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ABSTRACT

Deep neural networks are efficient learning machines which
leverage upon a large amount of manually labeled data for
learning discriminative features. However, acquiring substan-
tial amount of supervised data, especially for videos can be a
tedious job across various computer vision tasks. This necessi-
tates learning of visual features from videos in an unsupervised
setting. In this paper, we propose a computationally simple,
yet effective, framework to learn spatio-temporal feature em-
bedding from unlabeled videos. We train a Convolutional 3D
Siamese network using positive and negative pairs mined from
videos under certain probabilistic assumptions. Experimental
results on three datasets demonstrate that our proposed frame-
work is able to learn weights which can be used for same as
well as cross dataset and tasks.

Index Terms— unsupervised, feature learning, spatio-
temporal, scalable

1. INTRODUCTION

Large labeled datasets and computational power can be at-
tributed as the main reason behind recent successes of Deep
Neural Networks in various computer vision tasks [14, 23, 11,
7, 28, 9]. Unsupervised learning [2] of visual features from
huge amount of unlabeled videos available today, using deep
networks can be a potential solution to the data hungriness of
supervised algorithms. Autoencoders, Restricted Boltzmann
Machines (RBM) and the likes [3, 8, 26] trained in a greedy
layer-wise fashion have been one of the popular methods for
learning visual features from images in an unsupervised man-
ner. However, such approaches fail to discover higher level
structures from the data, necessary in recognition tasks.

Recent works in unsupervised feature learning from image
data take a slightly different path. Most of the approaches be-
longing to this category first define a semantically challenging
task such that its training instances can be directly extracted
from the unlabeled data. For example, Pathak et al. [20] used
motion information to learn visual representation of objects
via a segmentation approach. Patch level puzzle solving in im-
ages has also been explored to learn visual features in [4, 19].
Objects tracked over time played a key role in providing the
supervisory signal for visual feature learning in Wang and
Gupta’s work [29]. Ego-motion guided unsupervised learning
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Fig. 1: This figure presents our proposed framework for un-
supervised feature learning. A,B,C are three example spatio-
temporal volumes. As the sub-volumes within a certain space-
time boundary share similar semantic concepts, but possess
different appearance and motion content, we select them as
positive pairs. s-t volumes belonging to different videos con-
stitute a negative pair (details in Section 2).

has been explored in [1, 10]. Li et al. [16] proposed an im-
age similarity based method using low level features to learn
visual features of objects in an unsupervised setting. Unlike
images, unsupervised spatio-temporal representation learning
from videos has not been thoroughly studied in literature. Re-
construction and prediction has been used to learn features
from videos using Long Short Term Memory (LSTM) net-
works in [25]. Misra et al. [17] exploited temporal ordering
of frames in a video to learn features. It may be noted that
in contrast to the previously mentioned approaches which are
mainly applicable for learning only spatial features, the task of
learning spatio-temporal features from videos in an unsuper-
vised setting is significantly more challenging. The primary
reason is that it is very difficult to define a tractable task for
videos in the first place compared to images.

Visual continuity is prevalent in natural videos where se-
mantic correlation between spatio-temporally associated vol-
umes exist [5]. In this work, we build our hypothesis around
this notion of spatio-temporal (s-t) correlatedness and argue
that the likelihood of sharing higher semantic information be-
tween s-t related volumes is more compared to volumes from
other videos. We structure our proposed framework based on
this hypothesis to learn discriminative appearance and motion
features in an entirely unsupervised manner using the 3D con-
volutional networks [27]. Our key contributions are below -



•We introduce a novel unsupervised feature learning frame-
work by exploiting spatio-temporal relationships between intra
and inter video segments.
•We propose an efficient strategy to mine positive and negative
semantic pairs whose scalable nature makes our framework
usable to ubiquitously present large unlabeled datasets.
• Finally, our proposed method can be integrated as a pre-
training module with several supervised learning tasks.

2. METHODOLOGY
Our goal is to learn discriminative feature embedding of spatio-
temporal volumes from unlabeled videos. In order to accom-
plish the task, we train a Siamese network based on the 3D
CNN, which involves mining of positive and negative samples
that can act as a supervisory data to learn semantically dis-
criminative features. We device a simple pair mining strategy
which is easy to implement and scalable to large datasets.

