Towards Triangle Counting on GPU using Stable
Radix binning

Nishith Tirpankar
School of Computing
University of Utah
Salt Lake City, USA
tirpankar.n @utah.edu

Abstract—The pattern of computations of graph algorithms
makes them difficult to parallelize. They suffer from erratic
data access patterns. We propose a set of algorithmic patterns
that enable users to take advantage of fine grained parallelism
provided by modern CPU and GPU architectures. This allows
accesses to be regularized which improves hierarchical cache
access. We also propose a parallel stable binning algorithm that
can be used for computing set intersection. This is illustrated
through its application to triangle counting in large graphs.

Index Terms—graph algorithms, CUDA dynamic parallelism

I. INTRODUCTION
A. Graph algorithms overview

A number of data and network analytics questions on
relational data can be posed as graph problems. For example,
the transitivity or clustering coefficient tells us how clustered
the nodes in a graph are. Clustered or small world networks
having large value of clustering co-efficient have enhanced
signal-propagation speed, synchronizability and computational
power [1]. Nodes in sub-graphs with this property can be
targetted for quick or low energy information disbursement.
Another example involves finding the count and presence of
certain structures in a graph. Identifying clusters of these
patterns [2] or sub-graphs can indicate classes of predators
in a food-web or interactions between sensors and effectors
in a neural network [3]. A commonly occuring use case is of
recommendations to connect with friends of friends in large
social networks. It can be computed using the length of the
path between two users [4].

B. Triangle counting as an application

A k-truss is a maximal subgraph of a given graph such
that each edge in it is contained in at least k-2 triangles.
The k-truss in a graph is a sub-graph all the applications
mentioned here can use. Triangles are the simplest subgraph
in a graph. Counting the number of triangles in a graph is
building block that can be used in finding the k-truss [5]]. This
makes triangle counting such a lucritive problem for the sub-
graph isomorphism challenge [6].

C. Different approaches - set intersection/Linear algebra/map
reduce/approximation methods for triangle counting

Among the prominent methods for computing the count
of triangles in a graph are ones using set intersection, linear

Hari Sundar
School of Computing
University of Utah
Salt Lake City, USA
hari@cs.utah.edu

algebra, map reduce and approximation methods. Set intersec-
tion algorithms [7] involve computing a set of all the possible
edges that could generate triangles and counting the number
of intersections with the original adjacency list. Innovations
in the ordering of the members of the sets as well as ease
of distribution of the work among multiple processes makes
this class of algorithms highly performant [8] and ideal for
implementation on shared memory systems. This class of al-
gorithms is what inspired our work. Linear algebra approaches
involve variantions of Zi,j A? o A where A is the adjacency
matrix [6]. One variantion involves splitting up the adjacency
matrix into lower and upper triangular matrices not including
the diagonal A = L 4+ U. The product B = L « U counts the
number of paths of length 2 in the graph. Finding if the wedges
close by performing a Hadamard product C' = Ao B gives us
the triangle count 3 _,,(C)/2 [9], [10]. Map reduce approaches
use frameworks such as Hadoop and distribute the adjacency
lists among nodes arbitrarily. For a more detailed overview
refer to [11f], [12]. An interesting class of algorithms rely on
wedge sampling to get an approximate count of the number
of triangles. The work done in [13]] shows an excellent use
case that uses the birthday paradox to sample a set of wedges
from the set of vertices and finding the approximate number
of triangles by finding the number of closed wedges in this
set.

D. Challenges of parallelizing graph algorithms on modern
architectures

Graph algorithms are hard to parallelize and even harder
to get good performance on modern architectures, both on
many-core CPUs as well as on GPUs. The key challenge
is that the nature of computations depends on the structure
of the graph, i.e., the sparsity and specifically the sparsity
pattern of the adjacency matrix of the graph. This means that
the performance of the algorithm is directly dependent on
the input graph’s structure. This makes it very challenging
to implement graph algorithms on parallel architectures where
exclusive write access would be needed to obtain good parallel
performance. At a more fundamental level, we also have to
deal with having indirect memory access, due to the nature
of adjacency lists, the most popular and efficient way to
store graphs. Indirect memory access is bad for performance

