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Abstract—Data centers have become a popular computing
platform for various applications, and account for nearly 2%
of total US energy consumption. Therefore, it has become
important to optimize data center power, and reduce their
energy footprint. With newer power-efficient design in data
center infrastructure and cooling equipment, active compo-
nents such as servers and the network consume most of the
power with emerging sets of workloads. Most existing work
optimizes power in servers and networks independently, and do
not address them together in a holistic fashion that can achieve
greater power savings. In this paper, we present PopCorns, a
cooperative server-network framework for power optimization.
We propose power models for switches and servers with low-
power modes. We also design job scheduling algorithms that
place tasks onto servers in a power-aware manner, such that
servers and network switches can take effective advantage of
low-power states. Qur experimental results show that we are
able to achieve more than 20% higher power savings compared
to a baseline strategy that performs balanced job allocation
across the servers.

Keywords-Power Optimization, Data Center, Low Power
States, Job scheduling algorithms

I. INTRODUCTION

Data centers have spurred rapid growth in computing, and
an increasing number of user applications have continued
to move to cloud settings in the past few years. With this
growing trend, data centers now account for about 2% of
US energy consumption [1]. Many public cloud computing
environments have power consumption on the order of
several Gigawatts. Therefore, power optimization is a key
challenge in data centers.

Data center servers are typically provisioned for peak
performance to always satisfy user demands. This, however,
also translates to higher power consumption. Hardware in-
vestments have resulted in power saving mechanisms, such
as dynamic voltage and frequency scaling (DVFS) and low-
power or idle states [2]. Through using such mechanisms,
as servers continue to become more energy-proportional,
other active data center components such as the data center
network are growing to dominate overall power [3] [4].
Therefore, it is important to holistically address the power
consumed by both data center servers and networks for an
effective solution to this problem.

We note that power reduction strategies in network
switches and routers have been studied in large-scale net-
work settings. Gupta et al. [5] proposed a protocol-level

support for coordinated entry into low-power states, where
routers broadcast their sleep states for routing decisions to
be changed accordingly. Adaptive link rate (ALR) for Eth-
ernet [6] allows the network links to reduce their bandwidth
adaptively for increased power efficiency. Such approaches
may not be very effective in data center settings where
application execution times have a higher dependence on
network performance and Quality of Service (QoS) demands
by the users.

In this paper, we propose PopCorns, a framework to
optimize data center power through a cooperative network-
server approach. We propose a power model for data center
servers and network switches (with support for low-power
modes) based on power measurements in real system settings
and memory power modeling tools from MICRON [7] and
Cacti [8]. We then study job placement algorithms that take
communication patterns into account while optimizing the
amount of sleep periods for both servers and switch line
cards. Our experimental results show that we can achieve
more than 20% energy savings compared to a baseline server
load-balancing strategy.

We note that further power savings can be obtained
at the application level through careful tuning for usage
of processor resources [9] [10] or through load-balancing
tasks across cores in multicore processor settings to avoid
keeping cores unnecessarily active [11]. Such strategies can
complement our proposed approach, and boost further power
savings in data center settings.

In summary, the contributions of our paper are:

1. We propose a power model for data center servers and
network switches based on available power measurements
in real system settings and memory power modeling tools.
We formulate a power optimization problem that jointly
considers both servers and switches.

2. We propose an algorithm that considers servers and
networks to co-ordinate server task placement while con-
sidering power drawn by network components. Transition
between power states in switches is controlled by buffer sizes
and certain traffic thresholds.

3. We compare our approach against a typical server
load-balancing mechanism for task placement in terms of
overall data center power consumption, and job latency. Our
experimental results show that we are able to achieve more
than 20% power savings.



II. SYSTEM MODEL

In this section, we describe our power models for switches
and servers, as well as models for jobs and the whole system.

A. Modeling Switch Power

1) Switch Port: To tackle the energy consumption in
network equipment, the IEEE 8022.3az standard introduces
the Low Power Idle (LPI) mode of Ethernet ports, which is
used when there is no data to transmit, rather than letting
the port be in active state all the time. The idea behind LPI
is to refresh and wake up the port when there is data to
be transmitted; the wakeup duration is usually small. Also,
the energy consumption of a physical layer device (PHY) in
LPI mode is significantly lower than when it is in the active
mode [12].

