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Abstracti—Graph similarity search is a common and fundamen-
tal operation in graph databases. One of the most popular graph
similarity measures is the Graph Edit Distance (GED) mainly be-
cause of its broad applicability and high interpretability. Despite
its prevalence, exact GED computation is proved to be NP-hard,
which could result in unsatisfactory computational efficiency
on large graphs. However, exactly accurate search results are
usually unnecessary for real-world applications especially when
the responsiveness is far more important than the accuracy.
Thus, in this paper, we propose a novel probabilistic approach
to efficiently estimate GED, which is further leveraged for the
graph similarity search. Specifically, we first take branches as
elementary structures in graphs, and introduce a novel graph
similarity measure by comparing branches between graphs, i.e.,
Graph Branch Distance (GBD), which can be efficiently calcu-
lated in polynomial time. Then, we formulate the relationship
between GED and GBD by considering branch variations as
the result ascribed to graph edit operations, and model this
process by probabilistic approaches. By applying our model,
the GED between any two graphs can be efficiently estimated
by their GBD, and these estimations are finally utilized in the
graph similarity search. Extensive experiments show that our
approach has better accuracy, efficiency and scalability than
other comparable methods in the graph similarity search over
real and synthetic data sets.

I. INTRODUCTION

Graph similarity search is a common and fundamental ope-
ration in graph databases, which has widespread applications
in various fields including bio-informatics, sociology, and
chemical analysis, over the past few decades. For evaluating
the similarity between graphs, Graph Edit Distance (GED)
[1] is one of the most prevalent measures because of its
wide applicability, that is, GED is capable of dealing with
various kinds of graphs including directed and undirected
graphs, labeled and unlabeled graphs, as well as simple graphs
and multi-graphs (which could have multiple edges between
two vertices). Furthermore, GED has high interpretability,
since it corresponds to some sequences of concrete graph edit
operations (including insertion of vertices and edges, etc.) of
minimal lengths, rather than implicit graph embedding utilized
in spectral [2] or kernel [3] measures. Example 1 illustrates
the basic idea of GED.

Example 1: Assume that we have two graphs 1 and G2
as shown in Figure 1. The label sets of graph G'’s vertices
and edges are {A, B.C} and {y.y, 2}, respectively, and the
label sets of graph G2’s vertices and edges are {A.DB,C}
and {x,y, 2z}, respectively. The Graph Edit Distance (GED)
between (i and G2 is the minimal number of graph edit
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operations to transform G| into G'2. It can be proved that the
GED between (1 and G2 is 3, which can be achieved by (1)
deleting the edge between v; and vy in Gy, and @ inserting
an isolated vertex v; with label A, and 3 inserting an edge
between vy and v4 with label .

With GED as the graph similarity measure, the graph
similarity search problem is formally stated as follows.

Problem Statement: (Graph Similarity Search) Given a
graph database D, a query graph (2, and a similarity threshold
7, the graph similarity search is to find a set of graphs Dy C
D, where the graph edit distance (GED) between ¢ and each
graph in Dy is less than or equal to 7.

A straightforward solution to the problem above is to check
exact GEDs for all pairs of () and graphs in database D).
However, despite its prevalence, GED is proved to be NP-hard
for exact calculations [4], which may lead to unsatisfactory
computational efficiency when we conduct a similarity search
over large graphs. The most widely-applied approach for
computing exact GED is the A" algorithm [5], which aims to
search out the optimal matching between the vertices of two
graphs in a heuristic manner. Specifically, given two graphs
with n and m vertices, respectively, the time complexity of
A* algorithm is O(n™) in the worst case.

Due to the hardness of computing exact GED (NP-hard)
[4], most existing works involving exact GED computation
[4] [5] only conducted experiments on graphs with less than
10 vertices. In addition, a recent study [6] indicates that the A*
algorithm is incapable of computing GED between graphs with
more than 12 vertices, which can hardly satisfy the demand for
searching real-world graphs. For instance, a common require-
ment in bio-informatics is to search and compare molecular
structures of similar proteins [7]. However, the structures of
human proteins usually contain hundreds of vertices (i.e.,
atoms) [8], which obviously makes similarity search beyond
the capability of the approaches mentioned above. Another
observation is that many real-world applications do not always
require an exact similarity value, and an approximate one
with some quality guarantee is also acceptable especially in
real-time applications where the responsiveness is far more
important than the accuracy. Taking the protein search as an
example again, it is certainly more desirable for users to obtain
an approximate solution within a second, rather than to wait
for a couple of days to get the exact answer.

To address the problems above, many approaches have been
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(D1 Deleting edge (w1, vg)

Fig. 1.

proposed to achieve an approximate GED between the query

graph ¢) and each graph in database D) in polynomial time

[9], which can be leveraged to accelerate the graph similarity

search by trading accuracy for efficiency. Assuming that there

are two graphs with n and i vertices, respectively, where n >>

m, one well-studied method [10] [11] for estimating the GED

between these two graphs is to solve a corresponding linear

sum assignment problem, which requires at least (((n®) time
for obtaining the global optimal value or O(n? logn?) time for

a local optimal value by applying the greedy algorithm [12].

An alternative method is spectral seriation [13], which first

generates the vector representations of graphs by extracting

their leading eigenvalues of the adjacency matrix (O{n?) time)

[14], and then exploits a probabilistic model based on these

vectors to estimate GED in O{nim?) time.

To further enhance the efficiency of GED estimation and
better satisfy the demands for graph similarity search on large
graphs, we propose a novel probabilistic approach which aims
at estimating the GED with less time cost & (nd+77), where n
is the number of vertices, d is the average degree of the graphs
involved, and 7 is the similarity threshold in the stated graph
similarity search problem. Note that the similarity threshold
7 18 often set as a small value (ie., 7 < 10) and does not
increase with the number of vertices » in previous studies [4]
[15], thus, we can assume that 7 is a constant with regard to n
when the graph is sufficiently large. Moreover, most real-world
graphs studied in related works [11] [12] are scale-free graphs
[16], and we prove that the average degree d = O(logn) for
scale-free graphs. Therefore, under the assumptions above, the
time complexity of our approach is O{nd ++°) = O{nlogn)
for comparing two scale-free graphs, and O(|D|nlogn) for
searching similar graphs in the graph database 1), where | D]
is the number of graphs in database D.

Our method is mainly inspired by probabilistic modeling
approaches which are broadly utilized in similarity searches
on various types of data such as text and images [17]. The
basic idea of these methods is to model the formation of an
object as a stochastic process, and to establish probabilistic
connections between objects. In this paper, we follow this idea
and model the formaticn of graph branch distances (GBDs) as
the results of random graph editing processes, where GBD is
defined in Section III. By doing so, we prove the probabilistic
relationship between GED and GBD, which is finally utilized
to estimate GED by graph branch distance (GBD).

To summarize, we make the following contributions.

+ We adopt branches [15] as elementary structures in graphs,
and define a novel graph similarity measure by compa-
ring branches between graphs, 1.e., Graph Branch Distance
{GBD), which can be efficiently calculated in O(nd) time,
where 7 is the number of vertices, and d is the average
degree of the graphs involved.

