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Abstract—In our previous work, we had demonstrated a
CMOS timer-injector integrated circuit for self-powered sensing
of time-of-occurrence of mechanical events. While the sensor
could achieve an improved time-stamping accuracy by averaging
the output across over multiple channels, the mismatch between
the channels made the calibration process cumbersome and time-
consuming. In this paper, we propose the use of non-parametric
machine learning techniques to achieve more robust and accurate
event reconstruction. This is demonstrated using training and
testing data that were obtained from fabricated prototypes on a
0.5-μm CMOS process; the model trained using Gaussian process
regression can achieve an average recovery accuracy of 3.3%
on testing data, which is comparable to the performance of
using an averaging technique on calibrated injection results. The
experimental results also validate that scalable performance can
be achieved by employing more injection channels.

I. INTRODUCTION

Self-powered sensors are attractive for applications where
access to batteries is considered impractical, such as em-
bedded mechanical variation monitoring or implanted health
sensors. A self-powered sensor operates by harvesting energy
from ambient environment instead of extracting energy from
a battery. For instance, the self-powered sensor-data-logger
proposed in [1] harvests the energy from mechanical events to
compute, store and update the event statistics on a non-volatile
memory; however, it remains a challenge to sense and record
the events’ time-of-occurrence because it requires a continuous
system reference clock — and self-powered systems cannot
guarantee continuous powering of such references. Watch-dog
timers [2] have been proposed in literature for ultra-low-power
applications such as wireless Internet-of-Things (IoT), yet they
operate in a synchronous manner that is only functional when
external power is accessible, which obviates the asynchronous
self-powering paradigm, thus rendering it unable to sense time-
of-occurrence.

In [3], we proposed a fully integrated CMOS timer-
injector system which can sense the time-of-occurrence of
mechanical events. The system combines a robust self-powered
timer system-op-chip (SoC) based on Fowler-Nordheim (FN)
tunneling [4] (as illustrated in Fig. 1(b)) which can contin-
uously track time without external powering, with a linear
injector SoC which employs the physics of piezoelectricity-
driven impact-ionized hot-electron injection (p-IHEI) [5], [6]
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Fig. 1. Illustration of using PFG sensors for time-stamped sensing of
mechanical events: (a) hot-electron injection, (b) FN tunneling for self-
powered timing and (c) system architecture of a time-stamped sensor.

(as shown in Fig. 1(a)) to sense the time-of-occurrence and
store in non-volatile memories, as illustrated in Fig. 1(c). Based
on the mathematical model derived from the self-powered
timer model and the linear injection model, the proposed
self-powered sensing modality can achieve an average timing
recovery accuracy of 6.9% for time stamping of mechanical
events when using single injection channel, and an accuracy
of 3.2% when averaging over five injection channels.

While the model proposed in [3] captures the dynamic
time-stamping behavior, it neglects the high-order effects in
the model of the timer-injector circuits, thereby introducing
systematic error to the data recovery process. In addition, the
random variations in the system from sensing to measurement
can degrade the time-recovering performance. Random error
sources can be minimized by enlarging the event duration,
which are unknown a priori in most cases, or using an
averaging technique across multiple sensing channels, yet the
mismatch across different channels requires careful calibration
to achieve improved performance. In this paper, we propose
to use machine learning techniques which can eliminate the
calibration process yet maintain the data recovery accuracy



performance. The proposed technique is built based on a
nonparametric learning process, therefore the issue of high-
order nonideal factors will not affect the performance. The
operation principle of the CMOS timer-injector system and the
data reconstruction will be introduced briefly in Section II. In
Section III, the experimental results based on the timer-injector
and the proposed technique will be presented to validate the
performance. The paper is concluded in Section IV.

II. SELF-POWERED TIME-STAMPED INJECTORS

A. Operation of the Timer-Injector
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Fig. 2. Simplified schematic of the timer-injector system.

The proposed time-stamped sensor consists of a robust self-
powered timer and a self-powered linear injector, as illustrated
in Fig. 2. As described in [4], the FN tunneling based self-
powered timer can be modeled as a charge storage capac-
itor Ctimer and an FN tunneling current source Itimer. By
programming the initial value of Vtimer to the FN tunneling
region, Vtimer will demonstrate a dynamic response which can
continuously keep track of time, which has been shown to be
reliable and durable for long-term operation (as long as three
years) [4]. At the core of the timing device is a PMOS floating-
gate transistor, where the charge is stored at the floating-gate
node and a high-quality thin gate oxide provides the tunneling
junction.

