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Abstract

Face alignment has been extensively studied in com-

puter vision community due to its fundamental role in facial

analysis, but it remains an unsolved problem. The major

challenges lie in the highly nonlinear relationship between

face images and associated facial shapes, which is coupled

by underlying correlation of landmarks. Existing methods

mainly rely on cascaded regression, suffering from intrin-

sic shortcomings, e.g., strong dependency on initialization

and failure to exploit landmark correlations. In this pa-

per, we propose the direct shape regression network (DSRN)

for end-to-end face alignment by jointly handling the afore-

mentioned challenges in a unified framework. Specifically,

by deploying doubly convolutional layer and by using the

Fourier feature pooling layer proposed in this paper, DSRN

efficiently constructs strong representations to disentangle

highly nonlinear relationships between images and shapes;

by incorporating a linear layer of low-rank learning, DSRN

effectively encodes correlations of landmarks to improve

performance. DSRN leverages the strengths of kernels for

nonlinear feature extraction and neural networks for struc-

tured prediction, and provides the first end-to-end learn-

ing architecture for direct face alignment. Its effectiveness

and generality are validated by extensive experiments on

five benchmark datasets, including AFLW, 300W, CelebA,

MAFL, and 300VW. All empirical results demonstrate that

DSRN consistently produces high performance and in most

cases surpasses state-of-the-art.

1. Introduction

Face alignment or facial landmark detection has recently

drawn significant attention in computer vision due to its

fundamental role in various applications, including facial

image analysis e.g. face recognition [36, 35], face verifi-
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cation [45], and facial attribute analysis [2]. Face align-

ment is the task of estimating a set of predefined key points,

known as landmarks, providing the semantic description

of facial shapes. Face alignment has been studied exten-

sively in recent years, but several aspects of it remain un-

resolved. Its great challenges stem from the nonlinear re-

lationship between input images and output shapes, since

images are usually represented by low-level features while

facial shapes contain high-level semantic meanings. Mean-

while, landmarks are spatially correlated, which can also be

exploited for more robust and accurate alignment.

Cascaded regression has been a popular method for face

alignment and made significant progress in the past decades.

Nevertheless, the cascaded regression model suffers from

intrinsic shortcomings. It is an indirect method and pro-

gressively estimates shape increments in an iterative way,

with results highly dependent on initialization. Therefore,

the final solution of cascade models is prone to getting

trapped in local optima when the initialized shape is far

from the true shape. Cascade models rely on local fea-

ture descriptors, and only the regions around landmarks are

passed through the feature extractor. As a result, the se-

mantic information of faces and correlations between land-

marks are largely overlooked. Moreover, cascaded mod-

els extract handcrafted features, e.g., SIFT [19], which fail

to leverage the strength of convolutional neural networks.

In addition, those local descriptors need to be calculated in

each iteration based on updated shapes, which can be time-

consuming and makes it hard to integrate feature learning

into one single architecture for end-to-end learning.

In this paper, we propose direct shape regression net-

works (DRSN) to directly predict facial landmarks from im-

ages without relying on cascaded regression. DSRN tackles

the aforementioned challenges by jointly modeling input-

output relationships and landmark correlations in a com-

pact end-to-end learning architecture which is composed of

one doubly convolutional layer, one Fourier feature pooling

layer, and one low-rank learning layer as illustrated in Fig 1.

4321





Xiong et al. proposed a supervised descent method

(SDM) [42] to address the cascaded regression problem

by optimizing non-linear least squares based on SIFT [19]

features. Zhu et al. use a coarse-to-fine shape search-

ing method to locate the landmarks. That method is ro-

bust to large pose variation [54]. To achieve high perfor-

mance, they employ multiple hybrid handcrafted features,

e.g., SIFT, HOG and BRIEF etc, as local descriptors. Sup-

port vector regression and random forests are used by [41]

for face alignment from the local image patch. By using

Markov random field to model the spatial relations of land-

marks, they try to resolve the predictions uncertainties. Al-

though direct face alignment without using cascaded regres-

sion has been previously explored in [52], it is based on

handcrafted features and not in an end-to-end manner.

With the great success of deep learning in feature repre-

sentation, some methods use convolutional neural networks

(CNNs) to learn the features or deep models to represent

the regressors. Sun et al. [34] constructed a deep convo-

lutional network cascaded structure to detect facial points,

with multi-level regression networks. Liu et al. [17] not

only consider the spatial domain, but also use recurrent neu-

ral networks (RNN) to get the temporal information in the

video-based face alignment datasets.