We assume that there are three power states for each
switch port: active, LPI, and off, and the corresponding
average power consumption for each state under different
link rates is shown in Table I. These power numbers are
based on measurements on Intel’s 82573L Gigabit Ethernet
Controller [13].

Link Rate (Mbps) | Active (mW) | LPI (mW)
0 0 0
10 504 194
100 483 314
1000 1217 1010

Table I: Average port power consumption in active and LPI states.

2) Network Switch: Due to lack of detailed power models
for commercial switches, we propose and derive our switch
power model based on available data and memory power
modeling tools from Micron [7]. A switch consists of several
components such as ASICs, TCAMs, DRAM memory, and
ports. Our power model for each component is explained
below:

1. ASICs/Network processors: Operations such as parsing
the packet contents to read the header, looking up routing
tables, and forwarding to the corresponding destination
port are performed by the network processor. According
to Wobker’s report [14], this consumes 52% of the to-
tal power in enterprise Cisco line cards. Accordingly, the
ASIC/network processor’s power consumption is computed
to be 165 W. Based on studies done by Igbal et al. [15]
and Luo et al. [16], we assume a 60% power reduction due
to power gating of ALU and micro engines in the network
processor.

2. DRAM memory: The active power consumption of
DRAM depends on the frequency of accesses, and leak-
age/static power depends on the transistor technology. Mi-
cron Power calculators [7] for RLDDR3 (Reduced latency
DRAM) show a power consumption of 1571 mW per 1.125
GB of memory when active and 314 mW when in sleep. We
assume the line card to integrate 8 such memory chips.

3. TCAM (Ternary content addressable memory): A typ-
ical 4.5 Mb TCAM structure which is used to offload high-
speed packet lookup, consumes 15 W of power [17]. We
model the static leakage power for a 4.5 Mb CAM structure
using Cacti [8], which estimates the power consumed during
the idle sleep period when memory is not accessed.

4. Line card interconnect fabric: The line card intercon-
nect fabric consumes 23W during active power state [18].

5. Host processor: Each line card includes a host processor
which is used in line card boot and initialization process
for copying routing table information from the switch fabric
card. The processor is kept running in sleep mode to keep
the routing tables synchronized and to wake up the line card
on packet arrival. We assume a 30% power reduction due to
dynamic frequency scaling during line card sleep [19].

6. Ports: Combining the port LPI model in Section II-Al,
for a typical line card with 48 ports at 1 Gbps, we calculate
the total port power.

7. Local power supply: Based on Liu et al. [19], we
assume a 50% reduction in the power loss due to reduced
power consumption during the sleep state.

Table II shows the power consumption used in our exper-
iments.

Component Active Power (W)|Sleep Power (W)| Sources
ASICs/NW processor 165 66 [18] [15]
TCAM/Fwd. Engines 15 1.26 [17] [8]

DRAM 12.5 2.4 [7]
Interconnect Fabric 23 23 [18]
Host Processor 29 20 [18] [19]
Ports 48 x 1.21 48 x 1.01 [13]
Local Pwr supply 30 15 [18] [19]
Total 332 176

Table II: Power model for a 48-port switch.

Apart from the line cards, we model a constant baseline
power of 120 W for the rest of the switch in ON state, which
includes switch supervisor module, the backplane, cooling
systems, and switch fabric card, based on Pan et al. [18].
We consider a 25 ps wakeup latency from sleep state for
the line card [18].

B. Modeling Server Power

We use the power consumption model of an Intel Xeon
ES5-based server from our prior work [20]. For simplicity,
we model servers that can run a single task at a given time
and utilize C6 (package sleep) state when the processor is
idle. Our server power model is shown in Table III.

Source
[21] [20]

Active State|C6 Sleep state|Wakeup Latency
92w 3TW Ims

Table III: Server power model.
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Figure 1: Example of a job DAG. Nodes represent tasks, with
execution latency showed next to them. Edges represent flows and
their sizes.

Core level

Figure 2: Fat tree topology.

C. Modeling Job

We model the execution of jobs at the server side as
follows. A job consists of multiple inter-dependent tasks
that include both spatial and temporal inter-dependence.
Application tasks are typically executed by specific server
types. For example, a web service request will first be
processed by an application or web server, and a search
request is processed by a database server, and this kind of
task relationship is called spatial inter-dependence. In terms
of temporal inter-dependence, a task cannot start executing
until all of its ‘parent’ tasks have finished their execution,
and until after their results have been communicated to the
server assigned to the task. A job is considered to have
finished when all of its tasks finish execution. A server core
can only process one task at a time; we assume single-core
processors in this paper and leave multicore processors for
future work.

