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ABSTRACT

One of the common modalities for observing mental activity
is electroencephalogram (EEG) signals. However, EEG
recording is highly susceptible to various sources of noise and
to inter subject differences. In order to solve these problems
we present a deep recurrent neural network (RNN)
architecture to learn robust features and predict the levels of
cognitive load from EEG recordings. Using a deep learning
approach, we first transform the EEG time series into a
sequence of multispectral images which carries spatial
information. Next, we train our recurrent hybrid network to
learn robust representations from the sequence of frames. The
proposed approach preserves spectral, spatial and temporal
structures and extracts features which are less sensitive to
variations along each dimension. Our results demonstrate
cognitive memory load prediction across four different levels
with an overall accuracy of 92.5% during the memory task
execution and reduce classification error to 7.61% in
comparison to other state-of-art techniques.

Index Terms— RNN, LSTM, Softmax, EEG, FFT.

1. INTRODUCTION

EEG is a noninvasive neuroimaging modality which
measures the electrical signal changes on the scalp induced
by cortical activity. Using the classical blind source
separation analogy (ICA), EEG data can be considered
similar to multi-channel speech signals obtained from several
electrodes. These electrodes record signals and modulate the
cortical activities. Recent EEG-based mental state
recognition techniques used manual feature selection from
time series and applied supervised machine learning
techniques to learn discriminative manifolds between the
states [2]. But the main challenge in correctly recognizing
mental states has been to construct a model that is robust to
signal noise and distortion. Variations occur due to the
presence of inter-subject differences and signal acquisition
constraints. However most of variations originate from
differences in individual cortical mapping. Spatial variations
in responses may also be caused by imperfect placing of caps
at predetermined cortical regions and heads of different
shapes. The source code for this paper is available on
http://omega.uta.edu/~spk7522/Cognitive/EEG/

The proposed deep learning approach learns representations
from EEG data and appears to be more robust to inter subject
differences and unwanted acquisition noise. We transform
EEG data into a multi-dimensional array tensor and obtain a
sequence whose topology retains spatial information. Once
such multi-spectral frames are obtained, we train those video
frame sequences using our proposed recurrent architectures.
We use a convolutional neural network (ConvNet) to extract
the spatial and spectral invariant EEG representations, and an
RNN to extract temporal patterns in sequential frames.
Overall our proposed model is able to preserve the spectral,
spatial and temporal structure of EEG data and extract more
robust features for further analysis.

2. RELATED WORK

In recent years deep neural networks have achieved great
success in classification [4, 5] and pattern recognition tasks
[19] within a wide range of speech, text, video and image
applications. ConvNets have demonstrated the ability to
extract features that are invariant to translation, deformation
(rigid/mon-rigid) and rotation of input patterns [20]. In
handwriting and speech recognition [7, 16], the RNN
architecture has delivered state-of-the-art performance using
the temporal sequence dynamics. A combination of ConvNet
and RNN networks has been used for video classification [9,
1], and extracting representations from EEG series [15, 8] to
evaluate medical diagnostic accuracy. ConvNets have
already been used to learn features from Magnetic Resonance
Imaging (resting state and stimulus driven fMRI) with
moderate datasets [12]. Despite the successes, deep neural
network applications remain relatively unexplored in
neuroimaging area.

3. METHODS
The human brain contains many diverse networks which are
responsible for many specialized tasks like working memory
(WM).The WM retains information for a short duration and
it is crucial for brain information manipulation. Working
memory capacity can limit the individual’s ability in a range
of cognitive tasks [8]. Increasing the cognitive load over an
individual’s capacity can lead to a state of confusion and
diminishes learning ability [21]. Therefore, recognizing


http://omega.uta.edu/~spk7522/Cognitive/EEG/

individual working memory loads is important for
applications such as human computer interaction and brain
computer interfaces.

