
1 

 

RUNNING TITLE: Richness and abundance distribution 

 

The biogeographical patterns of species richness and abundance 

distribution in stream diatoms are driven by climate and  

water chemistry 

 

Sophia I. Passy1*, Chad A. Larson2, Aurélien Jamoneau3, William Budnick1, Jani 

Heino4, Thibault Leboucher3, Juliette Tison-Rosebery3, Janne Soininen5 

 

1Department of Biology, University of Texas at Arlington, Box 19498, Arlington, 

Texas 76019-0498, USA 

2Washington State Department of Ecology, Environmental Assessment Program,  

300 Desmond Drive SE, Lacey, WA 98503 

3Aquatic Ecosystems and Global Changes Research Unit, IRSTEA, 50 avenue de Verdun, 

33612 Cestas, France 

4Finnish Environment Institute, Biodiversity Centre 

P.O. Box 413, FI-90014 Oulu, Finland 

5Department of Geosciences and Geography, University of Helsinki, PO Box 64, Helsinki,  

FIN-00014, Finland 

*Corresponding author, e-mail: sophia.passy@uta.edu 

phone: +1 (817)-272-2415, fax: +1 (817)-272-2855 

 

Keywords: climatic tolerance hypothesis, energy variability hypothesis, latitudinal diversity gradient, 

metabolic theory, species abundance distribution, species-energy theory 

mailto:sophia.passy@uta.edu


2 

 

Abstract 

In this inter-continental study of stream diatoms, we asked three important but still unresolved ecological 

questions: 1) What factors drive the biogeography of species richness and species abundance distribution 

(SAD); 2) Are climate-related hypotheses, which have dominated the research on the latitudinal and 

altitudinal diversity gradients, adequate in explaining spatial biotic variability; and 3) Is the SAD response 

to the environment independent of richness? We tested a number of climatic theories and hypotheses (i.e., 

the species-energy theory, the metabolic theory, the energy variability hypothesis, and the climatic 

tolerance hypothesis) but found no support for any of these concepts as the relationships of richness with 

explanatory variables were non-existent, weak or unexpected. Instead, we demonstrated that diatom 

richness and SAD evenness generally increased with temperature seasonality and at mid- to high total 

phosphorus concentrations. The spatial patterns of diatom richness and the SAD—mainly longitudinal in 

the US, but latitudinal in Finland—were defined primarily by the covariance of climate and water 

chemistry with space. The SAD was not entirely controlled by richness, emphasizing its utility for 

ecological research. Thus, we found support for the operation of both climate and water chemistry 

mechanisms in structuring diatom communities, which underscores their complex response to the 

environment and the necessity for novel predictive frameworks.  
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Introduction   

The spatial variability in species richness along latitudinal, longitudinal, and elevational gradients has 

drawn a continued interest among ecologists for centuries, beginning with the works of Alexander von 

Humboldt and Carolus Linnaeus (Pianka 1966; Gaston 2000; Willig et al. 2003; Rahbek 2005; Mittelbach 

et al. 2007). There are numerous hypotheses about the nearly universal poleward decline in species 

richness with ecological and evolutionary rates, energy, and climatic favorability and stability emerging 

as important underlying factors. The elevation-richness relationship is more variable, most frequently 

conforming to a monotonically declining or a hump-shaped form, but there are some commonalities in the 

driving forces of the latitudinal and elevational diversity gradients (Rahbek 2005). Thus, warmer 

temperatures in tropical and low elevation regions shorten the generation times and accelerate the 

metabolic and mutation rates, leading to greater speciation (Rohde 1992; Currie et al. 2004; Allen et al. 

2006).  

There are several prominent climate-based frameworks explaining the geographic variability in 

richness. The species-energy theory proposed that areas with greater total available energy, such as the 

tropics, have more diverse communities because they can maintain larger species populations with lower 

likelihood of extinction (Wright 1983). This theory is also known as the more individuals hypothesis, 

because larger species populations result in a greater total number of individuals (Srivastava and Lawton 

1998). It predicts that richness scales positively with energy because richness is a function of the number 

of individuals, which is proportional to the available energy, i.e. communities are energy-limited. Further 

elaboration of the species-energy theory recognized that temporal variability in energy may directly 

impact the richness of an area, given that periods of low energy support fewer individuals and are 

consequently prone to higher extinction rates. Thus, models that included both total energy and energy 

variability explained the patterns in bird and mammal species richness better than models using a single 

energy variable (Carrara and Vazquez 2010). The Metabolic Theory of Ecology (MTE) predicted a 

positive relationship of species richness with temperature (described in more detail in Theory testing 

below) because higher temperatures increase the rates of speciation (Allen et al. 2002; Brown et al. 2004). 
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Finally, according to the climatic tolerance hypothesis, the tropics harbor greater richness because their 

more benign warm and humid conditions fall within the physiological tolerance of many more species 

compared to the cold and dry extra-tropical regions (Currie et al. 2004). However, the latitudinal species 

richness patterns can be complicated by longitudinal effects, such as an east-west heterogeneity in 

rainfall, which is particularly distinct at mid-latitudes (Terborgh 1973). In the US, longitudinal effects on 

biodiversity are expected to emerge as a result of a strong ocean influence, whereby coastal regions, 

especially along the Pacific, experience much milder temperatures than inland regions of the same or 

lower latitudes (http://planthardiness.ars.usda.gov/PHZMWeb/). 

There are, notably, deviations from the classical latitudinal diversity pattern. For example, a 

bimodal latitudinal distribution of species richness in aquatic systems has been attributed in part to 

resource supply and productivity (Passy 2010; Chaudhary et al. 2016). Since temperature variability and 

severity in aquatic systems are much lower compared to terrestrial habitats, it is conceivable that aquatic 

communities are less sensitive to climate. On the other hand, global changes in water chemistry and 

primary production as a result of anthropogenic eutrophication have strong ecological and evolutionary 

consequences (Smith and Schindler 2009; Alexander et al. 2017). Indeed, a comprehensive review of the 

freshwater literature concluded that water chemistry was a stronger predictor of diatom distributions than 

temperature (Soininen 2007). Therefore, factors other than climate may have profound influence on 

aquatic biogeography and merit further research.  

