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Abstract

We study the menu complexity of optimal and
approximately-optimal auctions in the context of
the “FedEx” problem, a so-called “one-and-a-half-
dimensional” setting where a single bidder has both
a value and a deadline for receiving an item [FGKK16].
The menu complexity of an auction is equal to the num-
ber of distinct (allocation, price) pairs that a bidder
might receive [HN13]. We show the following when the
bidder has n possible deadlines:

• Exponential menu complexity is necessary to
be exactly optimal: There exist instances where
the optimal mechanism has menu complexity ≥ 2n−1.
This matches exactly the upper bound provided by
Fiat et al.’s algorithm, and resolves one of their open
questions [FGKK16].

• Fully polynomial menu complexity is neces-
sary and sufficient for approximation: For all in-
stances, there exists a mechanism guaranteeing a multi-
plicative (1− ε)-approximation to the optimal revenue

with menu complexity O(n3/2
√

min{n/ε,ln(vmax)}
ε ) =

O(n2/ε), where vmax denotes the largest value in the
support of integral distributions.

• There exist instances where any mechanism guarantee-
ing a multiplicative (1−O(1/n2))-approximation to
the optimal revenue requires menu complexity Ω(n2).

Our main technique is the polygon approximation of
concave functions [Rot92], and our results here should
be of independent interest. We further show how our
techniques can be used to resolve an open question
of [DW17] on the menu complexity of optimal auctions
for a budget-constrained buyer.
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1 Introduction

It is by now quite well understood that optimal
mechanisms are far from simple: they may be
randomized [Tha04, BCKW10, HN13], behave non-
monotonically [HR15, RW15], and be computationally
hard to find [CDW13, DDT14, CDP+14, Rub16]. To
cope with this, much recent attention has shifted to the
design of simple, but approximately optimal mechanisms
(e.g. [CHK07, CHMS10, HN12, BILW14]). However, the
majority of these works take a binary view on simplicity,
developing simple mechanisms that guarantee constant-
factor approximations. Only recently have researchers
started to explore the tradeoff space between simplicity
and optimality through the lens of menu complexity.

Hart and Nisan first proposed the menu complexity
as one quantitative measure of simplicity, which captures
the number of different outcomes that a buyer might see
when participating in a mechanism [HN13]. For example,
the mechanism that offers only the grand bundle of
all items at price p (or nothing at price 0) has menu
complexity 1. The mechanism that offers any single item
at price p (or nothing at price 0) has menu complexity
n, and randomized mechanisms could have infinite menu
complexity.

Still, all results to date regarding menu complexity
have really been more qualitative than quantitative. For
example, only just now is the state-of-the-art able to
show that for a single additive bidder with independent
values for multiple items and all ε > 0, the menu
complexity required for a (1 − ε) approximation is
finite [BGN17] (and even reaching this point was quite
non-trivial). On the quantitative side, the best known
positive results for a single additive or unit-demand
bidder with independent item values require menu
complexity exp(n) for a (1 − ε)-approximation, but the
best known lower bounds have yet to rule out that poly(n)
menu complexity suffices for a (1 − ε)-approximation in
either case. In this context, our work provides the first
nearly-tight quantitative bounds on menu complexity in
any multi-dimensional setting.

1.1 One-and-a-half dimensional mechanism de-
sign The setting we consider is the so-called “FedEx
Problem,” first studied in [FGKK16]. Here, there is a
single bidder with a value v for the item and a deadline
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i for receiving it, and the pair (v, i) is drawn from an
arbitrarily correlated distribution where the number of
possible deadlines is finite (n). The buyer’s value for
receiving the item by her deadline is v, and her value
for receiving the item after her deadline (or not at all)
is 0. While technically a two-dimensional problem, opti-
mal mechanisms for the FedEx problem don’t suffer the
same undesirable properties as “truly” two-dimensional
problems. Still, the space of optimal mechanisms is con-
siderably richer than single-dimensional problems (hence
the colloquial term “one-and-a-half dimensional”). More
specifically, while the optimal mechanism might be ran-
domized, it has menu complexity at most 2n − 1, and
there is an inductive closed-form solution describing it.
Additionally, there is a natural condition on each Fi (the
marginal distribution of v conditioned on i) guarantee-
ing that the optimal mechanism is deterministic (and
therefore has menu complexity ≤ n).1

A number of recent (and not-so-recent) works
examine similar settings such as when the buyer has
a value and budget [LR96, CG00, CMM11, DW17], or
a value and a capacity [DHP17], and observe similar
structure on the optimal mechanism. Such settings
are quickly gaining interest within the algorithmic
mechanism design community as they are rich enough
for optimal mechanisms to be highly non-trivial, but not
quite so chaotic as truly multi-dimensional settings.