as it is difficult to utilize the cache effectively, leading to
even higher costs for data access. One of the reasons for the
popularity of linear algebra formulations for graph algorithms
is the maturity of sparse linear algebra codes, especially on
multicore CPU and GPUs. While these do indeed improve
the performance to a certain extent, they are still sub-optimal.
For one, unlike numerical algorithms, most graph algorithms,
including triangle counting, are discrete in nature. Secondly,
linear algebra formulations, especially those involving matrix-
matrix products can require extensive data-movement and
potentially increase both storage and compute requirements
to O(n?). For this reason, we wish to develop efficient graph
algorithms that expose fine-grained parallelism and avoid indi-
rect memory access. Such a formulation will enable efficient
implementations on manycore processors and on GPUs. We
now illustrate this idea using an example of set intersection,
as that is one of the most expensive parts of triangle counting.

E. Data-access concerns for set intersection

Set intersection among two lists is an expensive operation
if the lists are large. Consider the problem of finding the
number of edges in a list E’, of length m, that are also present
in list F of length n. A common approach for solving this
problem is to sort £ with cost O(nlogn) and then perform
m binary searches for a total cost of O((m + n)logn). In
many cases this is reasonable. However, from a performance
perspective, if n is large, although the complexity of logn ap-
pears reasonable, it is very expensive on modern architectures,
as this is random access into a very large array, each access
potentially being retrieved from main-memory. An alternate
approach is to sort both £ and E’, and performing a linear
scan to determine matches. The complexity of this approach
is similar at O(nlogn + mlogm), but this can be much
faster, especially if using efficient sorting algorithms. This is
in principle similar to using efficient linear algebra routines
to obtain efficient implementations. However, it is possible to
do even better if we design from first principles. We describe
one such approach now.

If we use a most significant bit radix sort to sort the lists
E and E’, we can improve the performance significantly,
especially if we sort the lists simultaneously and use early
termination. Note that a radix sort is efficient becuase data
is accessed directly and in a streaming fashion, making it
extremely amenable to deep cache hierarchies. Each element
of the list is an ordered integer tuple (u,v). For a value (u,v)
in FE to be equal to a value (v/,v') in E’, each bit in the
binary representation of v must match «’ and each bit in v
must match v’. We use this idea to bucket the entire list one
bit at a time. Figure [I] gives an example of how a recursive
bucket traversal can be used to perform intersection.

To perform bucketing, we first take the integer v and mask
the highest bit. The resultant value is concatenated with the
masked highest bit of v. The resultant value is a number
between 0 and 3. This lets us put each value in E and E’ into
the buckets rg through r3 as shown in the last figure in figure
From this point we will recursively compute intersections

7
Foel o]
. 220|221
1 : 1 o8
Es r20 | T21
u u i
.
Er T02 | T03
B} Bg r
. o | 2., 1
5 +F5 700 | T01
EQ 2 Ef
v v v

Fig. 1. From left to right: Elements of edge list £ with the bucket traversal
overlay; elements of edge list E/ with the bucket traversal overlay; bucket
traversal with region labels.

only if both F and E’ have edges in the bucket. As shown in
the first and second of figure [T] we can see that bucket 7 in
E does not have any edges while bucket r3 in E’ does not
have any edges. Hence, we do not need to recurse in these
buckets at all. Now 7 has edges EY through E} which do
not need to be tested. We have eliminated the need to test 6
out of 9 edges in E’. This is a significant reduction in work.
Also, rs is eliminated as a potential bucket for recursion in
E removing the need to test edge F5. In the next level of
recursion we eliminate buckets rog through rg3 as well as
r20,T21, T23. Recursing on ryo further we see that rogg is the
only bucket which has edges both in lists E and E’. E{ in
bucket 7953 does not have corresponding edges in E. Since
r990 has very few elements in both E and E’ we can compare
each element in £’ to each element in E for rggg to find that
E{ has a matching edge F; and is the only edge also present
in list E. Although this is a synthetic example, it demonstrates
that sparse distributions on E and E’ will result in elimination
of a large set of candidates for intersection quickly. Each level
of recursion is O(|E| 4 |E’]) i.e. it is O(n) in the size of the
lists.