While the spatial variability of species richness has been extensively studied, we know 

substantially less about the spatial and environmental dependence of the species abundance distribution 

(SAD), defined here as the number of individuals across species in a community. The SAD underlies 

broadly studied macroecological patterns, including the relationships of number of species with area and 

with number of individuals (Preston 1962; May 1975; Keeley 2003; McGill et al. 2007) and is, therefore, 

of fundamental significance in ecology. However, due to a more theoretical and statistical emphasis in the 

study of the SAD over the past seventy years (May 1975; McGill et al. 2007; Ulrich et al. 2010), the 
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empirical latitudinal, longitudinal, and elevational patterns of the SAD and their underlying mechanisms, 

including environmental variability, have remained largely unknown (Matthews et al. 2017).  

It is possible that the latitudinal gradient of richness is paralleled by a corresponding gradient of 

the SAD. Brown (2014) suggested that as richness increases toward lower latitudes, the SAD may 

transition from a less even log linear (a few very abundant and some very rare species) to a more even 

curvilinear pattern (greater numbers of both intermediate and low abundance species) as a result of 

intensified enemy effects. There is evidence that the SADs of forest communities do become less even at 

high latitudes due to strong environmental filtering that favors only a few well-adapted species (Qiao et 

al. 2015). However, there is no broad empirical support for a tendency in the SAD toward greater 

evenness and lognormality at low latitudes. On the contrary, a recent study of forest trees showed the 

opposite trend—preponderance of log-series (i.e., less even) SADs at low latitudes but lognormal (i.e., 

more even) SADs at high latitudes, possibly because of overall greater dispersal in the tropics, and 

subsequent accumulation of rare species (Ulrich et al. 2016a). A global study of dryland plant 

communities reported an overall prevalence of lognormal compared to log-series SADs, which was linked 

to environmental variability and stress but not to latitude (Ulrich et al. 2016b). There are even fewer and 

generally terrestrial studies of the SAD along elevational gradients, which either have not reported any 

distinct patterns (Ulrich et al. 2016a; 2016b) or shown a transition from log-series to lognormal SADs 

with altitude (Arellano et al. 2017). Therefore, there is clearly a need for further research on the large-

scale spatial patterns of the SAD, especially in aquatic ecosystems, which have been largely neglected in 

this context.  

Our overall goal was to explore the latitudinal, longitudinal, and altitudinal patterns in diatom 

species richness and abundance distribution and, given the correlation between species richness and the 

SAD (Locey and White 2013; Passy 2016), determine if they are driven by the same environmental 

factors and whether these factors are climatic and/or chemical. To achieve this goal, we tested several 

climate-based hypotheses, water chemistry models, and climate + water chemistry models (Table 1). 
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Then, we implemented variance partitioning to assess if the sources of spatial variation in species richness 

and the SAD are climatic, chemical or both.  

We examined the shape of the SAD by calculating the standard deviation (parameter σ) of a 

Poisson lognormal distribution model and skewness (fig. 1). Parameter σ indicates how equitably 

abundances are distributed across abundance classes with lower values suggesting higher equitability. 

However, it has been empirically shown for freshwater diatoms that parameter σ is inversely related to 

species richness (Passy 2016). To determine whether spatial and environmental factors control the shape 

of the SAD independently of species richness, and if so, whether species richness and the SAD have 

common environmental underpinning, we explored the response of parameter σ to space and environment 

after partialling out the effect of species richness. Additionally, we assessed skewness, which measures 

the symmetry of the SAD compared to a lognormal distribution. Negative values (left skew) indicate 

prevalence of rare species, while positive values (right skew), greater frequency of abundant species.  

In summary, we had the following objectives with respect to species richness and the SAD: i) 

assess their spatial patterns and underlying environmental variability; ii) examine their responses to 

climate within the framework of several climate-based theories and hypotheses (i.e., the species-energy 

theory, the metabolic theory, the energy variability hypothesis, and the climatic tolerance hypothesis) and 

determine whether they are driven by climate and/or water chemistry; and iii) evaluate if the SAD 

responds to spatial and environmental factors independently of species richness. 

 

Materials and Methods   

Datasets 

US. Data on stream water chemistry and diatom composition were collected from 526 distinct stream 

localities in the US (fig. A1) by the National Water-Quality Assessment (NAWQA) Program 

(http://water.usgs.gov/nawqa). Diatoms were sampled from a defined area of hard substrate or 

macrophytes. Water chemistry, including total phosphorus, nitrate + nitrite, ammonia, pH, and specific 

conductance, was measured for the month of algal collection (Table A1). Samples were taken in July and 

http://water.usgs.gov/nawqa
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August from 1993 to 2009 along a latitudinal range of 36 degrees, longitudinal range of 83 degrees, and 

altitudinal range of 2448 m. Climatic variables, including mean annual temperature (Tmean), temperature 

seasonality (standard deviation, TSD), minimum temperature of the coldest month (Tmin), and maximum 

temperature of the warmest month (Tmax), were obtained from the WorldClim database (Hijmans et al. 

2005). In each sample, about 600 diatom cells were counted and identified primarily to species. The total 

cell count was converted to total density (cells·cm−2). 

 

Finland. Data on climate (the same variables as in the US) and water chemistry, including total 

phosphorus, pH, and specific conductance, were available for 100 streams in Finland (fig. A1). Diatoms 

were sampled from a total area of 90 cm2 of stream substrate in July and August from 2001 to 2004 along 

a latitudinal range of 10 degrees, longitudinal range of 7 degrees, and altitudinal range of 302 m. Diatoms 

were identified primarily to species in counts of about 500 cells. In both the US and Finland, the numbers 

of counted cells were consistent with international protocols; therefore, we are confident we have good 

estimates of community species richness. 