1.2 Our results We study the menu complexity of
optimal and approximately optimal mechanisms for the
FedEx problem. Our first result proves that the 2n − 1
upper bound on the menu complexity of the optimal
mechanism provided by Fiat et al.’s algorithm is exactly
tight:

Theorem 1.1. For all n, there exist instances of the
FedEx problem on n days where the menu complexity of
the optimal mechanism is 2n − 1.

From here, we turn to approximation and prove
our main results. First, we show that fully polynomial
menu complexity suffices for a (1 − ε)-approximation.
The guarantee below is always O(n2/ε), but is often
improved for specific instances. Below, if the FedEx
instance happens to have integral support and the largest
value is vmax, we can get an improved bound (but if the
support is continuous or otherwise non-integral, we can
just take the n/ε term instead).2

1This condition is called “decreasing marginal revenues,” and

is satisfied by distributions with CDF F and PDF f such that
x · f(x)− 1 + F (x) is monotone non-decreasing.

2Actually our bounds can be be improved to replace vmax with

many other quantities that are always ≤ vmax, and will still be
well-defined for continuous distributions, more on this in Section 4.

Theorem 1.2. For all instances of the FedEx problem
on n days, there exists a mechanism of menu complexity

O
(
n
√

min{n/ε,ln(vmax)}
ε/n

)
guaranteeing a (1− ε) approx-

imation to the optimal revenue.

In Theorem 1.2, observe that for any fixed instance,
as ε → 0, our bound grows like O(1/

√
ε) (because

eventually n/ε will exceed ln(vmax)). Similarly, our
bound is always O(n2/ε) for any vmax. Both of
these dependencies are provably tight for our approach
(discussed shortly in Section 1.3), and in general tight
up to a factor of

√
n log n.3

Theorem 1.3. For all n, there exists an instance of
the FedEx problem on n days with vmax = O(n), such
that the menu complexity of every (1−O(1/n2))-optimal
mechanism is Ω(n2).

We consider Theorems 1.2 and 1.3 to be our main
results, with Theorem 1.1 motivating the study of
approximation in the first place. Taken together, the
picture provided by these results is the following:

• Exactly optimal mechanisms can require exponen-
tial menu complexity (Theorem 1.1), while (1 − ε)-
approximate mechanisms exist with fully polynomial
menu complexity (Theorem 1.2).

• The menu complexity required to guaran-
tee a (1 − ε)-approximation is nailed down
within a multiplicative

√
n log n gap, and

lies in

[
Ω
(√

n/ log n ·
√

min{n/ε,ln(vmax)}
ε/n

)
,

O
(
n ·
√

min{n/ε,ln(vmax)}
ε/n

)]
(lower bound: Theo-

rem 1.3, upper bound Theorem 1.2).

1.3 Our techniques We’ll provide an intuitive proof
overview for each result in the corresponding technical
section, but we briefly want to highlight one aspect of
our approach that should be of independent interest.

It turns out that the problem of revenue maxi-
mization with bounded menu complexity really boils
down to a question of how well piece-wise linear func-
tions with bounded number of segments can approx-
imate concave functions (we won’t get into details
of why this is the case until Section 4). This is a
quite well-studied problem called polygon approxima-
tion (e.g. [Rot92, YG97, BHR91]). Questions asked here
are typically of the form “for a concave function f and

3The gap of
√
n logn comes as our upper bound approach

requires that we lose at most εOPT/n “per day,” while our lower

bound approach shows that any mechanism with lower menu
complexity loses at least εOPT on some day.
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interval [0, vmax] such that f ′(0) = 1, f ′(vmax) = 0, what
is the minimum number of segments a piece-wise linear
function g must have to guarantee f(x) ≥ g(x) ≥ f(x)−ε
for all x ∈ [0, vmax]?”

The answer to the above question is
Θ(
√
vmax/ε) [Rot92, YG97]. This bound certainly

suffices for our purposes to get some bound on the
menu complexity of (1− ε)-approximate auctions, but it
would be much weaker than what Theorem 1.2 provides
(we’d have linear instead of logarithmic dependence on
vmax, and no option to remove vmax from the picture
completely). Interestingly though, for our application
absolute additive error doesn’t tightly characterize what
we need (again, we won’t get into why this is the case
until Section 4). Instead, we are really looking for the
following kind of guarantee, which is a bit of a hybrid
between additive and multiplicative: for a concave
function f and interval [0, vmax] such that f ′(0) = 1,
f ′(vmax) = 0, what is the minimum number of segments
a piece-wise linear function g must have to guarantee
f(x) ≥ g(x) ≥ f(x)− ε− ε(f(vmax)− f(0))?