3.1. Data Recording and Preprocessing

We collected our datasets from the EEG cognitive database
of the Psychopharmacology Department, NIMHANS.
Twenty five subjects (ten female) of age 16-28 performed a
standard WM experiment. EEG signals were recorded from
64 electrodes placed over the scalp at standard 10-20
locations. The data were acquired at 256 Hz through each
channel from Neurofax EEG-1200 (Nihon Kohden) machine.
The raw EEG signals were then filtered through a band pass
filter to remove unwanted signals. Three subjects’ data were
excluded because of noise and artifacts. The digitalized data
were then ported to a computer workstation for further

analysis.
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Figure 1: Working memory experiment diagram.

Feedback Next Trial

Figure 1 illustrates the experiment process. First, an array of
English characters in SET was shown for 0.5 seconds and
participants were instructed to memorize the characters. A
TEST character was shown after 4 seconds and participants
indicated whether the test character was in the SET array or
not by pressing a button. Each participant repeated the
experiment for 320 times. In each trial the number of
characters were randomly chosen from the set {4, 6, 8, 10}.
These characters determined the quantity of cognitive load
introduced to the subject. We labeled each of the task
conditions containing 4, 6, 8, 10 characters with loads 1- 4
respectively. The brain activity was recorded during the
above 4.5 seconds trial in which patients kept information in
their memory and recognized as a mental workload. A total
of 6490 correctly responded samples were collected from 22
subjects and assigned to four different classes corresponding
to loads from 1 to 4. The task of the classification was to
recognize load levels corresponding to the character set size
from recordings. EEG signals from each trial of 4.5 sec were
sliced into 0.5 sec pieces through an offline windowing
process, and an image was constructed over each time slice,
to produce nine frames for training. We followed the leave-
subject-out cross validation technique [13] by repeatedly
splitting 22 fold dataset into test, validate, training datasets
and evaluated the performance of classifier.

3.2. EEG Feature
On each subject trail the time intervals from SET to TEST
were recorded for each electrode and these time spans

contained the total encoding and maintenance stages of the
WM operation. The power spectra for each time sliced
window (0.5 sec) was estimated by applying Fast Fourier
transform (FFT). In our EEG analysis the whole frequency
spectrum were divided into three sub-bands: theta (4-7Hz),
alpha (8-13Hz), beta (13-30 Hz). Based on numerous
evidence the above three frequency bands were chosen for
our cognitive experiment [3] and aggregated the feature
vectors. The mean spectral power within the three sub-bands
was calculated by averaging associated FFT magnitudes and
considered as a feature. Finally the 192 features (64 channels
x 3 bands) were combined to form a big feature vector.
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Fi-gure 2: Image based representation of EEG signals

3.3. Images from Multichannel Time Series (EEG)

The EEG signal included multivariate time series which
correspond to measurements across spatial cortex locations.
We computed the sum of the squared absolute power values
for each of the theta, alpha and beta frequency bands
associated with each electrode. We then transformed the
measurements into 2D images to preserve spatial structures
and corresponding color channels to represent the spectral
dimensions. Finally image frame sequences were derived
from consecutive time windows and accounted for our
temporal evolutions. In our experiment we projected scalp
electrode locations from 3D space to 2D surface [8] and
transformed spatially distributed activity maps as 2D frames.
The Azimuthal Equidistant (Polar) Projection technique [10,
8] was used to preserve relative distance between neighboring
electrodes. The x and y dimensions of the image represented
the spatially distributed activities over the cortex. We applied
Clough Tocher technique [11] to interpolate scattered power
over scalp and estimated intermediate electrode values over a
32x 32 mesh. This procedure, repeated for each of the three
sub-bands, resulted into three topographical activity maps.
The spatial maps were merged together to form color images
with 3 channels and was presented as input to ConvNet
(Figure 2).

4. NEURAL NETWORK MODELS

We adopted a hybrid combination of ConvNet and RNN
(Figure 3) to deal with the inherent structures of EEG data.
The ConvNet was used to handle the variations in space and
frequency domains because of its ability to learn 2D data

representations. The extracted ConvNet feature vectors (FV)
were fed into recurrent LSTM layers to learn the temporal
variations. We evaluated the cognitive state classification
problem using multi frame approach. Each trial was divided
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Figure 3: Our proposed framework overview: (i) EEG signals from multiple cortex locations (ii) FFT and topographical maps (iii) Spectral
maps combined to form 3 channel images, (iv) ConvNet FV and LSTM for representation learning (v) Softmax classification.