II. METHODS
A. Linear algebra approach to triangle counting

The problem of finding the count of triangles can be
interpreted as counting all paths(walks) of length 2 between
two vertices if there is a closure i.e. an edge between the
two vertices. An element A(4,j) in the square adjacency
matrix defines the number of paths or the weight of an edge
between nodes ¢ and j. For an undirected unweighted graph
the adjacency matrix elements are 0 or 1. We know that the
n*" power of an adjacency matrix A™ gives us the number of
walks A™(i,7) of length n that exist between nodes i and
j. For n = 2 the walks are paths if the diagonal of the
adjacency matrix is 0. Thus, each element of A? defines the
number of paths of length 2. Let C' denote the Hadamard
product or elementwise product of A2 with the adjacency
matrix C' = A% o A. An element of matrix C (i, j) gives us the
number of triangles that the edge (i, j) is a part of. Hence, the
sum of all the elements of this matrix gives us the total number
of triangles in the graph. Each triangle is counted three times
in the matrix C' - once for each edge. Also, in an undirected
graph each edge is counted twice as A(7,) and A(j,7) both
indicating the same edge. This implies that 3, (C) counts

each triangle 6 times. The total number of triangles is given
by equation

nr =Y (C)/6)
ij

Triangle counting using this method has a high work
complexity and is viable only for graphs with dense adjacency
matrices. Most graphs tend to have sparser adjacency matrices.
We can reduce the work complexity by techniques such as
using masked multiplication after LU decomposition [10].
The decomposition as well as the masked multiplication is
computationally expensive since it uses a significant amount of
communication between workers. We can reduce the amount

of communication by using a set intersection approach.

B. Two step algorithm

Our algorithm consists of two main steps. The first step
involves finding out all the possible combinations of wedges
that exist in our graph. This is computed using the adjacency
list representation of the graph. The result of this step is a
list of edges closing the wedges, hence forming a triangle.
The second step is the radix bucket based set intersection. In
this step we find out if the list of candidate edges computed
before is actually present in the graph. The following sections
describe these steps in detail.

C. Finding candidate closure edges E'

While generating the set of candidate edges we have focused
on maintaining exclusive access to the input and output buffers
as well as coalescing our reads and writes. This ensures that
the memory accesseses which are sequential will benefit from
hierarchical memory caches in GPU architectures. Ensuring
exclusive read and exclusive writes for large F and E’ requires
us two know two things. The size of the E’ output buffer
to allocate in the global memory. The read boundaries of
E in which each thread will operate to generate the wedges
along with the write boundaries of £’ where it will write the
candidate edges closing these wedges. This is performed by
the algorithm

Algorithm 1 Compute candidate edges for closure test.

: function COMPUTE_FE'(FE)

E <+ RADIX_SORT(E) © E(u,v) by u first then v
entlp] + PARALLEL_COUNT(E) > use transitions
Elen + PARALLEL_REDUCE(cnt[p])
ALLOCATE(Ezndewy Edegr667 Efsize)
Eindes + PARALLEL_OFFSETS(E, p)
Egegree < PARALLEL_DEGREE_CALC(E;ndea, D)
E';.. + PARALLEL_SIZE_CALC(Eucgrce. D)
Eli.e scan < INCLUSIVE_SUM_SCAN(E...)

E' + PARALLEL_GEN(E, Eindex Elize sean)
return £’

W N =

> size Fien

TeYRIank

—_—

The input to algorithm [I] is the edge list £. Each element
in the list £ is an ordered tuple (u,v) representing a pair of
vertices. If the number of vertices in the graph fit within the
bounds of an integer container, a single element of £ can be

interpreted as a long integer. Accounting for endianness might
require reordering (u,v) to (v,u). The radix sort in line [2| of
algorithm (1| is performed on the edge list E using the fast
double buffered tunable radix sort from [19]. The resultant
list is the adjacency list since it is sorted by w first and v next.
We refer to the adjacency list as E here onwards. Since radix
sort has a work complexity of O(bn) where b is the number
of bits in the container which is fixed, the asymptotic work
complexity of radix sort is O(n). The parallel time complexity
of this shared memory implementation is O(n/p) where p is
the number of threads executing simultaneously. In steps [3]
and [] of algorithm [I] the total number of vertices which is
the length of the first dimension of the adjacency list Ej.,, is
found. The next 4 steps are used to calculate the indexes in
the input buffer E;, 4., and output buffer £,

