

p3 S4

AQ4

Fig. 4. Given 14 matrices and 4 processes, ownership would be distributed
as follows

Process Responsible for
0 0,4,8,12
1 1,5,9,13
2 2,6,10
3 3,7,11

Compared to a single dgemv, this is a very expensive process
and care needs to be taken to ”hide” these transfer times. One
way to do this is to launch some tunable amount of kernels to
apply the uncompressed matrices while the compressed data
is being read. Once the data for the current compressed matrix
is read, the kernels for applying Si and AQ can be launched
and the process is repeated.

By utilizing pinned memory and asynchronous data trans-
fers, the GPU can stay busy while the CPU is performing the
lengthy file reads. This method of applying the uncompressed
matrices while the compressed matrix data is being read will
be referred to as the ”hybrid” method. An example of what
each stream is doing can be seen in Fig.3.

B. MPI Parallelism

For a fixed m, the generation, compression, and multiplica-
tion of the matrix Λm is entirely independent of any other m.
This means that for all L+1 matrices that need to be handled,
each can be processed entirely independently in a distributed
setting. Each process is assigned a range of m values that they
are responsible for in a round-robin fashion to ensure that each
process is responsible for roughly equal amounts of work. A
small example of m ownership per process is illustrated in
Fig.4.

Once the Legendre Transform portion of the algorithm is
complete, the results of the matrix-vector multiplications are
all gathered to the root process. This data is then moved back
onto the GPU at root for a final FFT to complete the spherical
harmonic transform. Typically, moving data to or from a GPU
or between MPI nodes is an expensive step. However, the
amount of time required to compress, generate, and apply the
matrices dominates this single round of communication and
FFT as the problem size scales.

IV. RESULTS

In order to measure the performance of our proposed
implementation, we ran our code on the University of Utah
Center for High Performance Computing’s Kingspeak cluster



Fig. 5. Run-time comparison of libpsht, Wavemoth, and MonarchSHT’s direct
and hybrid method. Wavemoth and MonarchSHT’s compression is done in as
lossless a manner as possible. Further study is needed to understand what is
happening at L = 2048 to cause the GPU methods to perform nearly the same
as Wavemoth.
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using the available GPU nodes. Each node in the cluster is
equipped with two Nvidia P100 graphics cards and 28 CPU
cores (14 per socket). The following experiments were then
run using various configurations of GPUs and CPU cores as
detailed in each section.

A. GPU vs CPU

In order to get a baseline for the performance of our code,
we first tested how the direct, uncompressed, GPU-accelerated
transformation performs against the sequential CPU standard
library libpsht. For this comparison, our GPU code is running
with a single P100 GPU and the CPU libpsht code is running
using every available CPU core.

Then the experiment was rerun using the hybrid approach
using the same configuration. Before L = 2048, there simply
isn’t enough uncompressed work to be done to hide the file
reads and thus the hybrid method doesn’t start to pull ahead
of the direct method until L = 2048 and L = 4096.

The experiment is run again for each problem size using
Wavemoth’s compressed algorithm and all of the results are
put together in Fig.5. The hybrid method is only plotted for
the problem sizes in which it beats the direct method since in
the other cases, the direct method would be used.

B. MPI Scaling

In order to measure the scaling of the algorithm (compressed
and uncompressed) with respect to the number of GPUs, we
ran the code with L = 8096 and T = 1000 where T is
the number of matrices to compress before switching to the
uncompressed algorithm. The GPU cluster on Kingspeak then
has 8 total P100 GPUs available and the code was run with
1,2,...,8 GPUs giving the results that can be seen in Fig.6.

Since each matrix-vector multiplication is independent from
any other and dominates the total complexity of the algorithm,

Fig. 6. MPI strong (solid lines) and weak (dashed lines) scaling for L =
(1024,2048,4096,8192), T = (100,200,400,800). The work divides very nicely
between many processes and the execution time is very nearly T/p where T
is the execution time for one GPU.
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the scaling seen in Fig.6 is to be expected. The total run time
is divided nearly evenly among the total available GPUs.

V. CONCLUSIONS

Using this method, if a large number of spherical harmonic
transforms need to be computed using a single discretization,
the compressed Λ matrices can be precomputed to reduce the
total amount of work to compute each transform. This pre-
computation is expensive and can require a very large amount
of space to store but if enough transforms are computed,
this cost can be offset by the improved performance overall.
Specifically, let tG be the time to generate all of the matrices,
tM be the time it takes to apply all of the matrices in the
uncompressed manner, tB be the time it takes to apply of the
matrices after butterfly compression, and tC be the time it
takes to compress all of the matrices, then the two methods
take the same amount of total time when the total number of
transform to be computed is equal to n in (16).

n =
tC

tM − tB
(16)

This is a somewhat conservative estimate since the com-
pressed matrices can be stored for later but the uncompressed
matrices are typically not. Then if we let k be the number
of times the uncompressed matrices are re-generated over
the course of n total transforms, the condition for equivalent
performance becomes (17).

n =
tC − (k − 1)tG

tM − tB
(17)

The unfortunate downside to this method of compressing
and storing the matrices ahead of time is that by L = 4096,
the amount of storage space required starts to become un-
manageable. For L = 4096, the required space to store the
data is around 50 or 60 gigabytes. By L = 8192, the amount



of space required would be measured in tens or hundreds of
terabytes. For very large transforms, in a distributed computing
setting, each node could potentially store only the precomputed
data for the range of m for which the node is responsible to
alleviate these storage requirements.

We are then left with the question of whether or not
the GPU-accelerated version of the butterfly compression
algorithm actually improves anything over the Wavemoth
method. Even without the butterfly compression, utilizing
GPU parallelism for computing the matrix-vector products
drastically reduces the total amount of time required. For the
compressed matrices, even further performance improvements
can be obtained through concurrent multiplication of the sub-
blocks.

As can be seen in the previous results section, even without
compression, our direct method performs faster than Wave-
moth’s compressed algorithm. With compression, for large
enough L, even further gains are obtained.

A. Future Work

The major bottleneck in the GPU compression algorithm
seems to be in the column pivoted QR stage of the interpolative
decomposition. Magma’s dgeqp3 routine seems to require a
lot of synchronization and there does not seem to be any
gains from running dgeqp3 for each block concurrently. Using
Magma for the ID step gives results comparable to the existing
non-GPU Wavemoth compression but should be able to be
improved further. [10]

Once the GPU compression scheme is improved, application
specific features should be included into the method such
as spin-weighting and support for complex coefficients and
function values. Since the butterfly compression algorithm’s
usefulness hinges on the number of transforms performed
for a specific discretization, an application that requires a
large number of transforms would be ideal to illustrate its
effectiveness.

Both the direct and hybrid MonarchSHT methods are highly
unoptimized and yet still see performance improvements over
CPU methods due to GPU parallelism. A next step in this
project would be to add a number of optimizations to further
improve the performance. For instance, the direct method gen-
erates the matrices Λm with a kernel and then uses Magma’s
dgemv to apply it in a separate kernel. These two operations
can be rolled into a single optimized kernel that will likely
see performance increases. Since the hybrid method uses the
matrix generation kernel to construct the residual matrices, an
optimized, combined kernel will result in gains for this method
as well.
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