 

Analysis of the species abundance distribution 

Using cell counts, the SAD of each community was fit with a Poisson lognormal distribution model (fig. 

1), which is comparatively insensitive to sampling effort and performs equally well to other commonly 

used models (Sӕther et al. 2013; Baldridge et al. 2016). We estimated the standard deviation, parameter 

σ, with the poilog R-package (Grøtan and Engen 2008). A comparison of the rank of the observed log 

likelihood with the log likelihood derived from 1000 bootstraps provided a goodness of fit metric. 

Goodness of fit values between 0.05 and 0.95 indicate good fit. We also calculated the proportion of the 

species pool revealed by the sample, which represents the unveiled proportion of the Poisson lognormal 

distribution. We calculated the skewness () of the log2-transformed counts of individuals and the 

standard error of skewness (SES) as (6/n)0.5, where n = number of species. Skewness is considered 

significant if the absolute value of the ratio /SES is greater than 2 (SYSTAT Software, Inc. 2009). 
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Environmental and biotic data are deposited in Dryad Digital Repository: 

https://datadryad.org/resource/doi:10.5061/dryad.v1v7856 (Passy et al. 2018). 

 

Theory testing 

We performed a series of regression analyses to explore the spatial patterns in species richness and the 

SAD and test the outlined theories and hypotheses (Table 1). To assess whether the SAD had responses to 

spatial and environmental predictors that were independent of species richness, we regressed parameter σ 

against richness (fig. A2), obtained the residuals (σres), and then treated σres as a dependent variable in all 

subsequent regressions of the SAD. If richness controlled the behavior of the SAD along spatial and 

environmental gradients, then these gradients would have little to no effect on σres. Considering that 

spatial trends could be more complex due to patchiness, the spatial predictors included linear, quadratic, 

and cubic terms. The environmental predictors, on the other hand, encompassed only linear and quadratic 

terms.  

In Tables 2 and 3, models 1-4 tested the spatial effects on species richness and σres, models 5-8, 

climate-related theories and hypotheses, models 9-11, climatic and/or chemistry effects, and models 12-

13, the metabolic theory. We tested the predictions of the species-energy theory that species richness (S) 

increases with energy (here mean temperature, Tmean) because S is a positive function of the number of 

individuals (N), which in turn, is proportional to the amount of energy (Srivastava and Lawton 1998). 

Testing this required several equations, including models 5 and 6 from Table 1, and equation (1) below, 

which contained a quadratic term to account for potential nonlinearity in the density (N) response to mean 

temperature (Tmean). 

ln(N) = ln(Tmean) + ln(Tmean)2  (1) 

The metabolic theory expresses species richness (S) as a function of temperature, according to the 

equation ln(S) = −EA/kT + I, where EA = activation energy with an expected value of about −0.65, k = 

Boltzmann constant, 8.62 × 10−5 eV K−1, T = temperature in Kelvin, and I = intercept (Allen et al. 2002; 

Brown et al. 2004). Here, we used Tmean and tested if this prediction holds and −EA lies between −0.6 and 

https://datadryad.org/resource/doi:10.5061/dryad.v1v7856
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−0.7. However, since the richness response to the Boltzmann temperature factor (1/kTmean) can be 

curvilinear (Algar et al. 2007), we added a quadratic term (model 13). 

For each multiple regression model, we performed backward selection of significant terms only to 

reduce redundancy and collinearity (Tables 2, 3). All models were compared using the Akaike 

Information Criterion (AIC). Models with lower AIC provided better fits. Regression trees were 

calculated to assess interactions among climatic and water chemistry predictors and potential non-linear 

responses of species richness and σres. Variance partitioning estimated whether the spatial responses of 

species richness and σres were driven by climate, water chemistry, and/or their covariance. Specifically, 

we estimated how much of the variance explained by the overall spatial model (model 4, Table 1) was 

contributed by covariance of the spatial predictors with climatic and chemistry predictors from models 9 

and 10, respectively. The effects of climatic and water chemistry predictors on skewness were examined 

with multiple regressions using backward stepping procedure. Regressions, regression trees, and variance 

partitioning were performed with SYSTAT 13 (SYSTAT Software, Inc. 2009).  

 

Results   

Spatial patterns of environmental factors, species richness, and the SAD 

Temperature-related variables and, to a lesser extent, water chemistry variables exhibited complex spatial 

patterns (figs 2A-D, 3A-E, A3-A6). For example, in the conterminous US, the Upper Midwest 

experienced low mean and minimum temperatures and high temperature seasonality, while coastal areas, 

even of similar latitude, had much greater Tmean and Tmin and much lower TSD. Total phosphorus and 

specific conductance peaked at mid-longitudes. In Finland, total phosphorus and all climatic variables but 

TSD declined with latitude and altitude, while TSD was the highest at intermediate latitudes and the highest 

altitudes. Regressions including linear, quadratic, and cubic terms of latitude, longitude, and altitude 

explained 72-95% of the variability in the four climatic variables in the US and 94-99% in Finland, but 

14-30% of the variability in water chemistry in the US and 67-71% in Finland.  
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In both the US and Finnish datasets, the Poisson lognormal distribution model fit the abundance 

data well (0.36 ≤ goodness of fit ≤ 0.53). Therefore, this distribution model provided a reliable estimate of 

the species abundance variability and was used in further analyses to determine the drivers of the SAD. 

Parameter σ was a negative function of the ln-transformed species richness (fig. A2), i.e. rich 

communities had lower parameter σ and were thus more equitable. To assess the richness-independent 

effects of spatial and environmental predictors on the SAD, we calculated residual parameter σ (σres) from 

the regression of parameter σ against ln(S) and treated it as a dependent variable in subsequent regressions 

(Tables 2, 3, fig. 4B, D). Richness and parameters σ and σres displayed broad variability in both the US 

and Finland (fig. A7). 