Each step from lines [6] through [§] is performed in the
same kernel although they have been explicitly separated in
the algorithm [I] In line [6] the p processors compute the
index locations of the beginning of the adjacency list of each
vertex and write the result to F;,,4.,. The difference between
consecutive index values in F;,, ¢, 1S used in line to compute
the degree of each vertex. The number of wedges centered
on a vertex in the adjacency list is dependent on the degree
of the vertex. For each vertex in the adjacency list, a wedge
can be formed by selecting one other edge in the adjacency
list. We can remove duplicate wedges by only considering
the (%9) % combinations instead of the deg?
permutations. The number of candidate edges is the number
of closing edges which is 1 for each wedge. This value is
computed in line (8| and stored in E,, ..

The inclusive scan sum of E’, _ gives us the index locations
in E’ where the combinations corresponding to each vertex
in the adjacency list will be written. The inclusive sum is
computed using the NVIDIA cubs radix sort [19]. In the final
step in algorithm [1] line each thread takes ownership of
one or more vertices in the adjacency list E. For each vertex
u having degree deg in the adjacency list, the %
combinations of edges corresponding to wedges will be written

. UL, ,
out to the index locations in E’ pointed out by E{;.. scon-

D. Set intersection using radix bucketing

Counting of the triangles is done by finding out if each
edge in E’ is actually present in E. Performing a lookup
for each member from E’ in E can be a O(|E’|log(|E|))
operation if F is sorted using a naive binary tree. But F
itself can be very large and may not fit in memory even if
we batch the lookups of members of E’. In this case we
need an algorithm which can scale well and work on shared
as well as distributed memory architectures. Although our
implementation is on a shared memory SIMD device, we have
designed the algorithm to be extended onto distributed memory
SPMD architectures. The motivation for our algorithm is
the MSD bucketing algorithm which is at the core of the
fastest sorting algorithms [14]. It is easy to split up the work
among threads with a low communication overhead between
recursions and small amount of inter-thread communication.

Note that this algorithm is recursive. It fits very well with
the NVIDIA CUDA Dynamic Parallelism extension [21]]. The
algorithm is shown in algorithm

Algorithm 2 Count triangles by counting |E N E’|.

1: t_ent=0
2. b=2¢ > d = radix bits, b = radix buckets
3: function INTERSECT _COUNT(E, E’, t_cnt, depth)

4: if |[E| =0A|E'| =0 then

5: return

6: if depth > depthma. then

7: t_cnt =t_cnt + |E'|

8: return

9: if |E| <thrV|E'| <thr then

10: t_cnt = t_cnt+SEQ_INTERSECT_CNT(E, E')
11: return

12: Ecni[b] + PARALLEL_COUNT(E, depth)

13: E!,.[b] + PARALLEL_COUNT(E', depth)

14 Eent_scan + vec ' (INC_SUM_SCAN(vec(EZL,)))
15: Elnt scan < vec” '(INC_SUM_SCAN (vec(ELL,)))
16: for all b do

17: Epuz[b] < MOVE(E, Ecnt_scan[b])

18: for all b do

19: El,)uf [b] — MOVE(E/7 Eént_scan [b})

20: for all b do

21: INTERSECT_COUNT(Epy 1 [b], B}, ¢[b], t_cnt, depth + 1)

In algorithm [2] the triangle count ¢_cnt is initialized to 0
and it will be updated atomically by the threads as they find
valid candidate edges in E’. We can specify the number of
radix bits and hence the number of buckets to use for the
algorithm up front. The recursive function takes as parameters
the edge list F, the candidate edge list E’, the pointer to
the triangle count ¢_cnt and the current depth of the recursion
depth. Early recursion termination happens on lines[4] [6]and [9}
The termination conditions on lines[4} [6| are self-explanatory. A
hybrid approach towards the tail end of the recursion is known
to perform better [[16]. When the input is small i.e. |E| and
|E'| are smaller than a threshold thr we perform a simple
sequential intersection count and add it to ¢_cnt. Although
we have not implemented it, its worth mentioning that the
OrderedMerge demonstrated in [17]], [18] are alternatives that
can yield substantial improvements at the tail end of the
recursion.