At first glance it seems like this really shouldn’t
change the problem at all: why don’t we just redefine
ε′ := ε(1 + f(vmax)− f(0)) and plug into upper bounds
of Rote for ε′? This is indeed completely valid, and
we could again chase through and obtain some weaker
version of Theorem 1.2 that also references additional
parameters in unintuitive ways. But it turns out that for
all examples in which this Ω(

√
vmax/ε) dependence is

tight, there is actually quite a large gap between f(0) and
f(vmax), and a greatly improved bound is possible (which
replaces the linear dependence on vmax with logarithmic
dependence, and provides an option to remove vmax from
the picture completely at the cost of worse dependence
on ε).

Theorem 1.4. For any concave function f and any
ε > 0 such that f ′(0) ≤ 1, f ′(vmax) ≥ 0, there
exists a piece-wise linear function g such that f(x) ≥
g(x) ≥ f(x)−ε(1+f(vmax)−f(0)) with Θ(

√
ln(vmax)/ε)

segments, and this is tight.
If one wishes to remove the dependence on vmax,

then one can replace the bound with Θ(1/ε), which is
also tight (among bounds that don’t depend on vmax).

The proof of Theorem 1.4 is self-contained and
appears in Section 4. Both the statement of Theorem 1.4
and our proof will be useful for future work on menu
complexity, and possibly outside of mechanism design as
well - to the best of our knowledge these kinds of hybrid
guarantees haven’t been previously considered.4

4Interestingly (and completely unrelated to this work), hybrid
additive-multiplicative approximations for core problems in on-

1.4 Related work
Menu complexity. Initial results on menu com-

plexity prove that for a single additive or unit-demand
bidder with arbitrarily correlated item values over just
2 items, there exist instances where the optimal (ran-
domized, with infinite menu complexity) mechanism
achieves infinite revenue, while any mechanism of menu
complexity C achieves revenue ≤ C (so no finite ap-
proximation is possible with bounded menu complex-
ity) [BCKW10, HN13]. This motivated follow-up work
subject to assumptions on the distributions, such as a
generalized hazard rate condition [WT14], or indepen-
dence across item values [DDT13, BGN17]. Even for a
single bidder with independent values for two items, the
optimal mechanism could have uncountable menu com-
plexity [DDT13], motivating the study of approximately
optimal mechanisms subject to these assumptions. Only
just recently did we learn that the menu complexity is
indeed finite for this setting [BGN17].

It is also worth noting that other notions of sim-
plicity have been previously considered as well, such
as the sample complexity (how many samples from a
distribution are required to learn an approximately op-
timal auction?). Here, quantitative bounds are known
for the single-item setting (where the menu complexity
question is trivial: optimal mechanisms have menu com-
plexity 1) [CR14, HMR15, DHP16, GN17], but again
only binary bounds are known for the multi-item setting:
few samples suffice for a constant-factor approximation
if values are independent [MR15, MR16], while expo-
nentially many samples are required when values are
arbitrarily correlated [DHN14]. In comparison to works
of the previous paragraphs, we are the first to nail down
“the right” quantitative menu complexity bounds in any
multi-dimensional setting.

One-and-a-half dimensional mechanism de-
sign. One-and-a-half dimensional settings have been
studied for decades by economists, the most notable ex-
ample possibly being that of a single buyer with a value
and a budget [LR96, CG00]. Recently, such problems
have become popular within the AGT community as op-
timal auctions are more involved than single-dimensional
settings, but not quite so chaotic as truly multidimen-
sional settings [FGKK16, DW17, DHP17]. Each of these
works focus exclusively on exactly optimal mechanisms
(and exclusively on positive results). In comparison,
our work is both the first to prove lower bounds on the
complexity of (approximately) optimal mechanisms in
these settings, and the first to provide nearly-optimal
mechanisms that are considerably less complex.

line learning have also found use in other recent directions in
AGT [DJF16, SBN17].
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Polygon approximation. Prior work on poly-
gon approximation is vast, and includes, for instance,
core results on univariate concave functions [Rot92,
BHR91, YG97], the study of multi-variate func-
tions [Bro08, GG09, DDY16], and even applications in
robotics [BGO07]. The more recent work has mostly
been pushing toward better guarantees for higher dimen-
sional functions. To the best of our knowledge, the kinds
of guarantees we target via Theorem 1.4 haven’t been
previously considered, and could prove more useful than
absolute additive guarantees for some applications.