In the US, the most pronounced spatial trend in species richness and σres was longitudinal (fig. 2E, 

F), while latitude and altitude generated weaker responses. The highest richness and the lowest σres were 

detected in streams with longitudes between approximately −87 and −97 degrees across a wide range of 

latitudes, but primarily concentrated in the Midwest (figs 2E, F, A4C, D). In Finland, latitude was the 

only spatial gradient with a prominent effect on both species richness and σres (fig. 3F, G). The best spatial 

model in the US, especially for richness, included all spatial predictors (but the longitudinal terms had the 

highest standardized regression coefficients) and captured 14-17% of the biotic variance (Table 2, model 

4). In Finland, latitude and longitude captured 24% of the variance in species richness, while just latitude 

explained 15% of the variance in σres (Table 3, model 4). 

 

Responses of species richness and the SAD to environmental factors and their covariance with 

space 

To assess whether variability in mean temperature, temperature seasonality or temperature extremes 

contributed the most to the variability in richness, as predicted by the species-energy theory, the energy 

variability hypothesis, and the climatic tolerance hypothesis, respectively, we calculated models 5, 7, and 

8 (Tables 2, 3). Additionally, in the US we examined the response of richness to density to more fully 

evaluate the species-energy theory (Table 2, model 6). Temperature seasonality and temperature extremes 
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emerged as stronger predictors of richness in both countries and σres in the US than mean temperature, 

while mean and extreme temperatures defined σres in Finland equally well. In the US, the climatic 

variables generated a more or less pronounced U-shaped response in richness, contrary to the predictions 

of the aforementioned theories and hypotheses, but primarily a linear response in σres (Table 2, fig. A8). A 

non-significant relationship of richness with density further indicated that the effect of temperature on 

richness was not due to a temperature dependence of density, which is inconsistent with the species-

energy theory. The relationship of density with mean temperature was weak and unimodal (R2 = 0.03, n = 

524, p < 0.00005). In Finland, the greatest richness was observed at intermediate Tmax and high TSD, and 

the lowest σres, at the highest Tmean and Tmax (Table 3, fig. A9). Despite high correlations among the 

climatic variables (Table A2), the model including all significant climatic variables (Tables 2 and 3, 

model 9) improved to various extents the predictability of richness and σres, indicating that in some cases, 

these community properties were products of multiple climatic influences.   

In the US, water chemistry captured a greater proportion of the variance in species richness than 

climate, whereas climate outperformed water chemistry in the remaining models of richness in Finland 

and σres in both countries (Tables 2, 3, models 9, 10). In both countries, total phosphorus was the best 

water chemistry predictor of richness, and specific conductance, of σres (figs A8, A9). Notably, the best 

model in both countries included both climate and water chemistry variables and explained 19-38% and 

13-22% of the variance in species richness and σres, respectively (Tables 2, 3, model 11).  

The relationship of ln-species richness with the Boltzmann temperature factor (1/kTmean) was not 

significant in the US and convex in Finland, inconsistent with the prediction of the MTE (Tables 2, 3 

models 12, 13). Only in Finland, σres exhibited a notable relationship with the Boltzmann temperature 

factor (negative).  

 Regression tree analyses of the US data revealed the highest species richness and the lowest σres at 

high temperature seasonality (fig. 4A, B). At lower temperature seasonality, richness was greater at higher 

total phosphorus levels. In Finland, rich and poor communities were separated only by temperature 

seasonality with rich communities found at higher seasonality (fig. 4C). Parameter σres was differentiated 
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by mean temperature and specific conductance (fig. 4D). The lowest σres (highest equitability) was 

detected at high mean temperature. At lower Tmean, streams of lower conductance had lower σres. 

 We asked next to what extent the spatial patterns of richness and the SAD were driven by climate 

vs. water chemistry. To answer this question, we performed variance partitioning (fig. 5), which revealed 

that in both countries the spatial effect on both species richness and σres, which captured 14-24% of their 

variance, was generated by covariance of space with climate and water chemistry (4-12% explained 

variance), followed by covariance of space with climate (4-10% explained variance).  

Skewness was positive in all communities in both the US and Finland indicating a prevalence of 

common species. Of the skewness values, 51% were significant (/SES > 2) in the US and 71% in 

Finland. Skewness was either negatively (Pearson r = −0.24, p < 0.000001, the US) or non-significantly 

(Finland) related to richness. In both countries, skewness was positively correlated with σres (Pearson r = 

0.38-0.52, p < 0.00002), i.e. equitable communities were more symmetric with lower skewness and these 

communities tended to be rich in the US. In the US, skewness responded primarily to climate but weakly 

(Table A3). In Finland, skewness was determined by climatic variables alone and declined at high values 

of mean, minimum, and maximum temperature. 

 

Discussion 

On both continents, diatom richness and the SAD exhibited distinct spatial patterns, which were attributed 

to spatially structured climate and water chemistry. By examining different environmental factors, we 

were able to test several climate-based theories and hypotheses for the spatial variability in richness, and 

ultimately, to develop a climate-water chemistry model (Tables 2 and 3, model 11), outperforming 

existing frameworks (Tables 2 and 3, models 5-8, 12-13). A similar model was formulated for the SAD, 

which exhibited variability along environmental and spatial gradients that was independent of richness. 