Each job j can be represented as a directed acyclic graph
(DAG) G/(V/,E7), where V/ is the set of tasks of job j. In
the DAG, if there is a link from task i to task r, then task
i/ must finish and communicate its results to task 7/ before
r/ can start processing. Each task v/ € V/ has a workload
requirement, namely task size or execution time requirement
wi for the core. For each link in EJ, there is a network flow
with size D{ assigned to it, which denotes the transmission
of results over link / (from the task at the head of DAG link
to the task at the tail). Figure 1 shows an example of a job
DAG.

D. Data Center System

Figure 2 shows the classic fat tree topology used in our
network-server system [22]. In our system, each switch
consists of a number of distributed cards plugged into the
backplane, which provides the physical connectivity [18].

Port ———| Line Card }

Port ——[ Line Card I—

g Switch
Port ——| Line Card ]— '§ Fabric
(]

Port —f— Line Card }

Port —}—— Line Card |

Figure 3: Schematic of switch, line card, and its ports.

Among these cards, there are multiple line cards for forward-
ing packets or flows, and can be in active, sleep, or off state.
In turn, each line card contains several ports connecting to
external links, which can also be in active, LPI, or off state.
A typical schematic of switch, line card, and port is shown
in Figure 3.

ITII. PROBLEM STATEMENT

In this section, we formulate joint server and data center
network power optimization as a constrained optimization
problem using the switch power model and job model
defined above. First, to obtain the power consumption of a
switch k, assume the number of active line cards and ports

are {0V and p{“'™ respectively, and the number of line

cards in sleep state and ports in LPI mode are "’ and

pH! respectively. Since the total power of a switch is the

sum of base power (P,i’“"e), power of ports, and power of line

switch base active active active
cards, we lhave P,7 = PS¢ e s Plclive | 4 pRertve x
active sieep steep LPI LPI
P+ 8k Py piara TPk % Pyo- To calculate the power

consumption of server i, since our system considers the core
as the basic processing unit in a server, the total power of
a server is the sum of idle power P/ and dynamic power,
which is linear in the number of active cores C{". Then,
we have Pserver = pidle 1 conx pon | where P27, denotes the
power consumed by an active core.

Then the joint power optimization problem can be for-
mulated as: minimize ):ivi"l"""’ P,fWit”h + Zﬁ”{"” P under
both network-side and serve-side constraints, such as link
capacity, computation resources, etc.

IV. SOLUTION APPROACH

Given a set of jobs, modeling the joint power optimization
problem as an Integer Linear Programming (ILP) formu-
lation is a solution, and optimization tools like MathProg
can be used to provide a near-optimal result. However, the
computation complexity increases exponentially with the
number of servers and switches [23]. In a typical data center
with tens of thousands of servers and hundreds of switches,
it is computationally prohibitive to solve the optimization



Symbol Description Port trafficload
T; Traffic threshold for waking up a switch port from LPI state exceeds threshold Ty
Ty Traffic threshold for waking up a switch port from off state
T, Traffic threshold for a port to enter LPI state Port ‘d”'fg“ '°h“d|dT
0 exceeds threshol s
OiL Current traffic load of port i in line card L
T -
okeup | POt wakeup latency from LPI state Line card sleep < orP—
IC : i
wakeup Line card wakeup latency from sleep state Line card off time out Line card sleep| |Line card active N active in fhm
rfjff” Port wakeup latency from off state ) Jateney 7 eup
‘L'(f‘c Line card wakeup latency from off state
1
5/22611/7 Port Wakeup delay All ports are in LPI
f;fkaw Line card wakeup delay i - i
d7%" | Delay for a port to enter LPI state Figure 4: Power state transition overview.
dre , | Delay for a line card to enter sleep state
df‘fj/- Time threshold for a line card to enter off state
L . - . if Q1 is below T, then i will enter LPI mode after dela
Table IV: Notations in PopCorns switch state transition algorithm. pOQ,,’L @ . Y
dyp; . 1f all the ports of L are in LPI state, L enters sleep
LC H H LC
state after d;; ep Once the sleeping period of L exceeds d, e

problem. We therefore propose a computationally-efficient
heuristic algorithm in this work.