However, most deep learning-based models are still

based on cascaded regression, which is sensitive to im-

proper shape initialization. Some recent methods [7, 6]

attempt to solve this problem by running algorithms more

than one times, but the dependence on shape initializa-

tion is still not totally avoided. Lv et al. [20] use a two-

stage regression method. It uses spatial transformer net-

works [12] to transform the full face and face parts to canon-

ical shape respectively in two stages. They call this step re-

initialization. However, this method does not optimize the

network parameters in the two stages jointly. The first end-

to-end recurrent convolutional system for face alignment

was proposed in [37]. They use CNNs to extract features

and a connected RNN to approximate the cascaded process.

The main difference from our end-to-end learning is that

our method is direct shape regression which starts with a

raw image and directly predicts coordinates of landmarks

on facial shapes rather than estimating shape increments it-

eratively. Bulat et al. [5] propose a method that can also

map 2D facial landmarks to 3D. We should also mention the

method in [4], which is a facial alignment method explicitly

designed to be lightweight and suitable for devices with lim-

ited computational resources. Obviously, our method has a

different scope as it is designed for usage with modern desk-

top computers.

Recently, Zhang et al. [50] develop a multi-task deep

learning framework to do the landmark detection and simul-

taneously learning the auxiliary attributes, such as beard,

gender, wearing glasses. Unlike other related methods, they

do not use cascaded steps, formulating instead face align-

ment as a multi-task learning problem. However, they need

to use auxiliary information, e.g, facial attributes, during the

training stage to ensure the performance for face alignment

in the test stage. In contrast, our method directly associates

images with the facial shapes by learning the mapping be-

tween them with no need for other training information.

In contrast to the existing methods for face alignment,

our DSRN is, to the best of our knowledge, the first method

that achieves direct shape regression in an end-to-end learn-

ing framework, without relying on cascaded regression.

DSRN addresses the central issue of face alignment by ef-

fectively disentangling the highly nonlinear relationship be-

tween images and facial shapes while simultaneously en-

coding correlations of landmarks on the shape. It leverages

the strengths of neural networks for structured prediction

and kernels for nonlinear feature extraction.

3. Direct Shape Regression Network

In this section, we introduce our direct shape regression

network (DSRN). We start with the problem formulation in

§3.1 and describe in detail the key components of DSRN,

that is, the doubly convolutional layer in §3.2, the Fourier

feature pooling layer in §3.3, and the linear low-rank learn-

ing layer in §3.4. We conclude by summarizing the end-to-

end learning architecture for direct face alignment in §3.5.

3.1. Preliminaries

Face alignment is the task of finding a mapping from

an input image I to the facial shape S represented by

the coordinates of landmarks in the form of a vector,

[x1, y1, · · · , xN , yN ]> ∈ R
2N , where N is the number of

landmarks. DSRN directly predicts shapes from images

in an end-to-end learning architecture, which handles ma-

jor challenges of face alignment in one single framework.

Specifically, the doubly convolutional layer in conjunction

with the Fourier pooling layer are used for effective nonlin-

ear feature extraction, to model the nonlinear relationship

between images and shapes; the linear low-rank learning

layer explicitly encodes intrinsic correlations of landmarks

in a data-driven way for robust and improved estimation.

3.2. Doubly Convolutional Layer

Image representation plays a fundamental role in face

alignment. Hand-crafted features, e.g., SIFT [19] and

HoGs [9], were extensively used in previous methods [54,

55, 10, 42]. The convolutional neural network (CNN) has

recently emerged as a powerful tool for feature extraction

and shown great success in diverse visual tasks [57].

However, the size of training data is relatively small in

face alignment, while images exhibit great appearance vari-

ation and face shapes show huge variability. This poses

great challenges to conventional CNNs. Instead of using
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Instead of approximating kernels by random sampling

from data-independent distributions, we learn the parame-

ters {ω, b} from data in a supervised way, which enables

more compact but highly discriminative feature represen-

tations. Define W = [ω1, · · · ,ωd] ∈ R
d×c and b =

[b1, · · · , bd]. We define a nonlinear layer of neural networks

with cosine activations:

φi = cos(Wxi + b) , (4)

where cos is an element-wise function, i indicates the i-th

location in the feature map X , and W is the weight matrix

of the nonlinear layer. The induced Fourier feature pooling

layer can be seamlessly integrated with the doubly convolu-

tional layer to achieve a fully end-to-end learning architec-

ture that can be trained via back-propagation.