(2 Inserting vertex w4
Graph edit process to transform (71 into Gia (Example 1)
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« We build a probabilistic model which reveals the rela-
tionship between GED and GBD by considering branch
variations as the result ascribed to graph edit operations. By
applying our model, the GED between any two graphs can
be estimated by their GBD in O(#%) time, where + is the
similarity threshold n the graph similarity search problem.

« We conduct extensive experiments to show our approach has
better accuracy, efficiency and scalability compared with the
related approximation methods over real and synthetic data.

The paper is organized as follows. In Section II, we formally
define the symbols and concepts which are used in this paper.
In Section III, we give definitions of branches and Graph
Branch Distance (GBD). In Section IV, we troduce the
extended graphs, which are exploited to simplify our model.
In Section V, we derive the probabilistic relation between
GBD and GED, which is leveraged in Section VI to perform
the graph similarity search. In Section VII, we demonstrate
the efficiency and effectiveness of our proposed approaches
through extensive experiments. We discuss related works in
Section VIII, and we conclude the paper in Section [X.

II. PRELIMINARIES

The graphs discussed in this paper are restricted to simple
labeled undirected graphs. Specifically, the i-th graph in
database D is denoted by: Gy 2 {Vi, E;, £}, where V; £
{01,952y 0 ”i»\Vi\} is the set of vertices, F; 2 Je; 1, €52, ...
ez‘,\Et\} is the set of edges, while £ i1s a general labelling
function. For any vertex v; ; € V;, its label is given by £{v; ;).
Similarly, for any edge e;; € E;, its label is given by L(e; ;).
In addition, £y~ and £x are defined as the sets of all possible
labels for vertices and edges, respectively. We also define = as
a virtual label, which will be used later m our approach. When
the label of a vertex (or edge) is £, the vertex (or edge) is said
to be virmal and does not actually exist. Particularly, we have
£ ¢ Ly and £ ¢ £z, Note that our method can also handle
directed and weighted graphs by considering edge directions
and weights as special labels.

In this paper, we take Graph Edit Distance (GED) [1] as
the graph similarity measure, which is defined as follows.

Definition 1 (Graph Edit Distance): The edit distance bet-
ween graphs & and Go, denoted by GED(Gq,G), is the
minimal number of graph edit operations which are necessary
to transform ¢y into (7, where the graph edit operations
(GEO) are restricted to the following six types:

AV: Add one isolated vertex with a non-virtual label;
DV: Delete one isolated vertex;

RV: Relabel one vertex;

AE: Add one edge with a non-virtual label;

DE: Delete one edge;

RE: Relabel one edge.

Assume that a particular graph edit operation sequence
which transforms graph 1 into (73 is seg;, where i is the

+
*
*
*
*
*



unique [I> of this sequence. Then, according to Definition 1,
GED{G,Gy) 1s the minimal length for all possible operation
sequences, that is, GEID(Gq,Gy) = min;{|seq;|}, where
|seq;| is the length of the sequence seq;. The set of all
operation sequences from G; to Gy of the minimal length
is defined as SEQ = {seq;|V¢, GED(G1, Go) = |seq|}.
III. BRANCH DISTANCE BETWEEN GRAPHS
To reduce the high cost of exact GED computations (NP-

hard [4]) in the graph similarity search, one widely-applied
strategy for pruning search results [4] [18] [19] [15] is to
exploit the differences between graph sub-structures as the
bounds of exact GED values. In this paper, we consider the
branches [15] as elementary graph units, which are defined as:

Definition 2 (Branches): The branch rooted at vertex v is
defined as B(v) = {L(v), N(v)}, where £(v) is the label of
vertex », and N{(v) is the sorted multiset containing all labels
of edges adjacent to v. The sorted multiset of all branches in
(; is denoted by Be, = {B(v;),Yv;; € Vi

In practice, each branch B(w) is stored as a list of strings
whose first element is £(v) and the following elements are
strings in the sorted multiset N(v). In addition, Be, for each
graph (7; is stored in a sorted multiset, whose elements are
essentially lists of strings (i.e., branches) and are always sorted
ascendingly by the ordering algorithm in [20]. Por a fair
comparison of the computational efficiency, we assume that
all auxiliary data structures in different methods, such as the
cost matrix [11], adjacency matrix [13], and our branches, are
pre-computed and stored with graphs.

To define the equality between two branches, we introduce
the concept of branch isomorphism as follows.

Definition 3 (Branch Isomorphism): Two branches B(v) =
{L(v), N(v)} and B(u) = {£(u), N(u)} are isomorphic if
and only if £(v) = L£(v) and N(v) = N{u), which is denoted
by B(v) = B(u).

Suppose that we have two branches B(v) and B(u) where
the degrees of vertices v and u are d, and d,,, respectively.
From previous discussions, the branch B(v) and B(u) are
stored as lists of lengths d, + 1 and d, + 1, respectively.
Therefore, checking whether B(v) and B(u) are isomorphic
is essentially judging whether two lists of lengths &,, + 1 and
d, + 1 are identical, which can be done in , time when
d,, = d.,, and otherwise in one unit time since the length of a
list can be obtained in one unit time.

Finally, we define the Graph Branch Distance (GBD).

Definition 4 (Graph Branch Distance): The branch dis-
tance between graphs &1 and 9, denoted by GBD{G, Ga),
is defined as:

GBD(Gy, Gy) = max{|Be, |, |Ba,|} — [Ba, N Bay|
= max{|Vi], [Va[} = |Be, N Ba| (1)
where Ba, and Bz, are the multisets of all branches in graphs
(7 and (35, respectively.

The intuition of introducing GBI is as follows. The state-of-
the-art method [15] for pruning graph similarity search results
assumes that the difference between branches of two graphs
has a close relation to their GED. Therefore, in this paper, we
aim to use GBD to closely estimate the GED of two graphs.
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TABLE 1
TABLE OF NOTATIONS

D £ {G1,G2,...G| p|}. the graph database

G £ [V E; £V, ith graph in database

Vi 2 {ug1,v0, <oy U4,|V, | }» the vertices in G
Ez' e {B.i,l,ﬁ.i,z,...,&iﬁlEJ}, the EDdgf:S in Gi

@ £ {Vg,Eq, L}, the query graph

£ £ [labelling function for vertices and edges

£y £ the set of all possible vertex labels

T £ the set of all possible edge labels

£ £ the virtual label

+ = the similarity threshold

seq £ 3 graph edit operation (GEO) sequence
SEQ £ setof all GEO sequences of minimal lengths
GED = Graph Edit Distance

B(v) £ the branch rooted at vertex v

L{v) = the label of vertex v

N(v) £ sorted multiset of labels of edges adjacent to v
Ba, 2 sorted multiset of all branches in graph G;
GBD £ Graph Branch Distance

G 2 axtended graph of & with extension factor &
.65 2 G, GI when V1) < V|

Example 2 below illustrates the process of computing GBD.

Example 2: Assume that we have two graphs 7 and (g
as shown in Figure 1. The branches rooted at the vertices in
graphs 1 and Gy are as follows.