A. Heuristic Algorithms

In this section, we first present a power management
algorithm for line card and port power management, a simple
power transition algorithm for servers, and then propose
a joint job placement and network routing algorithm for
solving the optimization problem efficiently.

1) Switch State Transition Algorithm: As not all switches
need to be active all the time, if we can intelligently control
the transitions to active and low-power states for ports
and line cards, then DCN power consumption could be
reduced. Therefore, we propose the Switch State Transition
Algorithm 1 to implement network power management. The
notations are elaborated in Table IV. An overview of our
approach is shown in Figure 4. We assume that there is
a global controller that keeps record of all the line cards,
ports, and server status, including their power state and
queue size. The global controller also monitors the current
traffic load (number of pending flows or packets) at each
port and decides whether the current line card can enter
low-power state. In our design, we consider the line card
and port power states and their transition as follows: if a
line card is in sleep or off state, then all the ports are also
in LPI or off state; if a line card is active, then its ports
can be in LPI or active state, and ports in LPI state can
be woken up to become active with a small latency Tf:Z;;Llp.
When a flow arrives at port i of line card L, if L is in sleep
state and current traffic load Q;; of i exceeds threshold T,
then both i and L will be woken up, with wakeup latency
’L'f:Z,ZLMP and 7€ oup Tespectively. In contrast, if Qj is below
Ty, then the flow is buffered in the queue of port i, and i
and L are scheduled to be woken up after wakeup delay
ey and dlS - respectively. However, if other flows
arrive during this wakeup delay and cause Q;;, to exceed Tj,
the scheduled wakeup is canceled and i and L begin waking
up immediately. When a flow is transmitted from i of L,

L together with its ports enter the off state immediately. For
a port 7 in off state, once its Q;, accumulates to 7y, both i
and L begin waking up with latency 7,77 and f .

2) Server State Transition Algorithm: As mentioned in
Section II-B, we simply model two power states for the
server: active and C6 sleep state. Algorithm 2 describes our
policy on managing the server power states. We assume that
each server has a local queue to buffer the tasks. When
dispatching tasks, to select a pool of available servers, we
first consider active servers with queue size below threshold
TServer. If all the active servers have a queue size larger
than 7,;°°V*", then these servers will be considered available
too. However, if all the servers are in sleep state, then
some of them must be woken up to execute incoming tasks.
Algorithm 3 explains which servers to choose in this case.
After selecting available servers (S, in Table V), specific
task placement policy is also described in Algorithm 3.

3) Cooperative Network-Server Algorithm: The main
idea of our algorithm is to jointly consider the status of
the pool of servers and the network before assigning jobs.
To be more specific, for a job consisting of several pairs of
interdependent tasks, if we place task pairs based on their
interdependence, and choose the core pair with the minimum
routing cost (in terms of power), then the placement together
with its corresponding routing path can be more energy-
efficient.

Based on this idea, we propose the Cooperative Network-
Server (CNS) algorithm shown in Algorithm 3. The nota-
tions are shown in Table V. As mentioned in the previous
section, we have a global controller to keep track of all
the line cards, ports, and server status. Thus, when a job
consisting of a set of interdependent tasks arrive, we first
check the servers to select all server pairs whose power states
are active and local queue sizes do not exceed a threshold. If
no server satisfies these requirements, then servers with full
local queue and servers in C6 sleep state will be selected.
The set of eligible servers is called as S,,,. Note that if a
task is assigned to a server in sleep state, then the server will
be woken up immediately and will enter active state after a



Algorithm 1: Switch State Transition Algorithm

Algorithm 2: Server State Transition Algorithm

Input: 7, 7,, Qi
Output: Line card and port power state transition

1 Initialization: All line cards are in sleep state, all ports
are in LPI state;

2 while there are jobs to be executed do

3 if a flow arrives at port i of line card L then
4 if L is in sleep state then
5 if Qi1 > T, then
6 L begins waking up from sleep state;
7 i begins waking up from LPI state;
8 end
9 else
10 L begins waking up after d»ngk eup’
1 i begins waking up after df:ggeup;
12 end
13 end
14 end
15 if a flow is transimitted from port i of line card L
then
16 if Q;; < T; then
17 i enters LPI state after d’p; ;
18 if when i enters LPI state, all the ports of L
are in LPI state then
19 L enters sleep state after dsLlSep;
20 if sleeping period of L exceeds dg?f
then h
21 L and all its ports enter off state
immediately;
22 end
23 end
24 end
25 end
26 end

wakeup latency.