The first step of the recursion is the parallel count. The
parallel count in lines [T2] and [T3] of algorithm [2] distributes the
input list among p threads. Each thread will process % edges.
A simple masking operation for the vertices of each edge as
shown in equation 2] tells us the bucket to which ¢ will belong.

(g (ierthmos—derth (1) A (h=1) (@)

The b counts E.,;, E’,, shown in line [12] of algorithm
will be populated with a time complexity O(%) and O(l%l)
assuming the p threads work simultaneously. This count is
computed in global shared memory and is a matrix of size
p x b since the local count computed by each thread is not
summed up yet. For the move to be performed in parallel

by p threads in lines [I7] and [I9 we need to know the index
location in the output buffers Ej, s and Ej, . where the data
will be moved.

The steps in lines of algorithm] perform the task
of computing the index locations for the move. The operator
vec used in line @] is the vectorization operator [20] that will
convert the p x b matrix into a column vector of size bp x 1.
An inclusive scan of this vector gives us the index location
boundaries where each thread will perform a move operation
for each bucket. The inclusive sum scan has a work complexity
of O(pb-log(pd)) and a time complexity defined by the Kogge-
Stone or Hillis-Steele scan algorithms [[14]. This enables us
to perform the move as an EREW(exclusive read, exclusive
write) operation in the final step. The vec™! operator simply
converts the bp x 1 vector into a p x b matrix. Note that the
vec and vec™! and transpose operations do not have to be
performed explicitly if the E.,; is stored in column major
order.

The last step before recursion in algorithm [2] is the data
movement. In line |17|the edges in F are moved based on the
bucket they belong, to the offsets pointed by Ecpt scan in the
output buffer Ej, ¢. The move is done for £’ in line This
stable operation requires just two buffers of size 2x (| E|+|E’|)
since the input buffer at depth can be used as the output buffer
at recursion depth + 1 and vice versa.

Intersect_count will be called recursively for each bucket
with the corresponding data as shown in line The pointer
to a global memory ¢_cnt is also passed on. The recursive call
is made to all the buckets simultaneously - the loop over all
buckets has only been shown for clarity. Similarly, the loops
in lines also run simultaneously.

III. RESULTS AND CONCLUSION
A. Experimental setup

We used a single node in the CHPC cluster with the
NVIDIA Tesla P100 GPU card for our experiments. The Tesla
P100 of the Pascal architecture has 16GB of global memory
with 56 streaming multiprocessors. Each multiprocessor has
64 cores bringing the total number of cores to 3584. Its single
precision performance is rated at 9.3 TFlops. The host node
has 2 14-core Intel Broadwell processors E5-2680 v4 running
at 2.4 GHz with 256 GB RAM.

B. Effect of changing the size of graph sets |E| and |E'| on
the running time

To test scaling we demonstrate the effect of changing two
major properties of the graph. The number of edges |E| in
the graph and the density of the graph which changes as |E’|
changes. In the first part of the table] we can see that increas-
ing the number of edges | E| in a graph does not have a signifi-
cant impact on the time taken to COMPUTE_E'. For example,
although the graph Theory-3-4-5-9-Blk.tsv has more edges
13166 than the graph Theory-25-81-Blk.tsv 8312, the time
taken to construct E’ is higher for the graph with a smaller
number of edges |E|. The time taken to COMPUTE_E’ is
directly proportional to the number of candidate edges |E’|.

Ideally we expect that INTERSECTION_COUNT would take
the same amount of time to compute with larger |E’| as
evidence of strong scalability. Practically, if the rate of increase
of the the time taken to compute INTERSECTION_COUNT
increases slower than the rate of increase in |E’|, we can expect
the algorithm to scale. The graphs Theory-3-4-5-B*k.tsv have
3360, 10830 and 5339 candidate edges each. The time to
compute their intersection with E is on average 0.079 seconds.
In graphs Theory-16-25-B*k.tsv, the number candidate edges
goes up by more than 10 times to 87600, 105620 and 88943
compared to Theory-3-4-5-B*k.tsv. But the time to compute
INTERSECTION_COUNT less than doubles at an average of
0.146 seconds. This trend continues as the size of the graphs
increases.