Siamese Network Training. Let us consider that we have
a set of N labeled triplets {(x1

i ,x
2
i , yi)}Ni=1 where x1

i ,x
2
i ∈

Rm and yi ∈ {+1,−1}. In a Siamese network [6], generally
the same function T is used to project x1

i ,x
2
i to obtain a lower

dimensional representation f j
i = T (x

j
i ;W 1), j ∈ 1, 2. They

are converted to the desired output using another function G.
These outputs are compared with the ground-truth annotations
to compute the loss L, which needs to be minimized in order
to learn the weights of the network for the particular task in
hand. The optimal weights can be represented as,

W ∗
1,W

∗
2 = argmin

W 1,W 2

N∑
i=1

L(G(f1
i ,f

2
i ;W 2), yi) (1)

This training strategy of Siamese networks enforces the trans-
formation T to semantically group the training instances in the
feature space, analogous to the perceptual grouping ability of
human cognitive system. Although the process of obtaining bi-
nary labels demands lesser human effort compared to obtaining
individual class labels, acquiring pair-wise labels still requires
a lot of manual labeling effort. In our approach, we mine the
positive and negative training pairs in an unsupervised manner
as explained below.

Unsupervised Siamese Pair Mining. Consider a set of
N unlabeled videos {V i}Ni=1, such that V i{x, y, t, x0, y0, t0}
denote the spatio-temporal volume of shape (x0, y0, t0) at
position (x, y, t) for the ith video.

Positive Pair Mining. In the context of training a Siamese
network, positive pair can be defined as a tuple consisting
of two semantically similar instances. Generally, in natural
videos, distinct s-t volumes within a certain boundary contain
different appearance and motion features. To elaborate, ar-
rangements of objects across different spatial segments may
vary. Similarly, separate temporal portions capture different
motion structure. Despite containing different s-t patterns,
such volumes represents similar semantic entities. Fig. 2
demonstrates this idea.

Although, two separate s-t volumes within a certain bound-
ary from the same video can be used as positive pairs, the
network may not be able to generalize well for videos with

(a) (b)
Fig. 2: This figure illustrates the motivational concept behind
our positive pair mining strategy in 2D. (a) and (b) are RGB
and optical flow frame of a video. The bounding boxes denote
a sample positive pair. As we can observe, the appearance and
motion content of the two pairs differ, but they belong to the
same semantic category of Soccer Juggling.

variations. To deal with this issue, we expand our pool of posi-
tive pairs by applying the following transformations- 1. Color
transform F1 in the HSV domain involving three parameters
(discussed in Section 3), 2. A non-parametric transformation
F2 defined as XA, where A is an anti-diagonal matrix con-
taining only 1s and X is an image. This operation flips the
image in the horizontal direction. It may be noted that the
same transformation is carried out in all the images of the
spatio-temporal volume. Finally, the poitive pairs we use may
be defined as

{V i{x1, y1, t1, x0, y0, t0},F(V i{x2, y2, t2, x0, y0, t0})}

where F is chosen probabilistically from the set of transforma-
tions {I,F1,F2,F1 ◦F2} and I is the identity transformation.
The probabilities associated with selection of each transforma-
tion can be found in Algorithm 1.

Negative Pair Mining. Our negative pair mining strategy is
based on the following idea. Consider that the unlabeled video
pool came from m distinct distributions representing semantic
concepts and nk, k ∈ {1, . . . ,m} be the number of instances
belonging to the kth distribution. The maximum probability
that a pair of s-t volumes extracted from two videos randomly
from the entire dataset, belong to the same distribution is

p ≤
(maxk nk∑m

k=1 nk

)2
m

Assuming that maxk nk<<
∑m

k=1 nk, which may be the case
in natural unlabeled video pool, pmax → 0. With this assump-
tion, the negative pairs may be defined as,
{V i{x1, y1, t1, x0, y0, t0},F(V j 6=i{x2, y2, t2, x0, y0, t0})}

Learning Spatio-Temporal Features. Learning spatio-
temporal features for videos is important for several recogni-
tion tasks in computer vision. Convolutional 3D (C3D) [27]
network have been successful in learning both motion and ap-
pearance features. We use the smaller C3D network defined in
their paper as a transformation T in Eqn. 1. The output of this
transformation is feature vectors f1,f2 ∈ R2048 for the two
input s-t volumes of the Siamese network. We concatenate the
two feature vectors to obtain a single feature vector ∈ R4096.
In order to learn the transformation G : R4096 → R in Eqn. 1,
we use two fully connected (fc) layers such that output of first



fc layer ∈ R64. Finally, we minimize the hinge loss [21] for
binary classification, which may be presented as,