1.5 Organization In Section 2, we formally de-
scribe the FedEx problem and recap the main result
of [FGKK16]. In Section 3 we present an instance of
the FedEx problem whose menu complexity for optimal
auctions is exponential, the worst possible. In Section 4
we present a mechanism that guarantees a (1-ε) fraction

of the optimal revenue with a menu complexity of O(n
2

ε ).
We also explain the connection between approximate
auctions and polygon approximation. In Section 5 we
present an instance of the FedEx problem that requires
a menu complexity of Ω(n2) in order to approximate the
revenue within 1−O(1/n2). In Section 7 we use similar
techniques to those of Section 3 to construct an example
resolving an open question of [DW17].5

For the sake of brevity, most proofs have been
omitted from this version. Please consult the full version
of this paper for detailed proofs.

2 Preliminaries

We consider a single bidder who’s type depends on
two parameters: a value v and a deadline i ∈ [n].
Deterministic outcomes that the seller can award are just
a day ∈ [n] to ship the item, or to not ship the item at all
(and the seller may also randomize over these outcomes).
A buyer receives value v if the item is shipped by her
deadline, and 0 if it is shipped after her deadline (or not
at all).

The types (v, i) are drawn from a known (possibly
correlated) distribution F . Let qi denote the probability
that the bidder’s deadline is i and Fi the marginal
distribution of v conditioned on a deadline of i. For
simplicity of exposition, in several parts of this paper
we’ll assume that F is supported on {0, 1, . . . , vmax} ×
{1, . . . , n}. This assumption is w.l.o.g., and all results

5Specifically, [DW17] ask whether the optimal mechanism for a

single buyer with a private budget and a regular value distribution

conditioned on each possible budget is deterministic. The answer
is yes if we replace “regular” with “decreasing marginal revenues,”
or “private budget” with “public budget.” We show that the

answer is no in general: the optimal mechanism, even subject to
regularity, could be randomized.

extend to continuous distributions, or distributions with
arbitrary discrete support if desired [CDW16].

We assume familiarity with the standard linear
program whose solution yields the revenue-optimal
auction for the FedEx problem. We only note here the
relevant incentive compatibility constraints (observed
in [FGKK16]). First, note that w.l.o.g. whenever the
buyer has deadline i, the optimal mechanism can ship
her the item (if at all) exactly on day i. Shipping the
item earlier doesn’t make her any happier, but might
make the buyer interested in misreporting and claiming
a deadline of i if her deadline is in fact earlier. Next note
that, subject to this, the buyer never has an incentive to
overreport her deadline, but she still might have incentive
to underreport her deadline (or misreport her value).

We will be interested in understanding the menu
complexity of auctions, which is the number of different
outcomes that, depending on the buyer’s type, are ever
selected. If π(v, i) denotes the probability that a buyer
with value v and deadline i receives the item, then we
define the i-deadline menu complexity to be the number
of distinct options on deadline i (|{p|∃v, π(v, i) = p}|).
The menu complexity then just sums the i-deadline
menu complexities, and we will sometimes refer also to
the “deadline menu complexity” as the maximum of the
i-deadline menu complexities.

2.1 Optimal auctions for the FedEx problem
Here, we recall some tools from [FGKK16] regarding
optimal mechanisms for the FedEx problem. The first
tool they use is the notion of a revenue curve.6

Definition 2.1. (Revenue curves) For a given
deadline i, define the ith revenue curve Ri so that

Ri(v) = qi · v · Pr
x←Fi

[x ≥ v].

Intuitively, Ri(v) captures the achievable revenue by
setting price v exclusively for consumers on deadline i.
It is also necessary to consider the ironed revenue curve,
defined below.

Definition 2.2. (Ironed revenue curves) For any
revenue curve Ri, define R̃i to be its upper concave
envelope.7 We say R̃i is ironed at v if R̃i(v) 6= Ri(v),
and we call [x, y] an ironed interval of R̃i if R̃i is not
ironed at x or y, but is ironed at v for all v ∈ (x, y).

Of course, it is not sufficient to consider each possible
deadline of the buyer in isolation. In particular, offering

6For those familiar with revenue curves, note that this revenue

curve is intentionally drawn in value space, and not quantile space.
7That is, R̃i is the smallest concave function such that R̃i(x) ≥

Ri(x) for all x.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



certain options on day i constrains what can be offered on
days ≥ i subject to incentive compatibility. For instance,
if some (v, i) pair receives the item with probability 1 on
day 1 for price p, no bidder with a deadline ≥ 1 will ever
choose to pay > p. So we would also like a revenue curve
that captures the optimal revenue we can make from
days ≥ i conditioned on selling the item deterministically
at price p on day i. It’s not obvious how to construct
such a curve, but this is one of the main contributions
of [FGKK16], stated below.