For the graphs Theory-3-4-5-9-Blk.tsv and Theory-25-81-
B*k.tsv the time to compute INTERSECTION_COUNT in-
creases at a significantly higer rate. The disparity in this
increase in the time taken by INTERSECTION_COUNT can
be attributed to the maximum recursion depth at which the
recursion terminates. For the graph Theory-3-4-5-9-B2k.tsv,
85 recursive calls are made to the INTERSECTION_COUNT
kernel while for the graph Theory-3-4-5-9-Blk.tsv 2647 re-
cursive calls are made. The overhead of invoking a kernel
is significantly high resulting in a lower performance. For
the graphs Theory-25-81-Bk.tsv, Theory-25-81-Blk.tsv and
Theory-25-81-B2k.tsv, the number of recursive calls to IN-
TERSECTION_COUNT is 6502, 6877 and 6522 respectively.
We are still working on the problem of tuning the threshold
parameter at which to perform sequential intersection counting
which is responsible for this. This paremeter is referred to in
algorithm [2] line [0] as thr. In our current implementation this
is fixed at 1024.

It should be noted that the number of triangles in the actual
graph does not really have an effect on the running time.
The running time for dataset Theory-3-4-5-Bk.tsv at 0.075923
seconds is close to the total running time for Theory-3-4-5-
Blk.tsv of 0.083499 seconds. The difference in the number
of triangles 0 against 287 does not increase the total running
time significantly.

C. Effect of changing the structure of the graph on the running
time

The p2p-Gnutella dataset has roughly the same density and
connectivity for its graphs since |E’| is about 450000 except
for p2p-Gnutella30_adj.tsv and p2p-Gnutella31_adj.tsv while
the number of edges range from 40000 to about 100000. This
can be seen in the second set of the results in table [l The
structure and connectivity characteristics of the graph do not
have a significant effect on the running time which is constant
at about 1.8 seconds as seen in table[[} The last 2 graphs in this
set p2p-Gnutella30_adj.tsv and p2p-Gnutella31_adj.tsv have a
larger size of the candidate set £’ resulting in longer running
time. Thus, if the number of candidate edges is approximately
constant, changing the number of edges does not have a
pronounced impact on the total running time.

D. Comparision with the serial implementation miniTri

To provide a baseline comparision we have provided the
running times of miniTri for the same graphs in the last column
in table |l miniTri is a triangle based data analytics tool. It has
a linear algebra based triangle enumeration implementation
which is discussed in [22]]. The running times of the sequential
linear algebra algorithm are lower than the running times of
our technique especially for smaller graphs. But as the size
of the graphs increase, the run times are more comparable.
This points to the incompatibility of our algorithm with the
CUDA Dynamic Parallelism extension [21]]. The overhead of
launching kernels recursively is large. This becomes significant
if the depth of the recursion is high or the number of recursive
calls is large.

E. Conclusion

The strategy to generate the offsets where we can read
from and write processed results can be effectively applied
for various parallel tasks. It is scalable as can be seen by
the run timings for similar graphs in table [l The isolation
of data buffers between different workers implies that we can
not only use this technique on a shared memory architecture
but on distributed architectures as well. Although we have not
demonstrated that capability of the technique, we can extend
the algorithm to work on a hybrid shared and distributed
memory architecture. This will enable us to process larger
graphs on a cluster of GPU nodes which is a part of our
ongoing effort. This initial implementation has highlighted
several areas of improvement. The CUDA dynamic parallelism
extension suffers from the overhead of launching kernels. The
number of threads that can be launched as well as the recursion
depth is also limited by the compute capability of device [21]]
and the amount of global memory on the device. It is ideal for
traversing wide and short recursive trees. The large overhead of
kernel launces for dynamic parallelism implies that an iterative
solution will work better on CUDA architectures. The iterative
approach needs to be explored. Tuning the threshold for early
termination of the recursion while switching to a non-recursive
parallel version of SEQ_INTERSECT_CNT(FE, E’) is another
area that needs to be explored.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation grants ACI-1464244, CCF-1643056 and CCF-
1704715.