Next, we give an overview of the spatial patterns of richness and the SAD and discuss their potential 

origins. 
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 In accordance with our first objective, we report a number of interesting findings about the spatial 

variability in species richness and the SAD. First, in the US, no single spatial factor captured much of the 

variance in richness, but a more complex polynomial model of latitude, longitude, and altitude was 

necessary to better describe richness variability. In this model, the strongest spatial effect was 

longitudinal. The most pronounced spatial gradient of the SAD in the US was also longitudinal. Second, 

the best spatial predictors of richness in Finland were latitude and longitude, but only latitude had a 

comparatively strong effect on the SAD. Third, both in the US and Finland, diatom richness did not 

conform to the classical pattern of monotonic latitudinal decrease, consistent with prior diatom studies 

(Passy 2010; Soininen et al. 2016). These studies attributed the deviation from the classical pattern to the 

overriding effect of wetlands and their impact on micronutrient availability. Here, we identify both 

climatic and water chemistry factors that further contribute to the unique spatial distribution of diatom 

richness. Fourth, the expectation for increased evenness in the SAD at low latitudes (Brown 2014) was 

confirmed only in Finland, while in the US, the most equitable communities were observed at mid-

latitudes, where specific conductance, temperature seasonality, and total phosphorus were the greatest. 

Fifth, the altitudinal response of richness—bimodal in the US but peaking at high elevations in Finland—

did not follow the common monotonic decline or hump-shaped patterns. Admittedly, the elevational 

gradient in Finland was short and not sufficient to reveal the full variability in richness. By examining 

different sources of climatic and water chemistry variability, here we provide a more comprehensive 

explanation for the non-conventional diatom spatial patterns.  

Similar to species richness and the SAD, the four studied climatic factors—mean, minimum, and 

maximum temperature, and temperature seasonality, and to a lesser extent, water chemistry (e.g., total 

phosphorus and specific conductance), displayed complex spatial distributions, generally driven by all 

three spatial gradients—latitudinal, longitudinal, and altitudinal, but to a various degree. To assess which 

environmental factors contributed to the spatial structuring of species richness and the SAD and what 

biotic responses they generated, we performed a series of multiple regressions, regression tree analysis, 

and variance partitioning.  
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In pursuit of our second objective, we tested climatic and water chemistry effects on species 

richness and the SAD. In the US, species richness was constrained most strongly by temperature 

seasonality and total phosphorus—the highest richness was recorded in streams with the highest 

seasonality, whereas in streams of lower seasonality, high levels of total phosphorus promoted greater 

richness (fig. 4A). Temperature seasonality was a comparatively strong and positive predictor of richness 

in Finland. In fact, in Finland, the latitudinal richness distribution, with a mid-latitude maximum, was best 

approximated by the latitudinal distribution of temperature seasonality, also reaching high values at mid-

latitudes. These results contradict the energy variability hypothesis, predicting a negative effect of 

temperature seasonality on richness due to reduced energy availability during the cold months. A possible 

explanation for this unexpected pattern can be derived from competition theory, which postulates that 

temporal heterogeneity in resource supply increases biodiversity because it allows coexistence of species 

that alternate between dominance and persistence at different times (Sommer 1985; Tilman and Pacala 

1993). The shape of the SAD in the US was also determined by temperature seasonality—communities 

with higher abundance equality were found in streams of higher seasonality. This finding provides further 

evidence that the increased species coexistence under variable climatic conditions is potentially 

maintained by resource partitioning and diminished competition.  

In the US, minimum temperature was among the strongest predictors of richness, which showed a 

U-shaped response with high values at the lowest minimum temperature. In Finland, richness was the 

highest at lower minimum temperature. These results contradict the expectation of the climatic tolerance 

hypothesis for reduced richness at low temperature minima. Given that low minimum temperature in this 

study correlated with high temperature seasonality (Table A2), these unexpected richness patterns are 

likely a consequence of the positive effect of temperature seasonality on richness. It is also possible that 

diatoms deviate from the expectation of the climatic tolerance hypothesis because they inhabit the 

comparatively milder aquatic environment, less prone to extreme fluctuations. Conversely, in terrestrial 

habitats, where temperatures reach much greater extremes, the climatic tolerance hypothesis was 

supported (Šímová et al. 2011). Furthermore, low temperatures may favor diatoms over cyanobacteria 
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(Peterson and Grimm 1992; van der Grinten et al. 2005) or green algae (Roberts et al. 2003); therefore, 

lower temperature minima and stronger temperature seasonality may prevent diatom exclusion and 

promote higher biodiversity of this algal group. High temperature seasonality, low temperature minima, 

and high temperature maxima were also associated with the highest abundance equality (lowest σres) in the 

US, which suggests more equitable resource partitioning at higher temperature variability and extremes 

with positive consequences for diatom biodiversity. These results suggest that a decrease in the temporal 

variability of temperature and an increase in the temperature minima due to global warming (Xu et al. 

2013), may potentially lead to lower biodiversity and abundance equality in some stream diatoms.   

The response of richness to the Boltzmann temperature factor and mean temperature contradicted 

the MTE and the species-energy theory, respectively, predicting a positive relationship (both theories) 

with a specific rate of increase (MTE). Deviations from the predictions of the MTE were previously 

reported for both aquatic and terrestrial macroorganisms, where the richness-temperature relationship was 

found to be curvilinear, linear with a slope significantly different from predictions, or not significantly 

different from zero (Algar et al. 2007; Hawkins et al. 2007; Pinel-Alloul et al. 2013). In microbes, 

including lake phytoplankton and soil bacteria, the richness response to temperature was also variable, 

following respectively, a segmented (Segura et al. 2015) or linear pattern, less pronounced than this 

observed in macroorganisms (Zhou et al. 2016). A systematic analysis of multiple datasets across a broad 

range of terrestrial macroorganisms, testing the predictions of the MTE, found that the richness-

temperature relationship was positive in datasets that included areas with colder winters but non-existent 

or negative in datasets from tropical, subtropical, and warm temperate regions (Hawkins et al. 2007). A 

review of the species-energy relationship noted that it is scale-dependent and transitions from unimodal at 

small scales to monotonically increasing at large scales (Evans et al. 2005). Here, the relationship of 

richness with the Boltzmann temperature factor and mean temperature was non-significant or weak in the 

US (R2 ≤ 0.01, Table 2) but comparatively stronger and unimodal in Finland (R2 = 0.07, Table 3) even 

though both datasets covered regional to subcontinental scales and included cold climate streams. 