B(v) = {4 v,uy}, B(v2) ={C; 9,2}, B(va) = {B;y,2};

B(uwi) ={B;z,2}, Bluy) = {4; ¢y}

B(ug) = {4;2}, Blw) = {Cv, 2}

The sorted multisets of branches in Gy and Gp are:

Ba, ={B(v1), B(vs), B(v2) 5
BGQ = {B(UB), B(U@),B(Mi), B(’U,4)}

Therefore, according to Definition 4, we can obtain the
graph branch distance (GBD) between graphs G and Gy by
applying the Equation (1), which is:

GBD(Gy, Gr) = max{|Ba, |, |Be, |} — |Ba, N Bay| =3,
where | Bg,| = 3 and |Bg,| = 4 are the sizes of multisets By,
and B, respectively. In addition, according to Definition 3,
the only pair of isomorphic branches between multisets B,
and Be, is B(w2) =~ B(uy). Therefore, the intersection set
of multisets B, and Bg, is {B(va)}, whose size is |Bg, N
Bl = {B(vo)}| = L.

Note that the time cost of computing the size of intersection
of two sorzed multisets is max{mq,mso} [4], where my and
mo are the sizes of two multisets, respectively. Therefore, the
GBD between query graph () and any graph < € IJ can be
computed in time:

Yo di = O(nd), (2)
where n = max{|Vy|, [Va|}, 4; is the degree of i-th compared
vertex In G, and 4 is the average degree of graph &.

The GBD defined in this section is utilized to model the
graph edit process and further leveraged for estimating the
graph edit distance (GED) in Section V.

[V. EXTENDED GRAPHS

In this section, we reduce the number of graph edit operation
types that need to be considered by extending graphs with
virtual vertices and edges, which helps to simplify our proba-
bilistic model in Section V. Moreover, we show that the GED
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Fig, 2. Extended Graphs for Example 3
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and the GBD between the extended graphs stay the same as
the GED and the GBD between the original ones, respectively.

The definition of extended graphs is as follows.

Definition 5 (Extended Graphs): For graph &, its extended
graph, denoted by %7 is generated by first inserting & iso-
lated virtual vertices into (5, and then inserting a virtual edge
between each pair of non-adjacent vertices in & (including
virtual vertices), where k is the extension factor.

Example 3: For graphs (G4 and /3 in Figare 1, their exten-
ded graphs Gil} and Géo} are shown in Figure 2. The virtual
vertices are labelled by =, while virtual edges are represented
by dashed lines. Note that when the extension factor is 0, no
virtual vertex will be inserted.

In particular, for any graph pair (G4, Gg? where | V1] < |V,
we define G| = Gﬂm_m'} and &, = G by extending G+
and ¢ with extension factor |V2| — |V1] and 0, respectively.
Previous studies [21] [22] have shown that, for any graph edit
operation sequence seg which transforms the extended graph
G into G and has the minimal length, every operation in seq
is equivalent to a relabelling operation on &G. Therefore, we
only need to consider graph edit operations of types RV and
RE when modeling the graph edit process of transforming the
extended graph G into 5.

Finally, given the graphs G; and &5 {for |Vq| < |Va|),
and their extended graphs Gjand &%, we have the following
Theorems 1 and 2, which are utilized in the Section V.

Theorem 1: GED(G.,G:) = GED(G], &)

Proof: Please refer to Appendix A. |
Theorem 2: GBD(G1,G2) = GBD(GY, G3)
Proof: Please refer to Appendix B. |

Note that the extended graph is only a conceptual model for
reducing the number of graph edit operation types that need
to be considered. According to Theorems 1 and 2, whenever
the values of GED{G, G%) and GBD(GY, GY) are required,
we can instead calculate GED(G:,Gy) and GBD(G1,G3).
Therefore, in practice, we do not actually convert graphs into
their extended versions, and the calculations of GEDs and
GBDs are still conducted on original graphs rather than the
extended ones, which means that there is no overhead for
creating and maintaining extended graphs.

V. OUR PROBABILISTIC MODEL

In this section, we aim to solve the stated graph simi-
larity search problem by estimating GED from GBD in a
probabilistic manner. According to Theorems 1 and 2, the
relation between original graphs’ GED and GBD must be
the same with the relation between extended graphs® GED
and G BD. Therefore, as discussed in Section IV, we only
need to consider graph edit operations of types RV and RE
when building our probabilistic model.

To be more specific, we consider two given graphs 1 and
Gy where |V;| < |V3| and their extended graphs G and &7,
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Fig. 3. DBayesian Network of Random Variables
TABLE IT

NOTATION OF RANDOM VARIABLES

Choice of operation sequence

Number of relabeled vertices

Number of relabeled edges

Number of vertices covered by relabeled edges

Number of vertices either relabeled or covered by relabeled edges

b e T

(L= [T

For simplicity, we denote GED(G, G}) and GED(G, GL)
by GED and G B, respectively. As mentioned in Section I,
we model the formation of graph branch distances (GBDs) as
the results of random graph editing processes, and thus we
establish a probabilistic connection between GED and GBD.
The detailed steps to construct our model is as follows.

Step 1: We consider GED as an observed random variable.
Step 2: We randomly choose one graph edit operation (GEQ)
sequence from all possible GEO sequences whose lengths are
equal to GED. We define a random variable X (w), where w
is a particular choice of operation sequence from SEC), and
S(w) = s iff w choose the sequence with ID s, that is, seg,.
Step 3: We model the numbers of RV and RE operations
in the sequence chosen in Step 2 as random variables X (s)
and Y'(s), respectively, where X (s) = = iff the number of
operations with type RV in seq. is z, and Y (s) = y iff the
number of operations with type RE in seq, is y. Note that,
when given GED = rand X = #, we alwayshaveY = 7—uz.
Step 4: We define random variables Z(y) as the random
variable where y is a particular value of Y, and Z(y) = m iff
Y(s) = y and the number of vertices covered by relabeled
edges is m when conducting seq,. In addition, we define
R{z,m) as the random variable where & and m are particular
values of X and Z, respectively. That is, R(z,m) = r iff
X =z, Z = mn and the number of vertices either relabelled
or covered by relabelled edges is ».

The reason we conduct Step 4 is becaunse we want to model
branch variations by the number of branches rooted at the
vertices either relabelled or covered by relabelled edges, i.e.,
the random variable E.

Step 5: We consider & BD as the random variable dependent
on K, where their relation is proved in our technical report
[23] due to the space limitation.

The random variables defined in the five-step model above
are listed in Table I1, and their relations among are represented
by a Bayesian Network, as shown in Figure 3. We use Example
4 below to better illustrate the key idea of our model.

Example 4: Given two extended graphs &} and GZ, as
shown in Figure 4, where the virtual edges are represented by
dashed lines. The minimal number of graph edit operations to
transform & inte (& is 2, and the set of all possible graph
edit operation sequences with the minimal length 2 is:

SEQ = {{op1,0p2}1, {opz, 0p1 }z, {ops, opa }a, {opa, opata}
where the subscript of each sequence is its ID, and
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op1 = Relabelling the edge (v, vs) to label y;
op; = Relabelling the edge (v, vs) to label a;
ops = Relabelling the vertex v; to label C.
ops = Relabelling the vertex v; to label B.

Then, the values of random variables in our model could be:

1) First, we consider GE D as a random variable, which has
the value 2 in this example. (GED = 2)

2) Second, we randomly choose one sequence from SEQ,
which is seqz = {opz,op1}. Therefore, in this case the
random variable S = 2.