into 0.5 sec time slices, images were constructed over each
time window, and those images were used as input to our
network.
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Figure 4: Convolutional neural network architecture configuration

4.1. Convolutional Neural Network Architecture (CNN)
Our ConvNet network is summarized in Figure 4. It contained
nine conv layers and one fully connected layer. The input
color image to ConvNet was a fixed size of 32x32. The image
was passed through a stack of conv layers with a small 3x3
receptive field and stride 1. To restore the spatial resolution,
intermediate conv layer inputs were zero padded of one pixel.
All hidden layers were equipped with ReLU non-linearity.
Multiple conv layers were stacked together and then followed
by a 2 x 2 max-pool layer with stride 2. Finally the conv layer
parameters were denoted as “conv <receptive field size>-
<number of channels>".

4.2. Recurrent Neural Networks (RNN)

The ConvNet outputs were reshaped as sequences of frames
and later used to investigate the temporal sequence in maps.
Inspired by deep learning video classification techniques [1]
we evaluated two models 1) Bidirectional LSTM (BiLSTM)
and 2) Long Short-Term Memory (LSTM) to extract the
temporal information (Figure 5). The RNN model [14]
considered the sequence of CNN activations, processed
forward inputs x = {xi... Xr}, computed hidden vector h =
{hi... hr} and output responses y = {yi... yr} by iterating
equations fromtime t=1to T: hi=H (Wxn X x¢+ Wnnx heg
+ bn); Yt = Why X h¢ + by. The W, b and h terms denotes weight,
bias and hidden function respectively. The brain activity is a
dynamic process which shows the temporal fluctuation over
time. These temporal variations among frames might contain
useful information about the underlying mental states. Given

the dynamic nature of neural responses, RNN framework
appeared to be reasonable modeling the temporal brain
dynamics. The hidden function (h) for our LSTM network
was computed by the below set of equations:

1t =0(Wxi X X¢+ Wpi X hi-1 + Wi X ¢-1+ by) (1
fi = o(Wxe X X¢ + Wit X hy1 + Wee X ¢+ br) 2)
Ct= ft X C-1 T+ it x tanh (ch X X+ th X ht*l + bc) (3)
0t = 6(Wxo X Xt + Who X hi1 + Weo X ¢+ bo) 4)
hy= o, x tanh(cy) (5)

where o is the sigmoid function. The LSTM model
components: input, forget, cell activation vector and output
gate were denoted as i, f, ¢, and o respectively. According to
our dataset limits we used two LSTM layers each with 64
memory cells. The complete LSTM sequence of frames were
propagated to FC layer (Figure 5) and prediction was made
by Softmax classifiers. Bidirectional LSTMs [6, 7] processed
the EEG data in both forward and backward directions using
two separate hidden layers and can access long frames in both
input directions. As illustrated in Figure 5, BiLSTM
computed backward hidden sequencef, forward hidden
sequence % and updated output y; by iterating backward
layer from t =T to 1 and forward layer fromt=1 to T [7].
Hence at every point in a given time sequence, BiLSTM had
the information about all points before and after it.

5. NETWORK TRAINING

Our ConvNet network was trained by optimizing the cross-
entropy cost function using stochastic gradient decent (SGD)
and backpropagation. We trained our RNN network with
Adam parameter update and a learning factor of 1 x10™*. The
first and second momentum decay rates were set to 0.90 and
0.99 respectively. The batch sizes were set to 30 and training
was regulated by L, weight decay of 0.0001. To overcome
the overfitting issue we adopted dropout method [5] with a
probability of 0.5 in FC layer. The network parameters
converged after around 900 iterations with six epochs. The
data was augmented by adding Gaussian noise to the image.
We experimented with various noise levels. Our
implementation was derived from publicly available Python
based Theano framework and performed 18 hours training on
a NVIDIA K40 GPU machine. We compared our results
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against the commonly used classifiers: Random Forest (RF),
Support Vector Machines and Logistic Regression. The SVM
parameters: regularization penalty (C) and RBF kernel y =
1/26 were selected by a grid search through cross validation
on a training set (C = {0.01, 0.1, 1, 10, 100, 1000}, y = {0.1,
0.2... 1, 2... 10}). The number of trees for RF were varied
within a set of {10, 20, 50, 100, 500} .Each decision tree
output was computed form a random set of input features and
final class was selected with majority voting. LI1-
regularization was introduced on our Logistic Regression
classification and solved the unconstrained optimization.