L =
B∑
i=1

Ci max(0, 1− tiyi) + λ||W ||F (2)

where ti is the scalar output of the siamese network for the
ith pair in the batch and W represents all the weights of the
network. The second part of the equation is the regularization
term and we set λ = 0.0005 in our experiments. B is the
mini-batch size of Stochastic Gradient Descent. Ci is 1

Np
and

1
Nn

respectively for number of positive and negative samples
in the mini-batch. t is the final scalar output of the Siamese
network. We use dropout of 0.5 in the fc layers, except the
final output layer.

Algorithm 1 Online Pair Mine Algorithm

Input: 1. Unlabeled video dataset {V i}Ni=1,
2. Positve Pair Ratio (p)

Output: Training data batch {S1
i ,S

2
i , yi}Bi=1

1. Np = round(pB), Nn = B −Np, i← 1
while i ≤ Np do

m ∼ U [1, N ]
S1

i , S
2
i ← STVolume(V m), STVolume(V m)

if S1
i ∩ S2

i 6= Φ then
Goto Step 5

end if
yi ← +1, i← i + 1

end while
while i ≤ Nn do

m ∼ U [1, N ], n ∼ U{[1, N ]−m}
S1

i , S
2
i ← STVolume(V m), STVolume(V n)

if r1 ∼ N (0, 1) > 0 then
S2

i ← F1(S2
i )

end if
if r2 ∼ N (0, 1) > 0 then

S2
i ← F2(S2

i )
end if
yi ← −1, i← i + 1

end while
Note: STVolume(V ) is a function which randomly extracts a spatio-
temporal volume from the video V .

3. EXPERIMENTS AND RESULTS

In this section, we present results and analysis of the proposed
unsupervised feature learning algorithm. We mainly focus on
the activity recognition and video similarity classification.

Unsupervised Learning. We use the UCF101 [24] dataset
for training our C3D Siamese network in an unsupervised
manner. We follow Algorithm 1 to mine the pairs required
for training our C3D Siamese network. To optimize the loss
function, we use Adam Optimizer [12] in a Stochastic Gradient
Descent setting with mini-batch size of 10 and 30-70% split in
positive and negative samples respectively.

Color Transformations. The color transformation F1 men-
tioned in Section 2 are as follows. 1. Adding a random number

∈ (−0.1, 0.1) to all the pixels of an image, 2. Taking element-
wise exponent of the Saturation and Value component with
a random number ∈ (0.5, 2), 3. Scaling the Saturation and
Value components by a random number ∈ (0.7, 2). All random
numbers are generated from uniform distributions.

Feature Representation Visualization. We visualize the
pool5 feature response of our unsupervised C3D network to
identify the regions it detect as semantically relevant. We
visualize only single frame in Fig. 3. We obtain 256 activation
maps from the pool5 layer. Then, we average over all the
receptive fields corresponding to the units with maximum
response from each activation map. Finally, we segment the
averaged receptive fields to obtain the bounding boxes. Results
depict that our network is able to identify areas of the image
which involve human-object interaction and motion.

Nearest Neighbor. In order to understand the semantic
concepts learned by our network trained in an unsupervised
fashion, we retrieve the nearest neighbor of query videos. For
each video of the UCF101 dataset, we extract 10 random s-t
volumes and pass it through the learned network to obtain
10 feature vectors ∈ R2048 from the fc7 layer followed by
mean pooling to obtain a single feature vector. Then, given a
query video, we find its nearest neighbor in the feature space.
Sample results of the nearest neighbor video retrieval task are
presented in Fig. 4. This shows that although the positive
training pairs belong to different spatio-temporal volumes of
the same video of UCF101, the network is able to generalize
to similar semantic concepts belonging to different videos.