REFERENCES

[1] D. Watts and S. Strogatz, Collective dynamics of small-world networks,
Nature, no. 393, 1998.

[2] Adam Polak, Counting Triangles in Large Graphs on GPU.

[3] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, Uri Alon, Network motifs: Simple building blocks of
complex networks, Science 298 (2002) 824827

[4]] Thomas Schank, Dorothea Wagner, Finding, counting and listing all
triangles in large graphs, Technical report, Universitt Karlsruhe, Fakultt
fr Informatik, 2005.

[5] M. Bisson and M. Fatica, “’Static graph challenge on GPU,” 2017 IEEE
High Performance Extreme Computing Conference (HPEC), Waltham,
MA, 2017, pp. 1-8.

Run time(seconds) miniTri(seconds)
Dataset H #edges|E| [size of [E] [#triangles || COMPUTE_E’ [INTERSECT_COUNT [Total Run time
Effect of varying size of the graph |F|
Theory-3-4-Bk.tsv 48 96 0 0.002314 0.039135 0.041449 0.001309
Theory-3-4-Blk.tsv 62 225 36 0.002321 0.034009 0.03633 0.002192
Theory-3-4-B2k.tsv 62 138 1 0.002464 0.032879 0.035343 0.001144
Theory-3-4-5-Bk.tsv 480 3360 0 0.00336 0.072563 0.075923 0.007645
Theory-3-4-5-B1k.tsv 692 10830 287 0.004287 0.079212 0.083499 0.013159
Theory-3-4-5-B2k.tsv 692 5339 7 0.003132 0.08584 0.088972 0.006041
Theory-16-25-Bk.tsv 1600 87600 0 0.015061 0.119477 0.134538 0.087803
Theory-16-25-B1k.tsv 1682 105620 400 0.017741 0.189551 0.207292 0.07311
Theory-16-25-B2k.tsv 1682 88943 1 0.015112 0.129343 0.144455 0.093247
Theory-3-4-5-9-Bk.tsv 8640 319680 0 0.025373 0.374776 0.400149 0.193648
Theory-3-4-5-9-B1k.tsv 13166 1223427 9107 0.11025 12.35139 12.46164 0.76838
Theory-3-4-5-9-B2k.tsv 13166 522804 35 0.02512 0.797365 0.822485 0.32836
Theory-25-81-Bk.tsv 8100 2154600 0 0.296968 58.645665 58.942633 1.309457
Theory-25-81-B1k.tsv 8312 2378865 2025 0.322544 65.225054 65.547598 1.432732
Theory-25-81-B2k.tsv 8312 2165433 1 0.300018 58.99413 59.294148 1.30335
Effect of changing edge density by keeping [E’] constant and changing [E[on running time.
p2p-Gnutella04_adj.tsv 79988 518694 934 0.006057 2.112742 2.118799 0.436732
p2p-Gnutella05_adj.tsv 63678 439066 1112 0.006267 1.968307 1.974574 0.363753
p2p-Gnutella06_adj.tsv 63050 422567 1142 0.006463 1.633593 1.640056 0.339405
p2p-Gnutella08_adj.tsv 41554 346033 2383 0.006026 1.893056 1.899082 0.273986
p2p-Gnutella09_adj.tsv 52026 411347 2354 0.006432 1.783205 1.789637 0.313568
p2p-Gnutella25_adj.tsv 109410 533121 806 0.006618 1.998373 2.004991 0.486104
p2p-Gnutella30_adj.tsv 176656 923756 1590 0.006855 3.528112 3.534967 0.80267
p2p-Gnutella31_adj.tsv 295784 1568174 2024 0.007118 5.746889 5.754008 1.521094
ABLE T

TWO SETS OF RESULTS. THE FIRST SET CONSISTS OF GRAPHS WITH ZERO, MANY AND SOME TRIANGLES. WE SEE THE EFFECT OF CHANGING THE SIZE
OF THE GRAPH HERE. THE SECOND SET REPRESENTS GRAPHS WHERE THE NUMBER OF EDGES |E| VARIES BUT THE SIZE OF THE SET E’ IS ROUGHLY
CONSTANT.