Table 1: Classification results of different architectures

Architecture Test Errors (%) | Validation Error [Number of Parameters
SVM 14.96
Logistic Regression {L1) 14.45
Random Forest 12.23 - -
ConvNet + LSTM 9.87 6.13 1.29 Mil
ConvNet+ LSTM+1D-Conv 8.34 8.32 1.47 Mil
ConvNet +Bidirectional LSTM 161 8.11 1.66 Mil

6. RESULTS

We empirically chose the ConvNet described on Figure 4 and
applied it on EEG image frames. We explored three different
approaches and aggregated the temporal features from
multiple frames (Figure 5). Using LSTM and BiLSTM
structures, the classification accuracy improved significantly
(Table 1). The accuracies on individual subjects show that our
three models achieved a consistent improvement on
classification accuracies except S3, S4, S5, S6, S15 and S20
(Table 2). The average accuracy of BiLSTM was 92.5%,
which was higher than conventional methods.

Table 2: Classification accuracy results for subjects folds
TestSubjects [s1 [s2 [s3 [s4 [s5 [s6 [s7 [s8 [s9 [s10 [s11
LSTM 8845 [71.27 (9322 [97.43 982 811 945 [03 |86 [85.25 [87.4

LSTM + 1D Conv|ed |753 [925 964 |o5.4 [o45 [6.4 [05.8 [o1.8 [93.45 [90.5

BiLSTM 945 |86.5 (96.8 |98.5 |97.3 |95.3 (99.25 |97.7 |99.5 (97.5 |94.5

Test Subjects  |S12 [$13 [s14 [s15 [s16 [s17 [s18 [s19 |szo |521 $22
LSTM 80.5 [46.7 |81.45 (92,53 (89.3 |100 |91.4 |90.5 |BZ.4 80.5 (475

LSTM + 1D Conv|8l7 |5062925 |87 |s65 [100 [935 [05 |[87.2 8165 [514

BILSTM (Mix) [898 [785 [952 [92.5 |9845 (973 (9434 (9634754 (886 (713

Average Accuracy (%)I BiLSTM (Mix) =92.5 | LSTM + 1D Conv = 87.68 | LSTM = 84.48 |
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Figure 5: Different LSTM (L) models with ConvNet (C); BILSTM (L1, L2); FC: Fully Connected Layer SM: Softmax

It highlights the role of the LSTM network in extracting
features and demonstrates the effectiveness of our model in
learning temporal dynamics. Table 1 also shows that
classification test errors lowered significantly when the
temporal LSTM models were added. The validation loss over
number of training set epochs is shown on Figure 6. The
ConvNet maxpooling operation created the invariant feature
maps in deeper layers and this could hamper overall
performance if map size was reduced to an extent where the
regional activities cannot be distinguished. Our ConvNet
learned a stack of filters which introduced nonlinearity on
feature maps and maximized classification accuracy.

Validation Loss

5 10 15 20 25 30
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Figure 6: Validation Loss along the epochs. Average loss— Blue line.

7. CONCLUSION

The objective of this work was to find robust representations
from the EEG multi-channel time series that were invariant
to inter-subject differences and data acquisition noise. We
followed a methodology to learn spatial, spectral and
temporal representations from the EEG datasets and
demonstrated its advantages in the context of cognitive
memory load classifications. Our implementation was
different from the previous attempts and learned the robust
representations from EEG image sequences using a ConvNet
and BiLSTM hybrid network. Our proposed hybrid network
demonstrated the significant improvements in finding better
classification accuracy i.e. up to 92.5% over various existing
LSTM models. In future, we would like to experiment on the
unsupervised generative frameworks with larger labeled and
unlabeled EEG datasets prior to training the network with
task-specific data.
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