3) Third, the numbers of RV and RE operations in seq; are 0
and 2, respectively, Therefore, the random variables X = 0
and Y = 2 in this example.

4) Then, after conducting operations in segz, the number of
vertices covered by relabelled edges is 3, and the number
of vertices either relabelled or covered by relabelled edges
is 3. Therefore, the random variables 7 = 3 and R = 3.

5) Finally, GBD is considered to be the random variable,
where GBD = 2 in this example.

In this paper, we aim to infer the probability distribution of
G'ED when given (¢ BD, which is essentially to calculate the
following probability for given constants 7 and ¢:

PriGED <7 |GBD = |
=¥ _PrlGED =7 | GBD = ¢ 3)

By applying Bayes” Rule, we have:
Pr[GED<#|GBD=¢| =3 _ A -2, @

where
M (G, Gym0) =Pr[GBD = |GED=1] (5
A2(GY, G 0) = PriGBD = ¢ (6)
As3(GY,GY;7) = Pr(GED =1 (7

Therefore, the problem to solve becomes calculating the
values of A1, As and Ay when given extended graphs G and
G, and constants 7 and . In this following three subsections
V-A, V-B and V-C, we illustrate how to utilize our model to
calculate Ay, Az and Ag, respectively.

A. Calculating Ay

In this subsection, we aim to calculate Ay = Pr[GBD =
w | GED = 7]. The key idea to calculate A; is to expand
its formula by applying Chain Rule [24] according to the
dependency relationship between random variables in our
model, where the expanded formula is:

R =B S S il ()

where
=% PriX=xY=7-—x2|85=34 &)
QW=Pr|Z=m|Y=1-1z (10)
Qs =Pr(GBD =p| R=1] (11)
Qu=Pr[R=r|X=2,Z=m] (12)

10 12 14 16 18 20

0 5 10 15 :
Graph Branch Distances LA

Fig. 5. Inferred prior distribution  Fig. 6. Inferred prior distribution
of GBDs on Fingerprint data set of GEDs on Fingerprint data set
Please refer to Appendix C for the closed forms of 9, €2,

3, and €. Due to the space limitation, please refer to our

technical report [23] for the proof of Equation (8).
B. Calculating Ao

In this subsection, we aim to calculate Ao, which is essen-
tially to infer the prior distributions of GBDs. In practice, we
pre-compute the prior distribution of GBDs without knowing
the query graph () in the graph similarity search problem. This
is because in most real-world scenarios [4] [15], the query
graph () ofter comes from the same population as graphs in
database D). As a counter example, it is unusual to use a query
graph of protein structure to search for similar graphs in social
networks, and vice versa. Therefore, we assume that GBDs
between (2 and each graph G in database D, follow the same
prior distributions as those among all graph pairs in D.

To calculate the prior distribution of GBDs, we first rand-
omly sample a% of graph pairs from the database D, and
calculate the GBD between each pair of sampled graphs.
Then, we utilize the Gaussian Mixture Model (GMM) [25]
to approximate the distribution of GBDs between all pairs of
sampled graphs, whose probability density function is:

F(@) = Xy mi - N s, 03) (13)
where K is the number of components in the mixture model
defined by user, and A is the probability density function of
the normal distribution. Here, m;, u; and o; are parameters
of the ¢-th component in the mixture model, which can be
inferred from the GBDs over sampled graph pairs. Please refer
to [25] for the process of inferring parameters in GMM.

Finally, we can compute the prior probability Pr(GBD =
| by integrating the probability density function f{¢) on the
adjacent interval of ¢, i.e., [ — 0.5, + 0.5].

PriGBD = ¢ = [£503 7K 7 N(¢s iy 00) dgp - (19)

Note that this integration technique is commonly used in
the field called continuity correction [26], which aims to
approximate discrete distributions by continuous distributions.
In addition, the choice of integral interval [ — 0.5, + 0.5]
is a common practice in the continuity correction field [27].

Example 5: We randomly sample 60,000 pairs of graphs
from Fingerprint dataset of IAM Graph Database [28], where
the distribution of GBDs between all pairs of sampled graphs
is represented by the blue histogram in Figure 5. We infer
the GBD prior distribution of sampled graph pairs, which is
represented by the red line in Figure 5. This way, we can
compute and store the probability Pr(GBD = ] for each
possible value of variable ¢ by Equation (14), where the range

of variable ¢ is analyzed in Section VL
C. Calculating Aa

In this subsection, we focus on calculating As, i.e., the prior
distribution of GEDs. Recall that the GED computation is NP-
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hard [4]. Therefore, sampling some graph pairs and calculating
the GED between each pair is infeasible especially for large
graphs, which means that we cannot simply infer the prior
distribution of GEDs from sampled graph pairs.

To address this problem, we utilize the leffreys prior [29]
as the prior distribution of GEDs. The leffreys prior is well-
known for its non-informative property [30], which means that
it provides very little additional information to the probabilis-
tic model. Therefore, Jeffreys prior is a common choice in
Bayesian methods when we know little about the actual prior
distribution. Then, according to the definition of Jeffreys prior
[29], the value of probability Pr[G'ED = 7| is calculated by:

PriGED = 7]
4\/S I, PriGBD = p|GED = 1] - 22(G}, Gl 7,¢9) (19)

= 4/ (G, Gl T ) - 22(GS, Gl T, ), (16)
where Equation (13) comes from the definition of the Jeffreys
prior [29], which is the expected value of function Z% with
respect to the conditional distribution of variable G5 ) when
given GED = 7. Here, C is a constant for normalization, and
the function Z is defined in the following Equation (17).

d{log Pr[GED|GED|} am

{GED} GED=7,GBD=¢
where the symbol O represents the partial derivative of a
function, and the symbol #(z)|,—; means to substitute value
k for variable x in the function F'(x). Please refer to Appendix
C for the closed forms of Equation {16).

According to the closed form of Equation (16), we find
that the value of probability Pr[GED = 7] only depends on
the constant 7 and the size of the extended graph GY, ie.,
{|V{]). Therefore, for each data set, we pre-compute the value
of function Pr[GEL = 7] for each possible value of 7 and
|V}, and store these pre-computed values in a matrix for quick
looking up when searching similar graphs. In Section VI, we
discuss the ranges of 7 and |V}| in detail. Note that, if there
are ki possible values of 7 and kg possible values of |V/|,
then the normalization constant C' in Equations (15) and (16)
will be &' = 1/(;61 % kg)

Example 6: We show part of the Jeffreys prior distribution
of GEDs on Fmgerprint data set [28] in Figure 6 as an
example, where the x-axis represents values of |V]|, and
the v-axis represents values of 7. The gray scale of each
1 x 1 block in Figure 6 represents the corresponding value
of Pr([GED = 7].

V1. GRAPH SIMILARITY SEARCH WITH THE
PROBABILISTIC MODEL

In this section, we first elaborate on our graph similarity
search algorithm (i.e., GBDA) based on the model derived in
the previous section, which consists of two stages: offline pre-
processing and online querying. Then, we study the time and
space complexity of these two stages n detail.