To achieve a holistic representation, we concatenate

the embedded feature vectors into a single vector z =
[φ1, · · · ,φi, · · · ,φp] ∈ R

D, where p = w × h, i.e., the

number of locations. In contrast to feature pooling tech-

niques by directly summing up the feature vectors, the con-

catenation can well preserve the spatial information of im-

ages, which is of great importance for predicting the spatial

locations of facial landmarks.

3.4. Low­rank Learning Layer

We propose a simple but effective layer to encode cor-

relations of landmarks by linear low-rank learning. Having

the holistic representation z, a straightforward way for pre-

diction is to use a fully connected layer with the regression

matrix represented by M ∈ R
Q×D, where Q is the number

of outputs, i.e., Q = 2N , which gives y = Mz. An identity

activation function is used by default. Although sharing the

holistic representations, landmark correlations are not ex-

plicitly encoded. Low-rank constraints, such as the nuclear

norm [51], could be simply imposed to force the regression

matrix M to be low rank, but this does not always guar-

antee low-rankness of M , and can fail to fully capture the

correlations. Instead of using one fully connected layer, we

propose linear low-rank learning layer to explicitly encod-

ing correlations of landmarks.

Specifically, we propose the low-rank learning layer by

replacing the single matrix M with multiplication of two

low-rank matrices, which gives rise to

y = Mz = U>V z , (5)

where U ∈ R
P×Q, V ∈ R

P×D and P ≤ Q. The lin-

ear function provides a low-rank layer to explicitly encode

inter-output correlations. U and V are learned in a data-

driven way without relying on any specific assumptions,

and can adaptively capture specific correlations in different

applications.

Low-rank learning brings two attractive advantages com-

pared to nuclear norm based minimization. First, it estab-

lishes an overall mapping of M with guaranteed low rank-

ness to explicitly encode correlations; related outputs are

forced to share similar regression parameter patterns [53],

and thus knowledge is transferred across correlated outputs.

This can significantly improve the overall prediction per-

formance. Second, low-rank learning avoids solving com-

plicated rank-constrained problems and leverages the great

effectiveness of linear learning, which enjoys great compu-

tational efficiency; by setting P � Q, the low-rank learning

can greatly reduce the number of parameters, which is espe-

cially advantageous when using iterative optimization with

stochastic gradient descent [29].

3.5. End­to­End Direct Face Alignment

The doubly convolutional layer, the Fourier pooling

layer and the low-rank learning layer are used to define

our direct shape regression network (DSRN), which is a

novel compact end-to-end learning architecture for direct

face alignment. In contrast to the cascaded regression mod-

els, DSRN is trained in one single framework by back-

propagation by directly associating images with the coordi-

nates of landmarks on facial shapes; in the test stage, DSRN

predicts facial shapes of input images by simple matrix mul-

tiplications rather than iterative optimization, which leads

to improved efficiency. More importantly, the proposed

DSRN is highly generalizable and can be readily adapted

to other structured prediction tasks with multiple continu-

ous outputs.

4. Experiments Results

We have conducted extensive experiments on five bench-

mark datasets, and we provide a comprehensive comparison

with state-of-the-art methods. The proposed direct shape re-

gression network (DSRN) consistently yields high accuracy

for face alignment, and in most cases outperforms previ-

ous methods by large margins. Moreover, the consistently

high performance on the five diverse face alignment tasks

demonstrates the generality of our method.

4.1. Datasets

The five datasets used in our experiments are commonly

used benchmarks for face alignment. Faces in the datasets

are collected in uncontrolled scenarios, demonstrating great

variations, which pose significant challenges for face align-

ment. We provide the detailed description of those datasets

to facilitate direct comparison with previous work under the

same experimental settings.

AFLW [15] contains a total of 24386 face images gath-

ered from Flickr. In contrast to other databases limited

to frontal views or acquired under controlled conditions.

AFLW faces are collected in the wild, have large-scale
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Table 1: Comparison on AFLW.

Method Error Year

CDM [43] 5.43 2013

PCPR [6] 3.73 2013

ERT [13] 4.35 2014

SDM [42] 4.05 2013

LBF [24] 4.25 2014

PO-CR [38] 5.32 2015

CFSS [54] 3.92 2015

CLL [55] 2.72 2016

DAC-CSR [10] 2.27 2017

DRA-TSR [20] 2.17 2017

DSRN 1.86

pose variations up to ±90◦ and also have large variety in

face appearance (e.g., pose, expression, ethnicity, gender).