For each server pair in S,,, we compute the shortest
routing path in terms of the additional power consumption
incurred in the current system state, if that server pair is
selected for executing a pair of interdependent tasks. Note
that, along each eligible path, line cards could be active,
sleeping, or off, and the corresponding ports could be active,
LPI, or off. Upon assigning a path to the server pair, all the
line cards and corresponding ports should become active. In
other words, we need to wake up the inactive line cards and
ports on the path, which requires extra power consumption.
Based on this reasoning, we set the weight of each link as
the additional power needed for the tail node on this link
to be active. In other words, for link / from a server (or a
switch) to switch sw, via line card /c and port p in sw, the
weight of [ is w(l) = (PCK, , — PCEO) + (PCPY  — PC™).

active active

Input: server wakeup latency T;,‘il’,:furp,
server S
Output: Server power state transition
if a task arrives at a server S then
if S is in sleep state then
S enters active state after T;i;’,fjfp;
end

1
2
3
4
5 else
6
7
8
9

local queue of

task is put in the local queue of S;
end
end
if a task is finished executing at server S then
10 if local queue of S is empty then
11 S enters sleep state immediately;
12 end
13 end

Symbol Description
O Local queue size of server s
75" | Local queue size threshold for server s
S All the servers in DCN
Sava All the available servers for executing tasks
Py Routing path between node x and y in DCN

PC,”™" | Power consumption of an arbitrary port p
PCILCC Power consumption of an arbitrary line card LC
PC‘ch[ive Power consumption of an active line card
DOTT p n
PC, i, | Power consumption of an active port

Table V: Notations in PopCorns Cooperative Network-Server
(CNS) algorithm.

Based on Table II, PCLC, =~ = 273.92W, PCP" == 1.21W,
PCZLCC = 127.52W if lc is in sleep state, PCZLCC =0if [cisin
off state, PC)""" = 1.01W if p is in LPI state, and PCp"" =
0 if p is in off state. For a link from a switch to a server,
the weight is obviously 0. After assigning link weights as
described, the CNS algorithm finds the shortest path P, , for
every pair of servers (x,y) in Sy, Then, it selects the server
pair that has the minimum shortest path length, and assigns

it to the task pair.

V. EVALUATION
A. Experimental Setup

Our experiments are performed using an event-driven
simulator [20], [24]. We simulate a data center cluster with
16 servers and 20 switches. The network is configured
using a fat tree-topology as shown in Figure 2. We simulate
three classes of real applications: web service (small-sized
workload), web search (medium-sized workload), and DNS
service (large-sized workload). For each of the representative
workloads, we generate synthetic job arrivals with different
utilization levels (10% for low, 30% for average, and 60%



Algorithm 3: Cooperative Network-Server Algorithm

Input: Q,, TV, line cards and ports power state,
task dependency within a job
Output: Job placement and corresponding routing path
1 while job j consisting of task set T/ arrives do

2 for each pair of interdependent tasks (Tp, T, in
7/ do

3 select S,y from §;

4 for each pair of available servers (x,y) in Sqvq

do
5 compute shortest path P, , for server pair
(x.3);
6 end
7 choose the least-weight path among all the P,

together with its corresponding server pair for
task pair (T, T/ );

8 end

9 end
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(root NS)
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ns.ita.tip.net Internet user
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(a) Task workflow for DNS resolution.

(b) DAG of a DNS job.

Figure 5: DNS service communication patterns (left) and DAG
of DNS jobs (right). Each job consists of 4 tasks, and there are
interdependence and communication between task 1 and 2, 3, 4.

for high utilization [25]). Random job arrivals are modeled
by Poisson process. The communication patterns and the
DAG for the three workloads are illustrated in Figures 5, 6,
and 7. The switch and server powers under different sleep
states are based on Tables II and III. Besides, we set the
server wakeup latency as 1ms and local queue size threshold
e (for Algorithm 2) as 10 (number of tasks). For the
traffic thresholds and latency values in Table IV, we set
T;, Ty, and Ty as 10, 2, and 20 (in terms of the number
of pending flows) respectively; t2€ as 25us, ©°%  as

wakeup wakeup

LC port LC port
18.5ps, Tyff a8 2s, Topf a8 (2s+2ms), dwakwp wakeup
dLC

as (2ms+2ys), dipy as 1ps, tleep @S 1us, and d{;?f as 2s.