A. Graph Similarity Search Algorithm

Given a query graph (), a graph database D), a similarity
threshold 7, and a probability threshold +, the search results
Dy is achieved by Algorithm 1, where @' and (/ are the

Algorithm 1 Graph Similarity Search with Graph Branch
Distance Approximation (GBDA)
Input: a query graph ), a graph database [J,
a similarity threshold 7, and a probability threshold -~y
OQutput: the search result Dy
for each graph G € D do
Step 1%*: Pre-compute Ay and A; for all possible inputs
Step 2: Calculate GBI{Q', G’) by Definition 4.
Step 3: Given GBD{Q', G} = ¢, we calculate
& =Pr[GED(Q,G) < + | GBD(Q, ) = ¢
< ;oo As(Q, G55 7)
Z A(Q, G, 0) AL (Q7, G 0)

=0
where A1{@’, G'; 7, ) is calculated by Equation (8).
Step 4: Insert & into Dy if & >~
end for

extended graphs of ¢} and G, respectively. Step 1 tagged with

symbol * is pre-computed in the offline stage, as discussed in

Sections V-B and V-C. We give the Example 7 below to better

illustrate the process of Algorithm 1.

Example 7: Assume that the graph (74 in Figure 1 is the
query graph €), and G in Figure 1 is a graph in database
D). Given the similarity threshold 7 = 3 and the probability
threshold v = 0.8, the process of determining whether G5
should be in the search result Iy is as follows,

1) First, we pre-compute Ag{Q)’, G%;¢) and As(Q', G 7) by
inferring the prior distributions of GBDs and GEDs on
database D), respectively. Since this is a simulated example
and there i8 no concrete database [), we assume that
As(Q, GLymy [ AR(Q, G ) = 0.8 for all possible values
of 7 and ¢.

2) Second, from Example 2, we know GBD(Q,Gz) = 3.

3) Then, according to Equaticn {8), we can calculate

T A e
B = 31 (@, Gl 7y ) - AT

=(0+0+40.5113 4 0.5631) x 0.8 = 0.8595 > v = 0.8
4) Therefore, (73 is inserted into the search result [p.

B. Complexity Analysis of Online Stage

The online querying stage in our approach includes Steps 2,
3 and 4 in Algorithm 1, where Step 4 clearly costs O(1) time
for each graph (7. In addition, from the discussions in Section
I, Step 2 costs O{nd) time, where n = max{|Vz|, |V}
and d is the average degree of graph G.

In Step 3, since As and As have already been pre-computed
m the offline stage (1.e., Step 1), their values can be obtained
in O(1) time fer each 7 & [0, 7] and graph & € D.

Now we focus on analyzing the time complexity of compu-
ting Aq in Step 3 of Algorithm 1. Let the time for computing
4, O, Q3 and 4y in Equation (8) be Cy,C%, 05 and
Cy, respectively. According to Equation (8), the time for
computing Ay for each 7 € [0, 7] and graph G € D is:

T s 200
- e ——
zC +amCy + zmr(Cy - C4) (18)

where z,7m2 and r are the summation subscripts in Equation
(8), and the ranges of z,m and r are:



« 3 € [0,7]. Since z is the number of RV operations, z must
not be larger than the number of graph edit operations 7.
m € [0,27]. Since m is the number of vertices covered
by relabelled edges given the relabelled edge number ¥ =
T —x, and each edge can cover at most two vertices, we
have 0 < m < 2(r —x) < 2r.

r € [0,537]. Note that r is the number of vertices either
relabelled or covered by relabelled edges when the relabel-
led vertex number is X = x and the number of vertices
covered by relabelled edges is Z = m. Therefore, we have
0<r<z+m<74+2r =3T1.

In addition, according to the closed form of Equation (8)
in Appendix C, it is clear that &y = 3 = ¢4 = O(1) and
'y = O(m) = O(7). According to Equation (18}, the time of
computing Ay for each 7 € [0, %] and graph G € D is:

T 02 X0s(l
e D i

o
O(r)+0(r) + 0(r%) = 0(r%) (19)
Moreover, from the above discussions about the ranges of
summation subscripts, for any T € [0, ¥), we have:

EZ:O Ziﬁ:o Q2 (m> x, %)

=y oY PrZ=m|Y =+—3 (20)
:Z;:OZi::OPT[Z:m\Y:T—I]

+Y TS PrZ=m|Y =4 — 1

+3 0 ZETLQTH PriZz=m|Y =%-7]

T Y L aPrZ=m|Y = —a] (D
=f(m, =, %) + T Yoo ta(m, 7, 7) (22)

where f(m,z,7) 1s sum of last three terms in Equation
(21). Note that Equation (21) is a sum on four disjoint two-
dimensional intervals whose combination is the sum interval
of Bquation (20).

Equation {22) means, the value of 5" $ls(m,z,7) where
T < 7 have already been calculated in the process of compu-
ting > Qa(m,z, 7). Therefore, we can reduce redundant
computations by only computing >, Sa(me, x,7) once to
obtain values of 5", Qg(m, z,7) for all T < #. Similar con-
clusions can also be derived for e Sa(r ) Qy(m, r,m),
where the detailed proofs are omitted here.

Therefore, the time cost of Step 3 in Algorithm 1 is:
S0 3 sy SIO1 As

o, % - e
O(F)  +35 {01 +0(1)} = O(%)
for each graph (7 in database [J.
Finally, we can obtain Theorem 3.

Theorem 3: The time of the whole online stage is:
Step 2 Step 3 Step 4

e T o S

O(nd) + 0(#%) + O(1) = O(nd + %) (24)
for each graph (- in database D, where n = max{|Vz|,|Vg|},
d 1s the average degree of graph (7, and 7 is the similarity

threshold in the graph similarity search problem.
Proof: Please refer to the discussions above. |
Note that the similarity threshold 7 is often set as a small
value (Le., 7 < 10) and does not increase with the number of
vertices 7 in previous studies [4] [15], thus, we can assume that
7 18 a constant with regard to # when the graph is sufficiently

(23)
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large. Moreover, most real-world graphs studied in related
works [11] [12] are scale-free graphs [16], whose average
degrees d = O{logn) as proved in our technical report [23].
C. Complexiry Analysis of Offline Stage

The offline pre-processing stage in our approach is Step 1
in Algorithm 1, which is essentially to pre-compute the prior
distributions of GEDs and GBDs respectively among all pairs
of graphs involved in the graph similarity search.

1} Complexity Analysis of Computing the Prior Distribution
of GBDs: As discussed in Section 5.1, the prior distributions
of GBDs can be pre-computed by the following four steps:

Step 1.1: Sample N graph pairs from the database [J.

Step 1.2: Calculate GBD between each sampled graph pairs.
Step 1.3: Learn the Gaussian Mixture Model (GMM) of the
GBDs between sampled graph pairs.

Step 1.4: Calculate Pr[GBD = ] for each possible value
of by using Equation (14).

It is clear that Step 1.1 costs Q{N) time. From the discussi-
ons in Section III, Step 1.2 costs O(N -nd) time, where # is the
maximal number of vertices among the sampled graphs, and
d is the average degree of the sampled graphs. The learning
process of GMM in Step 1.3 costs O(N - K¢) time [25], where
K is the number of components in GMM, and ¢ is the maximal
learning iterations for learning GMM.