[6]

(10]

[11]

[12]

[14]
[15]
[16]

[17]

[18]

(19]

Static Graph Challenge: Subgraph Isomorphism, S. Samsi, V. Gadepally,
M. Hurley, M. Jones, E. Kao, S. Mohindra, P. Monticciolo, A. Reuther,
S. Smith, W. Song, D. Staheli, J. Kepner, IEEE High Performance
Extreme Computing Conference (HPEC), 2017

O. Green, P. Yalamanchili, and L.-M. Mungua, Fast triangle counting
on the GPU, in Proc. 4th Workshop Irregular Appl.: Archit. Algorithms,
2014, pp. 18. [Online]. Available: http://dx.doi.org/ 10.1109/IA3.2014.7

8] Static Graph Challenge on GPU, Mauro Bisson, Massimiliano Fatica

L. Wang, Y. Wang, C. Yang, and J. D. Owens, A comparative study
on exact triangle counting algorithms on the GPU, in Proc. Ist High
Performance Graph Process. Workshop, May 2016, pp. 18.

Azad, A. Buluc, and J. Gilbert, Parallel triangle counting and enu-
meration using matrix algebra, in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshop, 2015, pp. 804811. [Online]. Available:
http://dx.doi.org/10.1109/IPDPSW.2015.75

T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, Counting
triangles in massive graphs with mapReduce, CoRR, 2013. [Online].
Available: http://arxiv.org/abs/1301.5887

C. Seshadhri, A. Pinar, and T. G. Kolda, Wedge sampling for computing
clustering coefficients and triangle counts on large graphs, Statistical
Anal. Data Mining, vol. 7, no. 4, pp. 294307, 2014. [Online]. Available:
http://dx.doi.org/10.1002/sam.11224

M. Jha, C. Seshadhri, and A. Pinar, A space-efficient streaming algo-
rithm for estimating transitivity and triangle counts using the birthday
paradox, ACM Trans. Knowl. Discov. Data, vol. 9, no. 3, pp. 15:115:21,
Feb. 2015. [Online]. Available: http://doi.acm. org/10.1145/2700395

V. J. Duvanenko, Parallel In-Place Radix Sort Simplified”, Dr. Dobb’s
Journal, January 2011

Single-pass Parallel Prefix Scan with Decoupled Look-back, Duane
Merrill, Michael Garland

V. J. Duvanenko, ”Stable Hybrid N-bit-Radix Sort”, Dr. Dobb’s Journal,
January 2010

J. Shun and K. Tangwongsan, Multicore triangle computations without
tuning, in Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. IEEE, 2015, pp. 149160.

A. S. Tom et al., "Exploring optimizations on shared-memory platforms
for parallel triangle counting algorithms,” 2017 IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, 2017, pp. 1-7.
https://nvlabs.github.io/cub/structcub_1_1_device_radix_sort.html

[20]

[21]

(22]

H.D. Macedo, J.N. Oliveira, Typing linear algebra: A biproduct-oriented
approach, Science of Computer Programming, Volume 78, Issue 11,
2013, Pages 2160-2191.
https://docs.nvidia.com/cuda/cuda-c-programming- guide/index.html#
cuda-dynamic-parallelism

M. M. Wolf, J. W. Berry and D. T. Stark, ”A task-based linear algebra
Building Blocks approach for scalable graph analytics,” 2015 IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
2015, pp. 1-6.

https://nvlabs.github.io/cub/structcub_1_1_device_radix_sort.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-dynamic-parallelism
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-dynamic-parallelism

	Introduction
	Graph algorithms overview
	Triangle counting as an application
	Different approaches - set intersection/Linear algebra/map reduce/approximation methods for triangle counting
	Challenges of parallelizing graph algorithms on modern architectures
	Data-access concerns for set intersection

	Methods
	Linear algebra approach to triangle counting
	Two step algorithm
	Finding candidate closure edges E'
	Set intersection using radix bucketing

	Results and conclusion
	Experimental setup
	Effect of changing the size of graph sets |E| and |E'| on the running time
	Effect of changing the structure of the graph on the running time
	Comparision with the serial implementation miniTri
	Conclusion

	References