Ultimately, our results show that species richness is more strongly related to temperature seasonality, 
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extremes, and total phosphorus, than to mean temperature. The SAD response to the Boltzmann 

temperature factor and mean temperature was weak and U-shaped in the US, but stronger and monotonic 

in Finland, where inequality (parameter σres) decreased with temperature. It is thus possible that mean 

temperature becomes a more important determinant of the SAD at higher latitudes. 

The present results were also inconsistent with the species-energy theory, which so far, has 

received mixed support (Srivastava and Lawton 1998; Kaspari et al. 2000; Mönkkönen et al. 2006; 

Šímová et al. 2011). The hump-shaped behavior of density along the temperature gradient in the US 

dataset indicated that higher temperatures actually decrease the number of individuals, which is in stark 

contrast with the prediction of this theory for a positive relationship. Although this pattern was weak, it 

could potentially be a consequence of intensified grazing at higher temperatures due to accelerated 

herbivore metabolic and consumption rates (O'Connor and Bruno 2009; West and Post 2016). Finally, the 

richness-density relationship was non-significant, indicating that the temperature effect on richness was 

not through density.  

Water chemistry, total phosphorus and specific conductance in particular, emerged as some of the 

best predictors of richness and the SAD with a comparable effect to this of the best climatic predictors. In 

the two countries, species richness was higher at intermediate or high nutrient values. An increase of 

diatom richness with nutrient supply has been previously documented and explained with the ability of 

more functional groups (e.g., tolerant and sensitive to nutrient limitation) to coexist at high nutrients 

(Passy 2008; Soininen et al. 2016). Here, we further report that in the US, the SAD was also constrained 

by nutrient supply. A recent study on the SAD of stream diatom communities, sampled along a land use 

gradient, revealed that their equitability increased (parameter σ decreased) with the transition from forest 

to agriculture and suggested that nutrient enrichment was responsible for this pattern (Passy 2016). In the 

present investigation, we found support for this hypothesis and showed that communities in the US 

indeed became more even at higher nutrient supply. In Finland, which contained mostly oligotrophic 

streams, the SAD (σres) did not respond to total phosphorus, probably because of the limited variability of 

this predictor (Table A1).  
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Remarkably, in the US, where water chemistry exhibited broad variability, the overall water 

chemistry model outperformed the climate model (for richness) or was comparable to it (for σres) in terms 

of R2 (Table 2). Moreover, the best multiple regression model for richness and the SAD in the two 

countries included both climatic and water chemistry variables (model 11, Tables 2, 3). Regression trees 

further elucidated the interactive effects of climate and water chemistry, although in some cases this 

approach selected only climatic variables, because these variables correlated with the best water 

chemistry predictors. In the US, the longitudinal distributions of species richness and the SAD, which 

were the most distinct spatial patterns, appeared to be driven primarily by total phosphorus and specific 

conductance, respectively, with some influence of temperature seasonality (fig. 2). Notably, all three 

predictors, i.e. temperature seasonality, total phosphorus, and specific conductance, varied most strongly 

along the longitudinal gradient (figs A3B, A4A, B), which explains the weak latitudinal and altitudinal 

biotic patterns. We showed by variance partitioning that much of the spatial variability of richness and the 

SAD was due to covariance of space with both climate and water chemistry. Therefore, an understanding 

of the biogeography of microorganisms requires models that explicitly include water chemistry. While a 

combined effect of nutrients and temperature on microbial biodiversity has been reported before (Wang et 

al. 2016), this study is the first to systematically test different climate theories and hypotheses about 

diatom biodiversity and demonstrate that climate (particularly temperature seasonality) and water 

chemistry co-controlled the variability in both diatom richness and the SAD.  

Skewness of the log2-transformed abundances was positive in both datasets in contrast with a 

large body of literature, documenting negative skew as the dominant pattern (Gregory and Gaston 2000; 

Hubbell 2001; Magurran and Henderson 2003). This discrepancy may be due to both sampling intensity 

and environmental influences. Thus, when too few individuals are sampled, the left side of the SAD 

remains veiled and the right side exhibits a positive skew (McGill 2003). Although in both datasets a 

comparatively large number of individuals was sampled following standard protocols, the proportion of 

species revealed by the sample had a median of 44-75%, indicating that some species remained veiled. 

However, skewness had detectable correlations with environmental factors (R2 = 0.07-0.22, Table A3), 
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pointing to some ecological constraints on the SAD symmetry as well. Skewness responded most strongly 

to temperature seasonality and extremes in the US, while temperature mean and extremes were the 

underlying factors in Finland. Determining the drivers controlling the distribution of common species, i.e. 

the SAD symmetry, has important practical implications, given that these species are primarily 

responsible for delivering ecosystem services (Winfree et al. 2015). Here we show that these drivers are 

mainly climatic; therefore, climate change may have a strong effect on diatom community functioning in 

stream ecosystems. 

It is noteworthy that the SAD (parameter σres) exhibited distinct environmental and spatial 

responses that were independent of richness, consistent with our third objective. There were also some 

differences in the environmental and spatial predictors that entered the regression models of species 

richness and σres (Tables 2, 3, fig. 4) as well as in the shape of the species richness and σres responses to 

common predictors (figs A8, A9). The form of the SAD is strongly dependent on richness and total 

abundance (Locey and White 2013, Passy 2016) and the usefulness of the SAD for ecological research 

has been questioned (Yen et al. 2013), in part because of its dependence on richness. The results 

presented here demonstrate that the abiotic environment has distinct impacts on richness and the SAD, 

and that the shape of the SAD can be predicted to some extent by climatic and water chemistry variables, 

emphasizing the utility of the SAD in unravelling ecological mechanisms.  
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Table A1. Basic statistics of spatial, climatic, and water chemistry variables included in the regression 

analyses (Tables 2, 3). Tmean = mean annual temperature, TSD = temperature seasonality (standard 
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deviation), Tmin = minimum temperature of the coldest month, and Tmax = maximum temperature of the 

warmest month. 