As for Step 1.4, since  1s the value of GBD, from the
definition of GBD, the possible values of ¢ are essentially
10,1,2...,n}, where n is the maximal number of vertices
among the sampled graphs. According to Equation (14),
computing Pr[GBD = | for each ¢ costs O(K) time, where
K is the number of components in GMM derived in Step 1.3.
Thus, Step 1.4 costs O(nkK) time.

Note that in the Gaussian Mixture Model, the component
number K and the maximal learning iterations e are fixed
constants. Therefore, the prior distributions of GBDs can be

cal(s:ulated in time

tep 1.1 Step 1.2 Step 1.3 Step 14

PN, mmie—nm—m—m—

O(N)+ O(Nnd) + O(NKe) + O(nK) = O(Nnd) (25)
where N is the number of graph pairs sampled in Step 1.1,
7t 18 the maximal number of vertices among sampled graphs,
and d is the average degree of sampled graphs.

Based on the discussions above, the number of pre-
computed values of Pr[GBD = ¢] is at most n. Thus, the
space cost of storing the prior distribution of GBDs is O(n).

2) Complexity Analysis of Computing the Prior Distribution
of GEDs: According to the discussions in Section V-C, com-
puting the prior distribution of GEDs is essentially calculating
Equation (16) for each possible values of T and |V7].

First, from the closed form of Equation (16) in Appendix
C, when 7 and |VY| are fixed values, it is clear that computing
dd—Tlog Ay costs the same time as computing Aq, which is
O(#%), where 7 is the user-defined similarity threshold. n and
d are the maximal number of vertices and the average degree
among all graphs, respectively.

Then, since one graph edit operation can at most change two
branches, when the GED between two graphs is 7, the possible



TABLE III
STATISTICS OF DATA SETS

Data Set D] =] Vin Em d | Scale-free
AIDS 18%6 100 95 103 | 2.1 Yes
Finger 2159 114 20 26 1.7 Yes
GREC 1045 35 24 prict &l Yes
AASD 37995 | 100 93 9% &l Yes
Syn-1 3430 70 100K | IM | 9.6 Yes
Syn-2 3430 70 100K | IM | 94 No

Note: |D| is the number of graphs in database D. | Q] is the number
of query graphs. V,,, and &, are the maximal numbers of vertices and
edges, respectively, while d is the average degree. X means thousand
and M means million,

GBD values (ie., @ in Equation (16)) between these two
graphs are {0, 1,2...,27}. Therefore, according to Equation
{16), the prior probability value of Pr[GED = 7| can be
calculated in time complexity (27 - 75) = O(*) when 1
and |V{| are fixed values.

Finally, recall that computing the GED prior distribution is
essentially calculating Equation (16) for all possible values
of v and |V/|, and it is clear that the possible values of +
are {0,1,2...,7}, where 7 is the user-defined similarity thres-
hold. In addition, the possible values of |V| are essentially
{1,2, ...n}, where n is the maximal number of vertices among
all graphs involved the graph similarity search. Therefore, the
time of calculating the GED prior distribution is:

O(7 - n - #*) = O(nz®)

According to Section V-C, we need to store a matrix whose
rows represent possible values of 7, and columms represent
possible values of |V{|. Therefore, the space cost of storing
the prior distribution of GEDs is O(7 - n).

Finally, we have Theorem 4.

Theorem 4: The time complexity of the offline stage is:
GBD Prior GED Prior

p——
O(Nnd) + O(ni®) = O(Nnd + ni®)

and the space complexity of the offline stage is:
GBD Prior GED Prior

o T —

O(n) +0(7-n)=0(n(1+7))
where /¥ is the number of graph pairs sampled in Step 1.1,
rz and d are the maximal mumber of vertices and the average
degree among all the graphs involved in the graph simialrity

search, respetively. 7 is the user-defined similarity threshold.
Proof: Please refer to the discussions above. |

VII. EXPERIMENTS
A. Data Sets and Settings

We first present the experimental data sets for evaluating
our approaches. There are 4 real-world data sets (i.e., AIDS,
Fingerprint and GREC from the IAM Graph Database [28],
and AIDS Antiviral Screen Data (AASD) [31]), and 2 synt-
hetic data sets (i.e., Syn-1 and Syn-2). The details about the
data sets are listed in Table III.

The 4 real-world data sets are widely-used for evaluating the
performance of GED estimation methods in previous works
[11] [12] [13]. In order to evaluate how well the GED is
approximated, we must know the exact value of GED, which
is NP-hard to compute [4]. Specifically, even the state-of-the-
art method [6] cannot compute an exact GED for graphs with
100 vertices within 48 hours on our machine {with 32 Intel
E5 2-core, 2.40 GHz CPUs and 128GB DDR3 RAMs).
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TABLE IV
COSTS OF COMPUTING GBD PRIOR DISTRIBUTION
Data Set AIDS | TFinger | GREC | AASD | Syn-1 | Syn-2
Time Costs 11.1s 7.58 20.6s 232.4s 3.8h 3.2h
Space Costs | 0.06kb | 0.04kb | 0.10kb | 1.21kb | 13.3gb | 0.3gb
TABLE V
CoSTE OF COMPUTING GED PRIOR DISTRIBUTION
Data Set AIDS | Finger | GREC | AASD | Syn-1 | Syn-2
Time Costs 70.32h | 16.91h | 15.40h | 69.16h 6.31h 6.31h
Space Costs 1.5kb 0.4kb 0.4kb 14kb | 0.1kb | O.1kb
ote: % means hours and s means seconds. kb means KBytes and gb

means GBytes.

However, we still manage to evaluate our proposed method
on large graphs. To address the problem above, we generate
2 sets of large random graphs {.e., Syn-1 and Syn-2), where
the GED} between each pair of graphs is known. Both data
sets Syn-1 and Syn-2 contain 7 subsets of graphs, where each
subset contains 500 graphs whose numbers of vertices are
1K, 2K, 5K, 10K, 20K, 50K, and 100K, respectively. The
difference between data sets Syn-1 and Syn-2 is that the graphs
in Syn-1 satisfy the scale-free property [16] while graphs in
Syn-2 are not. The algorithm of generating synthetic graphs
with known GEDs is described in our technical report [23].

Note that, the scale-free property of real data sets is testified
by checking whether the degree distributions of the vertices
in real data sets follow the power-law distribution, while the
scale-free property of Syn-1 data set and the non-scale-free
property of Syn-2 data sets are ensured by our algorithm of
generating synthetic graphs in our technical report [23].

For each real data set, we randomly select 5% graphs as
query graphs, while the remaining 95% graphs constitute the
graph database [). For each synthetic data set, we randomly
select 10 graphs from each of its subset as query graphs.

On real data sets, we evaluate our method with the simila-
rity thresholds + = {1,2,..., 10}, which are commonly-used
values of the similarity thresholds in previous studies [4] [15].
On the synthetic data sets, we test our method with larger
similarity thresholds # = {10,11,12, ..., 30} to show that,
when the similarity threshold is larger than the commonly-
used values (i.e, {1,2,...,10}), our GBDA method is still
more efficient than the competitors on large graphs.