as 2ms, d

B. Evaluation Methodology

There are two major objectives: first, to demonstrate
that the smart use of line card sleep state combined with
port LPT state (shown in Algorithm 1), does reduce power
consumption compared to no power management policy on
the switches; second, our proposed Cooperative Network-
Server Algorithm 3 can further save power, compared to
other job placement algorithms that do not consider network

Web search request

from client

[ J
@ Indexers : 0
[

— Av
Client Master Server ™,

Indexer

(a) Task workflow for a web search (b) DAG of a web search job.
request.

Figure 6: Web search communication patterns (left) and DAG of
a web search job (right). Task 1 is executed by the master server,
while tasks 2 - 6 are processed by different indexers, and master
server communicates with all the indexers.

Web service request
from front end

Database Server : : C @

(a) Task workflow for a web (b) DAG of a web service job.
service request.

Client ‘Web Server

Figure 7: Web service communication patterns (left) and DAG of
a web service job (right). Task 1 is executed by application server,
while task 2 is assigned to database server.

and server status jointly. The baseline comparison policy in
our experiment is the Server-Balanced (SB) Algorithm for
task placement, which dispatches tasks uniformly to all the
servers (i.e., ny, task allocated to server with index n%N),
but does include our proposed switch power management
(Algorithm 1). After tasks are scheduled on servers, the
Server-Balanced Algorithm uses single shortest path routing
(e.g., using Dijkstra’s algorithm) for interdependent task
communication in the network. Thus, as long as there is an
inactive line card or port on the routing path, it needs to be
woken up. Note that since tasks of the same job are placed on
adjacent servers, the communication between interdependent
tasks would mostly be within a pod (see Section II-D), which
involves only 2-4 hops. Therefore, this baseline algorithm
might already perform better than random job placement in
terms of DCN power consumption.

In our study, we break the power savings into two parts:
network and server power saving. We calculate the power
consumption of the network part with our network power
management policy shown in Algorithm 1, and compare
it with the case when all the line cards and ports are
kept active all the time. To study the effectiveness of joint
server-network power optimization, we set up two different
job placement configurations: PopCorns framework (shown
using the suffix of —CNS to denote PopCorns’ core Co-
operative Network-Server Algorithm) and Server-Balanced
Algorithm (shown using the suffix of —SB).

C. Evaluation Results

1) DNS Service: Figure 5a and Figure 5b show the task
workflow for DNS service and its corresponding job DAG.



In the simulation, we set the flow size to be 100MB and
the average job service time is randomly generated between
150ms and 200ms. Since our experiment is based on multi-
task job, we define the service time as average task size (e.g.,
75 - 100ms for a DNS task, based on job DAG), and the
system utilization rate is defined as service timextask arrival
rate.

Figure 8a shows the power saving using the PopCorns
framework for the execution of 2000 DNS jobs, compared
to the baseline. In our experimental setup, if all the line
cards and ports remain active, the switch power is 398.76W.
We can see that for each configuration, the average power
of PopCorns is 235 - 293W, and, PopCorns is able to
achieve approximately 26 - 41% network power savings,
while the baseline policy also saves 16 - 39% network
power with smart use of both line card and port low-power
states, compared to no power management on line cards and
ports. Note that with increase in system utilization rates, the
average power consumption of switches decreases. This is
because larger system utilization means larger job arrival
rate. Then, task pairs arriving at almost the same time will
be assigned the same routing path, making the most of active
line cards, while causing longer sleeping or off periods for
the other line cards.

Additionally, we see that on the server side, PopCorns
consumes approximately 26 - 30% less power than the base-
line (Server-Balanced job scheduling). There is no power
saving on the servers for the latter algorithm, as all the
servers are kept active, and each consumes 92W. In this
sense, we can conclude that intelligently scheduling tasks
based on their interdependence and system status, together
with the use of server C6 package sleep state further saves
power.