Definition 2.3. Let R≥n(v) := Rn(v), and r≥n :=
arg maxv R≥n(v). Define for i = n− 1 to 1:

R≥i(v) =

{
Ri(v) + R̃≥i+1(v) v < r≥i+1

Ri(v) + R̃≥i+1(r≥i+1) v ≥ r≥i+1.

Lemma 2.1. ([FGKK16]) R≥i(v) is the optimal rev-
enue of any mechanism that satisfy the following:

• The buyer can either receive the item on day i and
pay v, or receive nothing/pay nothing.

• The buyer cannot receive the item on any day < i.

Moreover, for any v1 < . . . < vk, and ai(1), . . . , ai(k) ≥
0 such that

∑
j ai(j) ≤ 1,

∑
j ai(j)R≥i(vj) is the optimal

revenue of any mechanism that satisfy the following:

• The buyer can receive the item on day i with
probability

∑
j≤` ai(j) and pay

∑
j≤` ai(j)vj, for

any ` ∈ [k] (or not receive the item on day i and
pay nothing).

• The buyer cannot receive the item on any day < i.

Finally, we describe the optimal mechanism provided
by [FGKK16], which essentially places mass optimally
upon each day’s revenue curve, subject to constraints
imposed by the decisions of previous days. First, simply
set any price p maximizing R≥1(p) to receive the item on
day 1 (as day 1 is unconstrained by previous days). Now
inductively, assume that the options for day i have been
set and we’re deciding what to do for day i+ 1. If the
menu options offered on day i are (π0, p0), . . . , (πk, pk)
(interpret the option (πj , pj) as “charge pj to ship the
item on day i with probability πj”), think of this instead

as a distribution over prices, where price
pj−pj−1

πj−πj−1
has

mass πj − πj−1.8 For each such price p, it will undergo
one of the following three operations to become an option
for day i+ 1.

• If p ≥ r≥i+1, move all mass from p to r≥i+1.

8This is the standard transformation between “lotteries” and
“distributions over prices” (e.g. [RZ83]).

• If R̂≥i+1 is not ironed at p, and p ≤ r≥i+1, keep all
mass at p.

• If R̂≥i+1 is ironed at p, and p ≤ r≥i+1, let [x, y]
denote the ironed interval containing p, and let
qx+ (1− q)y = p. Move a q fraction of the mass at
p to x, and a (1− q) fraction of the mass at p to y.

Once the mass is resettled, if there is mass ai(j) on
price pj for p1 < . . . < pk, the buyer will have the option
to receive the item on day i with probability

∑
j≤` ai(j)

for price
∑
j≤` ai(j)pj for any ` ∈ [k] (or not at all).

Note that due to case three in the transformation above,
there could be up to twice as many menu options on day
i as day i− 1.

Theorem 2.1. ([FGKK16]) The allocation rule de-
scribed above is the revenue-optimal auction.

3 Optimal Mechanisms Require Exponential
Menu Complexity

In this section we overview our construction for an
instance of the FedEx problem with vmax integral values
for each day and n ≤ log(vmax) days where the i-deadline
menu complexity of the optimal mechanism is 2i−1 for
all i (and this is the maximum possible [FGKK16]),
implying that the menu complexity is 2n − 1. Note that
the deadline menu complexity is always upper bounded
by vmax, so vmax must be at least 2n.

At a high level, constructing the example appears
straight-forward, once one understands Fiat et al.’s
algorithm (end of Section 2). Every menu option from
day i is either “shifted” to r≥i+1, “copied,” or “split.”
If the option is shifted or copied, it spawns only a single
menu option on day i + 1, while if split it spawns two
(hence the upper bound of 2n − 1). So the goal is just
to construct an instance where every option is split on
every day.

Unfortunately, this is not quite so straight-forward:
whether or not an option is split depends on whether it
lies inside an ironed interval in this R≥i curve, which is
itself the sum of revenue curves (some ironed and some
not), and going back and forth between distributions and
sums of revenue curves is somewhat of a mess. So really
what we’d like to do is construct the R≥i curves directly,
and be able to claim that there exists a FedEx input
inducing them. While not every profile (R≥1, . . . , R≥n)
of curves is valid, we do provide a broad class of curves
for which it is somewhat clean to show that there exists
a FedEx input inducing them.