The output of the timer is fed into a linear variant of p-
IHEI [6], as shown in the right side of Fig. 2. The injection cur-
rent Iinj from the channel to the floating-gate node is a function
of the source-to-drain voltage of Mfg and channel current Iref .
By employing an operational amplifier A1 to form a negative
feedback loop, the output of the timer Vtimer is isolated from
the injection current and Iinj is only modulated by Vtimer. Once
a mechanical event activates the transducer and generates an
electrical signal Vsensor, the injector is activated and generates
an injection current corresponding to Vtimer. As a result, the
change in Vo noted as ΔVo is a function of both the duration of
the event and the instance of the time-of-occurrence. Omitting
some details here for the sake of brevity, the mathematical
model was derived in [3] as:

t ≈ 1
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]
)

− k0
k1

. (1)

where t is the time-of-occurrence of the event, Δt is the
duration of the event, γ, λ, k0 and k1 are model coefficients
determined by the timing and injector characteristics and
physics constants. The duration of the event can be easily
measured and recorded using a linear injector with a constant

Vref . ΔVo is a function of the charge stored on the floating-
gate node in a nonvolatile manner and can be retrieved at a
later stage for data reconstruction based on the model (1).

B. Data Reconstruction

One may recover an event’s information based on (1), the
coefficients of which can be obtained by training the model
over a training set. Once we have the model coefficients, it
will be easy to calculate t from ΔVo. The performance of
this technique has been extensively characterized in [3], with
the average accuracy of recovering a time-of-occurrence for
events with a one second duration has been characterized to be
between 6%–8% using fabricated prototypes on 0.5-μm CMOS
process.

Considering the fact that random noise in the system can
not be neglected and has significant impact on the performance,
[3] also analyzed the noise sources and proposed techniques
to compensate for it. By averaging over multiple channels, the
accuracy can be improved significantly at the cost of power and
area overhead. An implementation of five injection channels
can improve the average time recovery accuracy from 6.9% to
3.2% which approximately follows the statistical rule:

pN ≈ p1√
N

(2)

where p1 and pN are the accuracy performance of single
channel and N channels, respectively. While the averaging
technique is proven effective, the implementation process is
time-consuming because the mismatch across different injec-
tion channels need to be calibrated beforehand.

In this work, we propose to use machine learning tech-
niques to train a non-parametric model which is robust to
mismatch. Gaussian process has been shown to be an efficient
and effective technique for nonlinear curve fitting in the area of
supervised learning when the training set is not too large. The
model starts from a nonlinear transformation function φ(x)
and assumes the label y and feature vector x follows a linear
model with random noise as [7]

y = φ(x)Tw + ε (3)

where ε ∼ N (0, σ2
n) represents Gaussian noise and it is

identical for different x. Assuming we have a training data
set D = (X, y) and the prior distribution of the weight vector
w follows a zero mean Gaussian distribution as

w ∼ N (0,Σp), (4)

then the prediction y∗ of a test vector x∗ also follows a
Gaussian distribution as [7]:

y∗|x∗,X,y ∼ N (μ∗, σ2
∗), (5)

μ∗ = φT
∗ ΣpΦ(K + σ2

nI)
−1y, (6)

σ2
∗ = φT

∗ Σpφ∗ − φT
∗ ΣpΦ(K + σ2

nI)
−1ΦTΣpφ∗, (7)

where K = ΦTΣpΦ and Φ is the matrix version of the
transformed φ(x). If we define a kernel function k(x,x′) as

k(x,x′) = φ(x)TΣpφ(x
′) (8)



1.
4 

cm
2.2 cm

Timer 
SoC Injector

SoC

Level
Shifter

(a) (b) (c)

Fig. 3. Implementation of the self-powered timer-injector system: (a) PCB, (b) die photograph of the timer SoC and (c) die photograph of the injector SoC.

then the distribution in (5) can be calculated using the kernel
function. A reasonable choice for the kernel is the squared
exponential kernel of the form

kSE(x,x
′) = exp

(
−|x− x′|2

2l2

)
. (9)

In this work, the problem is defined as a nonlinear regres-
sion problem with training data set D = (ΔV,T), where
ΔV is a matrix formed by each feature vector ΔVi =
(ΔVi1,ΔVi2, . . . ΔVin) obtained from the measured output.
(ΔVi1,ΔVi2, . . . ΔVin) are the corresponding output from
channel 1, . . . channel n at time instant Ti. T is the vector
corresponding to true time-of-occurrence. The squared expo-
nential kernel takes the distance across two vectors, therefore
canceling out the offset across different channels. In addition,
the random noises existing in each dimension of the feature
vector will average out across multiple channels, making it
more robust as the number of injection channels is increased.
To predict the time-of-occurrence, a group of training data
will be required to train the parameters in the Gaussian process
regression model, such as the distance parameter l in the kernel
function, and the noise parameter σn.