Figure 8b, 8c, and 8d show the CDF of job latency
for DNS Service jobs. We can see that the 90" percentile
job latency is the best under low system utilization, and
gradually increases as utilization increases. WASP [20]
shows that low system utilization is a more practical case
in real scenarios. Thus, we note that our proposed power
management policy together with job placement algorithm
saves a large portion of power in DCN while maintaining
the QoS demands (especially under low system utilization).

2) Web Search: Figure 6 shows the task workflow for a
web search request and its corresponding job DAG. In the
simulation, we set the flow size to be 100MB, and average
job service time is randomly generated between 20ms and
60ms. Thus, the average web search task size is 10 - 30ms
in our job model.

Figure 9a shows the power saving corresponding to the
execution of 2000 DNS jobs, compared to the baseline.
We can see that for each configuration, PopCorns is able
to achieve about 60% network power savings under high
system utilization, and even with low utilization, about 23%
network power savings is achieved. In contrast, the baseline

Server-Balanced job scheduling shows 46% and 23% power
saving respectively, which demonstrates the benefits of smart
use of low power states of switch components.

On the server side, PopCorns further saves approximately
18% power than the baseline, which has no power saving
on the servers. The results are basically in accordance with
the previous experiment.

Figures 9b, 9c, and 9d show the CDF of job latency in the
Web Search experiment. We can see that the 90" percentile
job latency is also the best under low system utilization, and
gradually increases with utilization rate getting higher.

3) Web Service: Figure 7 shows the task workflow for
a web service job and its corresponding DAG. In our
simulations, we set the flow size to be 100MB, and average
job service time is randomly generated between 2ms and
10ms. Therefore, the average web service task size is 1 -
Sms in our job model.

Figures 10 shows the power consumption for the ex-
ecution of 2000 web service jobs, which reinforces our
conclusions from prior experiments. We can see that for
a DCN executing small-sized jobs like web service, smart
use of server sleep states saves about 30% power compared
to keeping servers active all the time. We observe about
23% network power saving under various system utilization
levels. Additionally, compared to DNS and web search jobs,
we can see that our framework achieves even higher power
savings for larger-sized workloads.

VI. RELATED WORK

With the energy consumption of large data centers reach-
ing Gigawatt scales, its energy saving techniques are in-
creasingly being studied in recent years. Common tech-
niques used for server energy reduction include DVES to
reduce the energy at the cost of server performance [26],
co-ordinated DVFS and sleep states for server proces-
sors [27] [20] [21], and virtualization to consolidate VMs
into fewer servers [28]. TS-Bat [27] demonstrates that,
through temporally batching the jobs and by grouping them
onto specific servers spatially, higher power savings can be
obtained. WASP [20] shows that intelligent use of low power
states in servers can be used to boost server power savings.

For the energy efficiency in the network, earlier works
have looked at switches and routers for Internet-scale large
area networking. Gupta et al. [5] first proposed the need
for power saving in networks and pointed to having net-
work protocol support for energy management. Adaptive
Link Rate (ALR) [6] reduces link energy consumption by
dynamically adjusting data link rates depending on traffic
requirements. Other approaches include turning off switches
when not required, or to put them in sleep mode depending
on packet queue length [29] [30]. Prior works on reduc-
ing data center network power rely on DVFS and sleep
states [15] to opportunistically reduce power consumption
of individual switches. In these approaches, switches may
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enter sleep states without knowledge of incoming server
traffic and may be forced to wake up prematurely. Hence, a
server job placement and network allocation co-ordination
approach is required to optimize the amount of sleep time
in saving network energy consumption.

There are existing works that combine server and network
power savings. Mahadevan et al. [31] and Heller et al. [32]
have proposed a heuristic algorithm for a coarse-grained load
variation approach which dynamically allocates the servers
required for the workload and powers off the unneeded
switches for the server configuration. Other approaches
consolidate VMs in fewer servers and in turn use fewer
switches [33]. These approaches assume an unrealistically
high amount of idle period to be able to completely turn
off the servers and network components. To the best of our
knowledge, our solution is the only one to consider network
sleep states to target higher power savings in the data center.

VII. CONCLUSION

In this paper, we presented PopCorns, that makes smart
use of low power states in line cards and ports of network

switches. We combine them with network-aware task place-
ment for more effective power management. Our experimen-
tal results show that smart management of low-power states
achieves up to 40% power reduction over always active
switches, and smart joint placement and routing saves up to
60% power while keeping the job latency reasonably low.
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