From here, it is then a matter of ensuring that we
can find the revenue curve profiles we want (where for
every day i, every menu option is split, because it is
inside an ironed interval in R≥i) within our class. We’ll
highlight parts of our construction below.
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Lemma 3.1. For any vmax and n ≤ log(vmax), there
exists an input to the FedEx problem such that:

• R1 is maximized at vmax/2 (that is, R1(vmax/2) ≥
R1(x) ∀x) and has no ironed intervals.

• For all i > 1, R̃i has a maximizer at price
v ≥ 2i(2n−i − 1) and has ironed intervals
[2n−i + k2n−i+2, 2n−i + k2n−i+2 + 2n−i+1] for k ∈
{0, . . . , 2i−2 − 1}.

• R̃i (the ironed revenue curve) is a constant function
for all i ≥ 2.9

• R≥i has the same ironed intervals as Ri. In fact,
∀x, R≥i(x) = Ri(x) + c for some constant c.

As a result of this construction, we see that R≥i
has 2i−2 ironed intervals, whose endpoints themselves
lie in ironed intervals of R≥i+1. This guarantees that all
menu options from day i (which are guaranteed to be
endpoints of ironed intervals) are split into two options
on day i+ 1.

Theorem 3.1. The optimal mechanism for any in-
stance satisfying the conditons of Lemma 3.1 has i-
deadline complexity 2i−1 for all i, and menu complexity
2n − 1.

4 Approximately Optimal Mechanisms with
Small Menus

In this section, we describe a mechanism that at-
tains at least 1 − ε fraction of the optimal rev-
enue for any FedEx instance with menu complexity

O
(
n
√

n
ε min

(
n
ε , log vmax

))
, which proves Theorem 1.2.

Our main approach is to use the polygon approxima-
tion of concave functions applied to revenue curves. For
a sequence of points X in the domain of a function f , the
polygon approximation f̃X of a function with respect to
X is the piecewise linear function formed by connecting
the points (x, f(x)) for x ∈ X by line segments. Thus,
if the sequence X has n points, the function f̃X will
have n− 1 segments. For a concave function f , the line
joining (x1, f(x1)) and (x2, f(x2)) for any two points
x1 and x2, lies entirely below the function f . Thus,
for concave functions f , we have for any sequence X,
the value of f(x) − f̃X(x) ≥ 0. Typically, for a ‘good’
polygon approximation, one requires for ε > 0, that
f(x)− ε ≤ f̃X(x) ≤ f(x).

It turns out that the question of approximating
revenue with low menu complexity boils down to a

9Note that it is possible for two disjoint ironed intervals to have
the same slope.

question of approximating revenue curves with piecewise-
linear functions of few segments. The connection isn’t
quite obvious, but isn’t overly complicated. Without
getting into formal details, here is a rough sketch of
what’s going on:

• Recall the Fiat et al. procedure to build the optimal
mechanism: menu options from deadline i−1 might
be “split” into two options for deadline i if they lie
inside an ironed interval of R̃≥i. This might cause
the menu complexity to double from one deadline
to the next.

• Instead, we want to create at most k “anchoring
points” on each revenue curve. For a menu option
from deadline i− 1, instead of distributing it to the
endpoints of its ironed interval, we distribute it to
the two nearest anchor points.

• By Lemma 2.1, we know exactly how to evaluate
the revenue lost by this change, and it turns out this
is captured by the maximum gap between R̃≥i(·)
and the polygon approximation obtained to R̃≥i(·)
(this isn’t obvious, but not hard.

• Finally, it turns out that the i-deadline menu
complexity with at most k anchoring points is
at most 2k (also not quite obvious, but also not
hard). So the game is to find few anchoring points
that obtain a good polygon approximation to each
revenue curve.

Corollary 4.1. Consider a FedEx instance with n
deadlines. For all i ∈ {1, 2, · · · , n}, let gi be the function
R̃≥i defined in Definition 2.3, and let Xi be a sequence
of ki points in [0, r≥i] such that for all x ≤ r≥i, we
have gi(x) − εi ≤ g̃iXi

(x) ≤ gi(x). Then there exists a
mechanism with i-deadline menu complexity 2ki (and
menu complexity 2

∑
i ki) whose revenue is at least

OPT−
∑n
i=1 εi.

Here, OPT denotes the optimal revenue of the FedEx
instance.