B. Evaluating Offline Stage

In this subsection, we evaluate the time and space costs of
the offline stage in our GBDA approach, which is essentially
to pre-compute the prior distributions of GEDs and GBDs,
on both real and synthetic data sets. Tables IV and V present
the time and space costs of estimating GBD and GED prior
distributions on different data sets, respectively, where the
number of graph pairs sampled to estimate the GBD prior
distribution is set to N = 100, 000.

The experimental results generally confirm the complexity
analysis in Section VI-C. Specifically, since the number of
sampled graph pairs N and the similarity threshold 7 are fixed
values in our experiments, the cost of inferring the GBD prior
distribution grows with 7 and d, while the cost of estimating
the GED prior distribution depends on rz, where » and d are the
maximal number of vertices and the average degree among all
the graphs involved in the graph simialrity search, respetively.

Note that, the costs of computing the GED prior distribution
on synthetic graphs do not exactly follow the theoretical analy-
sis. This is because the numbers of vertices in synthetic graphs
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have only 7 possible values (i.e., 1K, 2K, 5K, 10K, 20K, 50K,
and 100K), instead of the worst-case range 1 ~ 100K as
discussed in Section VI-C. In addition, although the synthetic
graphs are larger than the real ones, the number of possible
values of n on synthetic graphs are smaller than that on real
graphs, where r is the number of vertices in graphs. Therefore,
the costs of computing the GED prior distribution on synthetic
graphs are smaller than the costs on real data sets.
C. Evaluating Online Stage

In this subsection, we compare the efficiency and accuracy
of the online stage of our GBDA approach with three com-
petitors {(i.e., LSAP [11], Greedy-Sort-GED [12] and Graph
Seriation [13]), by conducting graph similarity search tasks
over both real and synthetic data sets. In addition, we analyze
how the efficiency and effectiveness (i.e., accuracy, recall and
F1-score) of our method are influenced by the parameters, such
as the similarity threshold 7, the probability threshold -y, and
the number, n, of vertices.

1) The Efficiency Evaluation: In this subsection, we eva-
luate the query efficiency of onr GBDA approach and three

i
Fig. 19.F1-Score vs, 7 on Fingerprint
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competitors on real and synthetic data sets. Note that the time
cost of our GBDA methods depends on both n and +, while
the competitors’ time costs only depend on n, where n is the
number of vertices in graphs and 7 is the similarity threshold.
Therefore, the experiments in this subsection are conducted
under a fixed probability threshold ~ = 0.9, since v does not
affect the time costs of all the methods.

Specifically, given a specific method and its parameters
(e.g., 7 and ~y), for each query graph ¢}, we utilize this method
to obtain a set of graphs similar to graph (@ from each data
set, and we record the average query response time for each
data set, which are presented in Figures 7--9. Particularly, for
a specific method under one specific parameter set {e.g., 7 and
+), each query’s response time is recorded and counted only
once for each data set, and we present the average of response
times for all queries in the experimental figures.

The result in Figure 7 shows that our GBDA approach is
more efficient than the three competitors on all real data sets
where 7 is set to 1, 5 and 10, respectively. In addition, we
studied how the number, n, of vertices in graphs influences




the efficiency of our GBDA approach by comparing the query
response time on synthetic data sets with various similarity
thresholds 7, where the results are shown in Figures § and 9.
The results show that our GBDA approach is more efficient
than the competitors on both scale-free and non-scale-free
graphs, where the similarity threshold ¢ < 20. Particularly,
when the similarity threshold 7 = 30, although our GBDA
approach costs more time than the other methods on graphs
with 1,000 vertices, our approach is faster than the competitors
on larger graphs with more than 2,000 vertices. Therefore,
when the similarity threshold is larger than the commeonly-
used values (e., {1,2,...,10}), the time cost of our algorithm
is still smaller than the compared methods on large graphs
(i.e., graphs with more than 2,000 vertices).

Note that the competitors (i.e., LSAP, Greedy-Sort-GED and
Graph Seriation) can handle graphs with at most 20K vertices
on our machine. Specifically, when the graphs have more than
20K vertices, all the competitors consume more than 128 GB
memory on our machine, which exceeds the capacity of the
physical memory. However, our GBDA method can handle
graphs with 100K vertices efficiently, which confirms that our
method has better scalability {with respect to the number, n,
of vertices) than the competitors.

2) The Effectiveness Evaluation: We evaluate the effecti-
veness of our GBDA approach and three competitors by
comparing the precision, recall, and Fl-score [32] of the
query results on each real data set with probability thresholds
v = 0.7,0.8 and 0.9, respectively.

The results in Figures 10~13 show that our approach always
outperforms the other three competitors in precision on AIDS,
Fingerprint and GREC data sets, and achieves the highest
precisions among all methods where ¥ = 1,2,3,4,5 and 7 on
AASD data set. The results in Figures 14--17 show that our
method has the second highest recalls under most parameter
settings. Note that, LSAP method returns a lower bound of
GED [11], and therefore the recall of its search result is always
100%. However, if we evaluate the methods by the Fl-score,
our method always outperforms the other three competitors
on AIDS, Fingerprint and GREC data sets, and achieves the
highest Fl-scores among all methods when 7 = 1,2,3,4,5
and 7 on AASD data set. Therefore, the experimental results
confirm that the effectiveness of our method outperforms the
competitors’ under most parameter settings on the real data
sets in our experiments.

In addition, we study how the number, n, of vertices in
graphs influences the effectiveness (i.e., precision, recall and
F1-score) of our approach on the Syn-1 data set with various
probability thresholds - and similarity thresholds + in our
technical report [23] due to the space limitation.

The results in our technical report [23] show that, the
precision of our method outperforms the competitors on Syn-1
data set, where the similarity threshold + = 15,20,25 and
30. Moreover, there is no significant difference between the
precision of our method under various settings of the proba-
bility threshold ~, which demonstrates the robustness of our
method under different settings of parameters. The recalls of
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our method are slightly lower than the LSAP method, but
much higher than the Greedy-Sort-GED and Graph Seriation
methods, where the similarity threshold 7 = 20,25 and
30. Finally, the F1-Scores of our method are mostly higher
than the competitors. Therefore, the experimental results on
synthetic graphs demonstrate that our method is more effective
than the competitors on large graphs.

D. Comparing with Alternatives

In this subsection, we compare the effectiveness of our
GBDA approach and two variants of our method by comparing
the Fl-score [32] of the query results on each real data set with
probability thresholds v = 0.9. The variants of our GBDA
method, l.e., GBDA-YV1 and GBDA-V2, are considered as
alternatives of GBDA method, which are illustrated as follows.
GBDA-V1: The method GBDA-V1 utilizes the average num-
ber of vertices among a sample of graphs from the graph
database as the parameter |Vy| when computing A; and Ag
in Algorithm 1, instead of using the number of vertices in the
extended query graph ()’ as the parameter |V7|.

GBDA-V2: The method GBDA-V2 exploits the variant GBD
(VGBD) mstead of the original GBD value when computing
A1 and As in Algorithm 1, where VGBD is defined as:
VGBD(G1, GQ) = max{ﬂ/ﬂ, ‘VQ”’ — - |BG’1 M BGQ‘ (26)
where B, and By, are the multisets of all branches in graphs
(1 and (g, respectively, | V1| and |Vz| are numbers of vertices
in graphs (&1 and (73, respectively, and w is a user-defined
constant.