Finetuning. A deep neural network is generally trained
on a large number of labeled instances and then finetuned
on a smaller task-specific dataset [22]. In scenarios where
constrained budget limit the acquisition of labeled samples,
we may have to train the network using only a small task-
specific dataset, which may not yield good performance. In
this section, we demonstrate that the proposed method can
be used to first learn a feature embedding in an unsupervised
way from a large unlabeled dataset, and then the network
weights can be finetuned on a smaller task-specific dataset to
obtain better performance compared to a randomly initialized
network. We also show that unsupervised feature learning
using our framework on a dataset followed by finetuning with
labels on the same dataset can perform better compared to
supervised training from randomly initialized weights. In
this section, we use the HMDB51 dataset [15] for activity
recognition which is a smaller dataset than UCF101.

Results. We use the learned weights from our unsuper-
vised Siamese network, trained on UCF101, to finetune using
the HMDB51 dataset. We also train the C3D network from
randomly initialized weights using the HMDB51 dataset. We
compare our results against four baseline methods for unsu-
pervised feature learning, which are - Temporal Coherence
(TCH) [18], Invariant Mapping (IM) [6], Object Patch (OP)
[29] and Shuffle & Learn (S&L) [17]. The results are pre-
sented in Table 1. Better performance of the proposed method
over the randomly initialized network suggests that the pro-



Fig. 3: This figure presents the top response region of pool5 of our network learned from unlabeled data.

Table 1: Activity recognition accuracy on UCF101 and HMDB51. The column with C3D indicate results when the network is
trained using randomly initialized weights. ’Ours’ for HMDB51 mean UCF101 Unsupervised + HMDB51 Supervised, and that
for UCF101 mean UCF101 Unsupervised + UCF101 Supervised.

Algorithms→ Chance C3D [27] STIP [24] TCH [18] IM [6] OP [29] S&L [17] Ours
HMDB51 1.9 19.2 20.0 15.9 16.3 15.6 18.1 20.6
UCF101 01.0 44.1 43.9 45.4 45.7 40.7 50.2 48.5
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Fig. 4: In this figure we present the nearest neighbors of a query video using the features learned by our unsupervised network.
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Table 2: Pair mining computational time for a training sample

Algorithms Optical Flow Ours
Time per pair (in second) 8.0× 10−2 1.8× 10−5

posed unsupervised learning framework can serve as a module
to structure the feature space for superior supervised learning
performance. We also finetune the network weights learned in
an unsupervised manner using UCF101 class labels. We com-
pare with other unsupervised baselines mentioned previously.
The results are presented in Table 1. As can be observed that,
the proposed method performs better than randomly initial-
ized C3D by a margin of 4.4%, which clearly indicates that
our method can be used to enhance the performance of video
related supervised tasks. Our method also performs better
than other baselines except S&L. However, S&L and other
works in literature involve optical flow in their pair mining
strategy which adds to the computational time. On the other
hand, our randomized pair mining strategy is computationally
efficient and scalable to large datasets. Table 2 presents this
comparison.

Table 3: Action Similarity results on ASLAN
Algo. C3D [27] HOG [13] HOF [13] HNF [13] Ours
Acc. 57.3 56.6 56.8 58.9 63.5
AUC 67.2 61.6 58.5 62.1 69.3

Action Similarity Classification Our proposed unsuper-
vised framework learns similarities in videos which can be
used to solve the problem of similarity labeling, given a pair
of videos. In this section, we explore, whether our network,
learned in an unsupervised manner, can help to achieve better
performance compared to randomly initialized network on this
task. We use the Action Similarity Labeling (ASLAN) dataset
[13] for this experiment.

Results. We present the results of our network on ASLAN
dataset along with the result obtained after training the Siamese
C3D network from randomly initialized weights in Table 3.
We also compare the results with other baselines from existing
literature [13]. The ROC curve is presented in Fig. 5. It
is evident from the experimental results that the proposed
method performs better than randomly initialized Siamese
C3D network which suffers from the scarcity of training data.

4. CONCLUSION

In this work we present a novel approach to learn spatio-
temporal feature learning from unlabeled videos. Experimental
results suggest that the embeddings learned by our framework
are transferable to new datasets and can be finetuned to achieve
superior performance than training with random initialization
using the new dataset. Furthermore, the performance of su-
pervised learning on a certain dataset can be improved by first
using our unsupervised learning scheme on the same dataset.
Acknowledgment. This work was partially supported by NSF
grants IIS-21185 and CNS-33218.
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