At this point, it seems like the right approach is
to just set each εi = ε · OPT/n and plug into the best
existing bounds on polygon approximation. In some
sense this is correct, but the menu complexity bounds
one would obtain are far from optimal. The main
insight is that we know something about the curves
we wish to approximate: R̃(x) ≤ OPT for all x, and
we want to leverage this fact if it can give us better
guarantees. Additionally, if all values are integral in
the range {1, . . . , vmax}, we wish to leverage this fact
as well, as it implies that an additive ε loss is also OK,
as OPT ≥ 1. It turns out that both facts can indeed
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be leveraged to obtain much stronger approximation
guarantees than what are already known (essentially
replacing vmax with ln(vmax) in previous bounds), stated
in Theorem 4.1 below.

Theorem 4.1. For any ε > 0 and concave function
f : [0, vmax] → [0,∞) such that f(0) = 0, f+(0) ≤ 1,
f−(vmax) ≥ 010, there exists a sequence X of at most

O

(
min

{
1/ε,

√
log vmax

ε

})
points such that for all x ∈

[0, vmax],

f(x)− ε (1 + f(vmax)) ≤ f̃X(x) ≤ f(x).

The proof of Theorem 1.2 follows from Corollary 4.1
and Theorem 4.1 together with a little bit of algebra,
and is presented in the full version of this paper.

Finally, we remark on some alternative terms that
can be taken to replace vmax in Theorem 1.2. It will
become clear why these replacements are valid after
reading the proof of Theorem 1.2, but we will not further
justify the validity of these replacements here.

• First, for instances with integral valuations, we
may replace vmax everywhere with maxi r≥i. This
is essentially because we don’t actually need to
approximate R̃≥i on the entire interval [0, vmax],
but only the interval [0, r≥i].

• We may further define q = maxi r≥i/OPT for
any (not necessarily integral, possibly continuous)
instance, and replace vmax everywhere with q,
even for non-integral instances. This is essentially
because we only used the integrality assumption to
guarantee that OPT ≥ 1.

• Finally, if p≥i denotes the probability that the buyer
has value at least r≥i and deadline at least i, observe
that OPT ≥ r≥i ·p≥i. So if the probability of sale at
each r≥i is at least p, we may observe that q ≥ 1/p
(where q is defined as in the previous bullet) and
replace vmax with 1/p everywhere.

The bullets above suggest that the “hard” instances
(where some instance-specific parameter shows up in
order to maintain optimal dependence on ε) are those
where most of the revenue comes from very infrequent
events where the buyer has an unusually high value. Due
to the intricate interaction between different deadlines,
these parameters can’t be circumvented with simple dis-
cretization arguments, or by improved polygon approxi-
mations (provably, see Section 4.1), but it is certainly
interesting to see if other arguments might allow one

10We use f+ to denote the right hand derivative and f− to
denote the left hand derivative.

to replace log vmax with (for example) something like
log(n/ε).

4.1 A tight example for polygon approximation
It turns out that the guarantees provided by Theorem 4.1
are tight. Specifically, if no dependence on vmax is
desired, then 1/ε is the best bound achievable. Also,
if it’s acceptable to depend on both vmax and ε, then

the bound of
√

log vmax

ε in Theorem 4.1 is tight. Taken

together, this means that O

(
min

{
1/ε,

√
log vmax

ε

})
lies at the Pareto frontier of the dependences achievable
as a function of both vmax and ε. The examples proving
tightness of these bounds are actually quite simple, and
provably the worst possible examples.

Proposition 4.1. Let f be a concave function on
[0, vmax], and let there be no polygon approximation of f
using k segments for additive error ε. Then there exists
a concave function g over [0, vmax] satisfying:

• There is no polygon approximation of g using k
segments for additive error ε.

• f(0) = g(0), f+(0) = g+(0), f(vmax) = g(vmax),
f−(vmax) = g−(vmax).

• g is piecewise-linear with 2k segments.

5 Tightness of the approximation scheme

Finally, we construct an instance of the FedEx problem
that is hard to approximate with small menu complexity.
We try to reason similar to the example constructed in
Section 3, but things are trickier here. In particular,
the challenge in Section 3 was in mapping between
distributions and revenue curves. But once we had the
revenue curves, it was relatively straight-forward to plug
through Fiat et al.’s algorithm [FGKK16] and ensure
that the optimal auction had high menu complexity.