Specifically, we denote the number of sampled graphs in
method GBDA-V1 by o, and we test the method GBDA-V1
by setting & = 10, 50, and 100 on real data sets. In addition,
we evaluate the effectiveness of method GBDXA-V2 on real
data sets by setting the parameter w = 0.1 and 0.5, where w
is defined in Equation (26).

The results in Figures 22~25 show that our GBDA method
achieves higher Fl-score than its variant GBDA-V1 for the
similarity threshold + <X 4, but generally has the same F1-
score as GBDA-V1 for ¥ > 5. In addition, from the results in
Figures 26~29, we can find that the Fl-score of our GBDA
method is higher than or almost the same as the GBDA-V2
method for the similarity threshold 7 < 2 on all real data
sets, and slightly lower than GBDA-V2 method on Fingerprint
data set for ¥ > 3. In general, the experimental results show
that our GBDA method outperforms methods GBDA-V1 and
GBDA-V2 in most cases for similarity threshold # < 5, and
performs better or almost the same as GBDA-V1 and GBDA-
V2 methods for the similarity threshold 7 > 6.

VIII. RELATED WORKS

A. Exact GED Computation

The state-of-the-art method for exact GED computation is
the A* algorithm [3] and its variant [6], whose time costs are
exponential with respect to graph sizes [4]. To address this
NP-hardness problem, most graph similarity search method
are based on the filter-and-verification framework [4] [18] [19]
[15], which first filters out undesirable graphs from the graph
databases and then only verifies the remaning candidates. A
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common filtering approach is to use the distance between sub-
structures of two graphs as a lower bound of their GED, which
includes tree-based [18], path-based [33] , branch-based [15]
and partition-based [34] approaches. In this paper, we adopt
the branch structure [15] to build our model. However, we
re-define the distance between branches, since the original
definition [15] of branch distances requires O(n7) time for
computation while ours only requires O(nd) time. In addition,
a recent paper [35] propose a multi-layver indexing approach
to accelerate the filtering process based on their proposed
partition-based filtering method.
B. GED Estimation
In this paper, we focus on GED estimation approaches. One
well-studied method [10] [11] is to utilize the solution of a
linear sum assignment problem (LSAP) as an estimation of
GED. The LSAP is an optimization problem which can be
exactly solved by Hungarian method [36], or be approximately
solved by the greedy method [12] and the genetic algorithm
[37]. In our experiment, we compare our GBDA method with
the exact [11] and greedy [12] solutions of LSAP. Since the
exact solution of LSAP defined on two graphs is a lower
bound of their GED [11], the LSAP method can always
obtain all graphs whose GED to the query graph is no larger
than the similarity threshold and achieve 100% recall in
the similarity search tasks. On the other hand, the Greedy-
Sort-GED method [12] sclves LSAP approximately and has
no bound to actual GED. However, the Greedy-Sort-GED
method generally achieves better estimations of GEDs [12]
and higher precisions in graph similarity search as shown in
owr experiments. Another state-of-the-art approach compared
in our experiment is graph seriation [13], which first converts
graphs into one-dimensional vectors by extracting their leading
eigenvalues of the adjacency matrix, and then exploits a
probabilistic model based on these vectors to estimate the
GED. Although both graph seriation and our approach utilize
probabilistic models, the structure of our model is totally
different from the prior work [13]. In addition, their model
takes the leading eigenvalues of the adjacency matrix as the
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inputs, while the inputs of our model are the GBDs. Moreover,
our GBDA method outperforms the competitors’ (i.e., the
LSAP [11], Greedy-Sort-GED [12] and Graph Seriation [13])
under most parameter settings on real data sets.
IX. CONCLUSIONS

In this paper, we define the branch distance between two
graphs (GBD), and further prove that the GBD has a pro-
babilistic relationship with the GED by considering branch
variations as the result ascribed to graph edit operations and
modeling this process by probabilistic approaches. Further-
more, this relation between GED and GBD is leveraged
to perform graph similarity searches. Experimental results
demonstrate both the correctness and effectiveness of our
approach, which outperforms the comparable methods.
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APPENDIX A

PROOF OF THEOREM 1
Proof: Since GED satisfies the triangle inequality, we have
GED(Gy,Ga) < GED(Gy, G) + GED(G,, G + GED(GL, Ga)
GED(G],Gh) < GED(G), G1) + GED(G1,Ga) + GED(Ga, GL)
According to Definition 1, adding a vertex or an edge with the virtual label £ is not
counted as a graph edit operation. Therefore, we have:

GED(G1, &)= GED(G],G1)=0
GED(CGa,GL) = GED(GL, G2) =0
Therefore, GED(G1, Ga) < GEDQGQ,G’Q) < GED(Gy, Ga).
Thatis, GED(Gy, Gz) = GED(G,, GL). | ]
APPENDIX B
PROOF OF THEOREM 2
Procf: Let the sets of branches rooted at virual vertices in Gy, G, be ABg, and
A B, , respectively. We have:
|BG’1 n BG"2| =|Bz NBgy|+ [ABa; M Bay|
+ ‘BGI (ml ABGQ‘ + |1ABG1 QAngl
Since branches rooted at virfual vertices are not isomorphic to any other branches,
we also have:

‘&BGI [l ngl = ‘BGI [l ABGQ‘ = |ABG1 7] ABGQ‘ =0
Therefore, |B o M By | = [Bgy M Bay |
From the definitions of branches and extended graphs, we have:
max{ Vi ], [Val} = max{| V], V3 [}
From the definition of GBD, we can obtain:
GEBD(Gy, Go) = max{|Vi], |Va|} — |Bgy M Bay|
= max{[V; |, [V4|} = | Bgy N Bgy| = GBD(E,, G3)
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That is, GBD(G1, Gs) = GBD(G], GL). [
APPENDIX C
CLOSED FORMS OF EQUATIONS
A A(G], GhiT 9) = Pr|GBD = ¢ | GED = 7]

=3 Q=) Qalm, 2, ) > Qalr, @)Qalz,r,m) (")
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ramen = ((2) smocor(N(E) @
Datw) = (7, Cpt ()
M(r,r,m):%(z+m7mw{|,m>z) 31
S 0, 1 ) = () (Mo Ey (YT (32)
_ Vi 1H|£ |1

B= oy (RN BT (35

B. 2 o iE ]
PriGED] = & /T2 o At - 2 (349
Z=]1r1{2x 1 Zom %%227» f58 +zx%%lzm QQZ?*QSQLL} (5

whete fiq is defined in Equation (27, and §24, R, N @ (4 are defined in Equations (28)~ (32), respectively. In
adkdition, we bave:

e = (BT ET) gy
—1
gimiory = (BTN n ey ny o

Fy = H(r) — H(fw(v+1) —2r) - H(r — =)

+H{z -+ Ly — 1)) (28)

Fo=d(r—=+1)—dlz+1—- 1+ Lu(v-1)) ()
Ly

Py = (- THTI(ENDY) )

Fa=1tdzt+i—r+it(t—1)) —d(r—=+1) (41)

Here, w is short for | V|, - iz short for of GED, and , re, © are sumrmation subseripts in Bquation (27 H (x)
is the r-th Hanmanie Nurdher, and (-] is the Digamma Fanction [38]