 

Variable Minimum Maximum Median Mean SD 

US 

     
Latitude (degrees) 25.40 61.77 41.64 41.45 4.64 

Longitude (degrees) −154.17 −70.74 −92.38 −95.81 17.15 

Altitude (m) 4.00 2452.00 245.00 424.47 502.46 

Tmean (°C)   0.50 23.70 9.70 10.08 3.69 

TSD 3.19 12.58 8.99 8.73 1.74 

Tmin (°C)   −22.20 13.40 −8.40 −8.09 5.87 

Tmax (°C)   15.20 36.30 29.15 29.40 2.85 

Total phosphorus (mg·L−1) 0.002 3.40 0.06 0.17 0.34 

Nitrite + nitrate (mg·L−1) 0.005 13.95 0.43 1.27 2.14 

Ammonia (mg·L−1) 0.002 5.80 0.03 0.06 0.27 

pH 2.95 9.60 7.90 7.79 0.58 

Specific conductance (μS·cm−1) 10.00 23594.65 421.00 525.91 1075.29 

Finland 

     
Latitude (degrees) 60.27 70.06 66.26 65.91 2.81 

Longitude (degrees) 23.28 30.44 27.02 27.04 2.09 

Altitude (m) 18.00 320.00 180.00 177.49 81.91 

Tmean (°C)   −2.70 5.00 −0.50 0.28 2.03 

TSD 6.93 10.19 9.52 9.29 0.80 

Tmin (°C)   −21.30 −9.10 −17.15 −16.60 3.29 

Tmax (°C)   14.80 21.00 18.75 18.78 1.66 
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Total phosphorus (mg·L−1) 0.00 0.19 0.02 0.03 0.04 

pH 4.50 8.20 7.00 6.80 0.81 

Specific conductance (μS·cm−1) 9.40 277.00 44.75 65.37 59.24 

 

  



21 

 

Table A2. Pearson correlation matrix of climate and water chemistry variables in the US and Finland. 

Boldfaced values are not significant (p ≥ 0.05). Tmean = mean annual temperature, TSD = temperature 

seasonality (standard deviation), Tmin = minimum temperature of the coldest month, Tmax = maximum 

temperature of the warmest month, TP = total phosphorus, and Cond = specific conductance. 

 

Variable Tmean TSD Tmin Tmax ln(TP) pH ln(Cond) ln(NOx) 

US, n = 526 

        
TSD −0.56 1.00 

      

Tmin 0.85 −0.89 1.00 
     

Tmax 0.70 −0.05 0.37 1.00 
    

ln(TP) −0.01 0.20 −0.10 0.08 1.00 
   

pH −0.23 0.25 −0.26 0.10 0.11 1.00 
  

ln(Cond) 0.01 0.42 −0.23 0.28 0.38 0.44 1.00 
 

ln(NOx) 0.09 0.16 0.02 0.11 0.41 0.08 0.38 1.00 

ln(NH4) 0.24 0.00 0.15 0.16 0.39 −0.15 0.21 0.31 

Finland, n = 100 

        
TSD −0.54 1.00 

     

 
Tmin 0.95 −0.76 1.00 

    

 
Tmax 0.71 0.20 0.48 1.00 

   

 
ln(TP) 0.68 −0.04 0.52 0.74 1.00 

  

 
pH −0.18 −0.24 −0.04 −0.41 −0.19 1.00 

 

 
ln(Cond) 0.48 −0.38 0.50 0.26 0.39 0.58 1.00   
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Table A3.  Regression models of skewness in the US and Finland. Std. = standardized. An outlier sample 

was removed from the Finnish dataset. Tmean = mean annual temperature, TSD = temperature seasonality 

(standard deviation), Tmin = minimum temperature of the coldest month, and Tmax = maximum 

temperature of the warmest month. 

  

Effect Std. coefficient Standard error                 t-value                 p-value 

US, R2 = 0.07, n = 526 

Tmean 0.21 0.01 2.75 0.006 

TSD
2 −0.23 0.00 −4.56 0.000006 

Tmax −0.24 0.01 −3.34 0.0009 

NOx −0.11 0.01 −2.54 0.01 

pH −0.11 0.03 −2.38 0.02 

Finland, R2 = 0.22, n = 99 

Tmean
2 2.87 0.08 2.34 0.02 

TSD
2 0.97 0.17 2.15 0.03 

Tmin
2 −3.01 0.03 −2.47 0.02 

Tmax −0.60 0.04 −3.45 0.0009 

Tmax
2 −0.99 0.04 −2.30 0.02 
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Table 1.  Tested effects, theories, and hypotheses with corresponding regression models (Eqn). Lat = 

latitude, Long = longitude, Alt = altitude, Tmean = mean annual temperature, TSD = temperature seasonality 

(standard deviation), Tmin = minimum temperature of the coldest month, Tmax = maximum temperature of 

the warmest month, TP = total phosphorus, and Cond = specific conductance. 