Already nailing down the behavior of an optimal
auction was tricky enough, but we now have to consider
every approximately optimal auction (almost all of which
don’t necessarily result from Fiat et al.’s algorithm (see,
e.g. Section 4)). Indeed, one can imagine doing all
sorts of strange things on any day i that are suboptimal,
but might somehow avoid the gradual buildup in the
i-deadline menu complexity.11

To cope with this, our approach has two phases:
first, we characterize a restricted class of auctions that
we call clean. At a very high level, clean auctions never

11For example, an ε-approximate menu could set price 0 or ∞
with probability ε for shipment on any day, or something much
more chaotic.
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make “bizarre” choices on day i that both decrease the
revenue gained on day i and strictly increase constraints
on choices available for future days. To have an example
in mind: if the revenue on day 1 is maximized by setting
a price of 1, it might make sense to set price 2 to receive
the item on day 1 instead, as this relaxes constraints on
future days, and maybe this somehow helps when also
constrained by menu complexity. But it makes no sense
to instead set price 1/2: this only decreases the revenue
achieved on day 1, and provides stricter constraints on
future days (as now she has the option to get the item
on day 1 at a cheaper price).

For our example, we first show that all clean auctions
that maintain a good approximation ratio must have
high menu complexity. We then follow up by making
the claims in the previous paragraph formal: any
arbitrary auction of low menu complexity can be derived
by “muddling” a clean auction, a process which never
increases the revenue. A little more specifically, cleaning
the menu for deadline i can only increase the revenue
and allow more options on later deadlines, without
increasing the menu complexity. We conclude with
a formal statement of our lower bound, which proves
Theorem 1.3.

Theorem 5.1. There exists an instance of the FedEx
problem such that for any mechanism that has at most
n/8 menu options on a day i ∈ (n/4, n/2], it has revenue
at most OPT

(
1− 1

200000n2

)
.

6 Conclusions and Future Work

We provide the first nearly-tight quantitative results on
menu complexity in a multi-dimensional setting. Along
the way, we design new polygon approximations for a
hybrid additive-multiplicative guarantee that turns out
to be just right for our application (as evidenced by the
nearly-matching lower bounds obtained from the same
ideas).

There remains lots of future work in the direction
of menu complexity, most notably the push for tighter
quantitative bounds in “truly” multi-dimensional set-
tings, where the gaps between upper (exponential) and
lower (polynomial) are vast. We believe that continuing a
polygon approximation approach is likely to yield fruitful
results. After all, there is a known connection between
concave functions and any mechanism design setting via
utility curves, and low menu complexity exactly corre-
sponds to piece-wise linear utility curves with few seg-
ments. Still, there are two serious barriers to overcome:
first, these utility curves are now multi-dimensional in-
stead of single-dimensional revenue curves. And second,
the relationship between utility curves and revenue is
somewhat odd (expected revenue is equal to an integral

over the support of ~x ·∆f (~x) − f(~x)), whereas the re-
lationship between revenue curves and revenue is more
direct. There are also intriguing directions for future
work along the lines of one-and-a-half dimensional mecha-
nism design, the most pressing of which is understanding
multi-bidder instances (as all existing work, including
ours, is still limited to the single-bidder setting).

7 Instances with regular distributions may
require randomness

For single-dimensional settings, it’s well-understood that
“the right” technical condition on value distributions
to guarantee a simple optimal mechanism is regularity.
This guarantees that “virtual values” are non-decreasing
and removes the need for ironing, even for multi-
bidder settings. Interestingly, “the right” technical
condition on value distributions to guarantee a simple
optimal mechanism for 1.5 dimensional settings is no
longer regularity, but decreasing marginal values. For
example, if all marginals satisfy decreasing marginal
values, the optimal mechanism is deterministic for the
FedEx problem [FGKK16], selling a single item to a
budget-constrained buyer [CG00, DW17], and a capacity-
constrained buyer [DHP17].

Still, regularity seems to buy something in these
problems. For instance, Fiat et al. show that when there
are only two possible deadlines, regularity suffices to
guarantee that the optimal mechanism is deterministic.
It has also been known since early work of Laffont
and Robert that regularity suffices to guarantee that
the optimal mechanism is deterministic when selling
to a budget-constrained buyer with only one possible
budget [LR96]. But the extent to which regularity
guarantees simplicity remained open (and was explicitly
stated as such in [DW17]). In this section, we show
that regularity guarantees nothing beyond what was
already known. In particular, there exists an instance of
the FedEx problem with three possible deadlines where
all marginals are regular but the optimal mechanism is
randomized. This immediately implies an example for a
budget-constrained buyer and three possible budgets as
well (for instance, just set all three budgets larger than
vmax so they will never bind).

In the full version of this paper we describe our
instance of the FedEx problem where the optimal auction
is randomized, despite all marginals being regular and
there only being 3 possible deadlines (recall that Fiat et
al. show that the optimal auction remains deterministic
for regular marginals and 2 deadlines).
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