III. EXPERIMENTAL VERIFICATION

The timer and injector were fabricated separately on two
different silicon dies using a 0.5-μm CMOS standard process.
A level shifter was employed to merge the gap between
the timer output and injection reference voltage. The micro-
photograph of the dies and the PCB are shown in Fig. 3. An ar-
ray of timers were implemented for robust time extraction. Pro-
gramming of the floating-gate transistor in the timer-injector
circuits can be achieved using a combination of FN tunneling
and hot-electron injection. FN tunneling removes the electrons
from the floating-gate node by applying a high voltage (≥15 V
in 0.5-μm CMOS process) across a parasitic nMOS capacitor.
Although FN tunneling can be used to program FG memories
individually [8], it is typically used as a global programming,
because the isolation of high voltages in a standard CMOS
process is arduous. Hot-electron injection, on the other hand,
requires lower voltages (4.2 V in 0.5-μm CMOS process) than
tunneling and, hence, is the preferred mechanism for precise
programming of floating gates. Because hot-electron injection

Fig. 4. Measured response of the timer-injector sensors from five channels.

in a pMOS transistor is a positive feedback process and can
only be used to add electrons to the floating gate, the process
needs to be carefully controlled and periodically monitored
to ensure that the FG voltage is programmed to the desired
value. The methods proposed in the literature [5] achieve a
desired value either by adjusting the duration for which the
FG transistor is injected or by adjusting the magnitude of the
injection pulses.

To validate the data recovery technique based on Gaussian
process regression, we first characterize the response of the
time-injector system. The timer was programmed to the FN
tunneling range and the output is left to dynamically evolve
with respect to time. To emulate mechanical events, the system
was periodically activated every 10 minutes for a duration
of one second. Five injection channels on the linear injector
SoC were activated, using the time signal as a reference to
modulate the injection process. Fig. 4 shows the measured
response for a total monitoring duration of 3,000 minutes with
300 measured points. The voltage change in the floating-gate
nodes caused by injection shows monotonic dependence on the
time-of-occurrence. The measured results also validate the as-
sumption that random noise degrades the system performance
and introduces error in the data reconstruction process.

To verify the performance of using Gaussian process
regression for data reconstruction, the measured data were
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Fig. 5. Recovering time-of-occurrence using Gaussian process regression: (a) predicted time using the trained Gaussian model for training and testing data set
with measured data from 5 channels; (b) dependence of the data reconstruction accuracy on number of injection channels.

randomly split into two groups, with 200 points as training
set, and the remaining 100 points set aside as testing data.
A squared exponential kernel was employed for training the
model. Fig. 5(a) shows the predicted results of the trained
model using the measured results from five channels, where
the ideal prediction is marked as solid, diagonal black line. The
predicted time-of-occurrence of training data and testing data
are marked with red circles and blue rhombuses respectively.
The average recovery accuracy for the training data and testing
data are 3.25% and 3.33%, showing good learning transfer
without overfitting. The performance is comparable to that of
[3] using averaged data for parametric learning. Therefore, the
Gaussian process regression is verified to be valid and robust
in reconstructing the time-of-occurrence.

The next experiment was conducted to verify the impact
of number of injection channels on the reconstruction per-
formance. As discussed in Section II, the dimension of the
feature vector, namely the number of injection channels will
help improve the prediction accuracy. Fig. 5(b) shows the de-
pendence of the average prediction accuracy on the number of
channels used for model training. The monotonically decreas-
ing relationship validates the conclusion. It also implies that
the accuracy can be further improved by implementing more
channels, however at the cost of power and area overhead.
Notice that by using a squared exponential kernel function,
the offset between different channels caused by mismatch in
the injection rate can be compensated and does not affect the
performance, therefore eliminating the calibration process and
making the data processing easy to implement.

IV. CONCLUSIONS

In this paper, we proposed to use a machine learning
technique to learn nonparametric models to predict time-of-
occurrence from the timer-injector sensor proposed in [3]. The
nonparametric learning process can eliminate the process of
calibrating the mismatch when employing multiple injection
channels to improve accuracy, which can significantly relieve
the data processing task. When using Gaussian process regres-
sion to train the model with a squared exponential kernel func-

tion, the performance of the model prediction is comparable to
the benchmark previously reported in literature. Experimental
results validate that with more injection channels, the accuracy
can be further improved. Note that other machine learning
techniques such as k-NN and radial basis function should
also work for the time-of-occurrence reconstruction if provided
with a sufficient training set.
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