 

Eqn Effect/theory/hypothesis Regression model  

1 Latitudinal effect Lat + Lat2 + Lat3 

2 Longitudinal effect Long + Long2 + Long3 

3 Altitudinal effect Alt + Alt2 + Alt3 

4 Spatial effect Lat + Lat2 + Lat3 + Long + Long2 + Long3 + Alt + Alt2 + Alt3 

5 Species-energy theory Tmean + Tmean
2 

6 Species-energy theory ln(N) + ln(N)2 

7 Energy variability hypothesis TSD + TSD
2 

8 Climatic tolerance hypothesis Tmin + Tmin
2 + Tmax + Tmax

2 

9 Climate effect Tmean + Tmean
2 + TSD + TSD

2 + Tmin + Tmin
2 + Tmax + Tmax

2 

10 Chemistry effect TP + TP2 + NOx + NOx
2 + NH4 + NH4

2 + pH + pH2 + Cond + Cond2 

11 Climate + chemistry effect Tmean + Tmean
2 + TSD + TSD

2 + Tmin + Tmin
2 + Tmax + Tmax

2 + TP + TP2 

+ NOx + NOx
2 + NH4 + NH4

2 + pH + pH2 + Cond + Cond2 

12 Metabolic theory 1/kTmean 

13 Metabolic theory 1/kTmean + (1/kTmean)
2 
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Table 2.  US diatoms. Regression models (Eqn) testing the responses of species richness (models 1-11), 

ln-transformed species richness, ln(S) (models 12, 13), and residual parameter σ (σres, models 1-13) to 

spatial and environmental variables. Parameter σres was obtained from a regression of parameter σ against 

ln(S) (fig. A2A). The parameters in each model are standardized regression coefficients with 0.000001 < 

p < 0.05. n = 526. AIC = Akaike Information Criterion. The AIC of the best environmental model is 

boldfaced. Abbreviations as in Table 1. NS = non-significant. 

 

Eqn Regression model for richness R2 AIC  Regression model for σres R2 AIC 

1 0.20Lat + 0.15Lat2 − 0.18Lat3 0.03 4269 0.18Lat + 0.22Lat2 − 0.15Lat3 0.05 776 

2 −0.34Long2 − 0.35Long3 0.05 4256 0.57Long2 + 0.37Long3 0.12 729 

3 −0.15Alt3 0.02 4268 0.13Alt2 0.02 787 

4 0.34Lat + 0.17Lat2 − 0.69Long2 − 

0.31Long3 − 0.21Alt + 0.16Alt2 

0.14 4211 0.30Lat2 + 0.68Long2 + 

0.64Long3 + 0.16Alt 

0.17 707 

5 0.12Tmean
2 0.01 4273 0.11Tmean + 0.20Tmean

2 0.03 785 

6 ln(N) + ln(N)2 NS − −0.11ln(N) + 0.13ln(N)2 0.04 778 

7 0.24TSD + 0.31TSD
2 0.09 4232 −0.22TSD 0.05 770 

8 −0.17Tmin + 0.28Tmin
2 0.07 4245 0.21Tmin − 0.22Tmax 0.06 767 

9 −0.32Tmean
2 + 0.44TSD + 0.24Tmin 

+ 0.52Tmin
2 + 0.19Tmax

2 

0.11 4225 −0.28TSD − 0.46TSD
2  

+ 0.39Tmin
2 − 0.26Tmax 

0.11 740 

10 0.35TP − 0.13TP2 − 0.20NOx + 

0.11NH4 

0.13 4213 −0.12TP − 0.12NOx − 0.15Cond 0.09 751 

11 −0.19Tmean
2 + 0.21TSD + 

0.40Tmin
2 + 0.13Tmax

2 + 0.28TP − 

0.10TP2 − 0.15NOx + 0.11NH4 

0.19 4182 0.13Tmean
2 − 0.18TSD + 0.22Tmin 

− 0.25Tmax − 0.11TP − 0.14NOx 

0.13 731 

12 1/kTmean NS − 1/kT NS − 

13 1/kTmean + (1/kTmean)
2 NS − 0.13/(kT)2 0.02 787 
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Table 3.  Finnish diatoms. Regression models (Eqn) testing the responses of species richness (models 1-

11), ln-transformed species richness, ln(S) (models 12, 13), and residual parameter σ (σres, models 1-13) to 

spatial and environmental variables. Parameter σres was obtained from a regression of parameter σ against 

ln(S) (fig. A2B). The parameters in each model are standardized regression coefficients with 0.000003 ≤ 

p < 0.05. n = 100. AIC = Akaike Information Criterion. The AIC of the best environmental model is 

boldfaced. Abbreviations as in Table 1. NS = non-significant. 

 

Eqn Regression model for richness R2 AIC  Regression model for σres R2 AIC 

1 −0.58Lat2 − 0.33Lat3 0.20 813 0.38Lat3 0.15 113 

2 0.31Long + 0.36Long2 0.22 812 Long + Long2 + Long3 NS − 

3 0.52Alt + 0.22Alt2 0.20 813 0.27Alt3 0.07 121 

4 −0.35Lat2 + 0.32Long2 0.24 809 0.38Lat3 0.15 113 

5 −0.26Tmean
2 0.07 827 −0.35Tmean 0.13 115 

6 ln(N) + ln(N)2 NA − ln(N) + ln(N)2 NA − 

7 0.34TSD 0.11 822 TSD + TSD
2 NS − 

8 0.55Tmin − 0.74Tmax − 1.05Tmax
2 0.23 812 −0.40Tmin + 0.24Tmax

2 0.14 115 

9 −0.31Tmean
2 + 2.39TSD + 3.29Tmin 

− 2.33Tmax − 0.91Tmax
2 

0.33 801 1.39Tmean
2 +0.33TSD

2 − 0.44Tmin 

− 1.47Tmin
2 

0.17 116 

10 −0.42TP2 − 0.23pH2 0.19 815 −0.32Cond2 0.10 118 

11 −3.25Tmean − 0.97Tmean
2 + 

2.05TSD + 4.67Tmin + 0.72Tmin
2 − 

0.29pH2 

0.38 796 −0.51Tmean − 0.28Tmin
2 + 

0.32Tmax
2 + 0.43TP 

0.22 109 

12 1/kTmean NS − 0.35/kT 0.13 115 

13 −0.26/(kTmean)
2 0.07 827 0.35/kT 0.13 115 

 

  