Each image is annotated with 21 landmarks. Following the

experimental settings of cascaded compositional learning

(CLL) [55], we ignore the two ear points and use the same

20000 and 4386 images for training and test, respectively.

300W [26, 27] consists of several datasets including

AFW [56], HELEN [16], LFPW [2], XM2VTS [21]. In ad-

dition, it contains a challenging 135-image IBUG [31] set.

Following the same dataset configuration in [54], our train-

ing set of 3148 images consists of the full set of AFW and

the training sets of HELEN and LFPW. The full test set (689

images) is divided into a “common subset” (554 images),

which contains the test sets from LFPW and HELEN, and

a “challenging subset” (135 images) which is from IBUG.

300W has a 68-points annotation for each face image.

CelebA [18] is a large-scale face dataset with 202599

images. CelebA provides 5 landmarks of the facial shape

for each image. The images show large pose variations and

background clutter. Because of large diversities and large

quantities, CelebA is suitable for training and testing a deep

learning model. Following the original work [18], 182631

and 19926 images are used respectively for the training and

test sets.

MAFL is a subset of CelebA. To benchmark with pre-

vious methods, we follow the experimental settings in [50].

Specifically, we sample the same 20000 faces from CelebA

and select the same 1000 faces for testing as in [50].

300VW [31] is a video-based face alignment dataset

which contains 114 videos from different conditions. We

extract face images from the same 50 videos as [31] to train

the model, and the remaining 64 videos are divided into

three test sets.

4.2. Implementation Details

We use four doubly convolutional layers and four pool-

ing layers for the feature extraction task. Multiple feature

maps are produced in each convolutional layer. Following

each convolution operation, we use rectified linear unit as

activation function and the 5 × 5, 5 × 5, 3 × 3, 3 × 3 max

pooling. After that, the Fourier pooling layer is added to the

feature maps X ∈ R
8×8×256. In Fourier pooling, we obtain

X
′

∈ R
8×8×d first, where the value of d may be changed

depending on the size of training samples and the number

of landmarks in the task. Then we do simple concatenation

for X
′

to achieve the holistic representation.

In the low-rank learning layer, we do not use any

nonlinear activtion functions but just the linear function

with identity activations. The commonly used weight

decay and batch normalization [11] techniques are also

used. The parameter for weight dacay is 0.001. We em-

ploy the stochastic optimization algorithm Adam [14] to

learn the parameters of the neural network. The mini-

batch size is set to 64. The codes are available at

https://github.com/xinxinmiao/DSRN.

For all experiments, the original bounding box given by

the dataset is used, without any data augmentation. For

the 300W dataset, due to the size of the training set be-

ing relative small, we pre-train our model on the large-scale

300VW dataset which has the same number, 68, of land-

marks, and fine tune it on the training set of 300W to obtain

the final model.

We use the normalized mean error (NME) as the evalua-

tion metric, which is defined as follows:

NME =
1

N

∑N

i=1

√

(x̂i − xi)2 + (ŷi − yi)2

d
, (6)

where (x, y) and (x̂, ŷ) denotes the ground truth and pre-

dicted coordinates, respectively, N denotes the number of

landmarks on facial shapes, and d is the distance for nor-

malization.

Following previous work, for 300W, CelebA, MAFL and

300VW, we use the inter-ocular distance to normalize the

mean error; for AFLW, we use face size to normalize mean

error since the inter-ocular distance of many faces is close

to zero. For brevity, % is omitted in all tables. We also

show the evaluation results in the form of cumulative error

distribution (CED) curve for comprehensive comparison.

4.3. Performance and Comparison

Our DSRN consistently achieves high performance on

all five datasets and outperforms previous methods in most

cases by large margins.

On AFLW, as shown in Table 1, DSRN achieves the best

error rate, 1.86%, compared to the previous best error rate

of 2.17% [20]. In Fig 4 (a), the curve of our DSRN is clearly

above those of other methods, which also indicates the per-

formance advantages. Compared with those methods based

on cascaded regression, our DSRN can detect the landmarks

for side faces accurately as shown by the intuitive illustra-

tion in the fourth and seventh images of Fig 5 (a).
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