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Abstract— This paper describes the design of a new integrity
risk prediction/monitoring methodology for robot localization
that uses feature extraction and data association algorithms.
The work specifically addresses incorrect association faults
when employing a local nearest neighbor data association algo-
rithm. This approach is more efficient and easier to implement
than previous work. The methodology is tested in simulation,
showing that the computed upper bound on integrity risk is a
performance metric capable of providing warnings when the
safety of the system cannot be guaranteed.

I. INTRODUCTION

Pose estimation performance is typically quantified using

a covariance matrix or particle spread [1], [2], but this is

insufficient for life- and mission-critical applications, such as

self-driving cars and other co-robots [3]. In these situations,

ignoring faults can lead to catastrophic localization errors. In

response, this work quantifies the safety risk involved with

data association faults by calculating the system’s navigation

integrity risk, or the probability that a robot’s pose estimate

lies within pre-defined limits [4].

Several methods can predict integrity risk in GPS-based

aviation applications, but cannot be directly applied to robots

that operate in GPS-denied environments [5], [6]. Thus,

methods must be developed that account for the faults present

in additional sensors, such as lidar. In this regard, there has

been relatively little work and none present practical safety

levels or rigorous proof of integrity [7], [8], [9].

The authors’ prior work established an integrity monitor

for lidar-based localization using an EKF coupled with the

Global Nearest Neighbor (GNN) data association algorithm

[10], [11]. However, the computational complexity of the

GNN limits applicability to on-line implementation. In re-

sponse, this paper extends prior derivations to the more

efficient and easily implemented Local Nearest Neighbor

(LNN) method as well as deriving a closer bound when

allocating integrity risk.

In this paper, Section II provides a mathematical back-

ground. Section III bounds the probability of correct associa-

tion, used in calculating integrity risk. The complete integrity

bounding process is presented in Section III-E for ease of

implementation. Simulation results are given in Section IV.

Finally, Section V presents conclusions and future work.
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II. BACKGROUND

This section introduces the necessary mathematical nota-

tion and presents the data association criteria employed in

this paper.

A. Measurement Model

Measurements corresponding to extracted feature i are

stacked in the mF ×1 vector zi. To lighten notations, no time

index is specified unless noted otherwise. A landmark map

is comprised of nL landmarks from which nF features are

extracted (nF <<< nL, typically). We assume all mapped

landmarks are the same type and all features provide the

same number of measurements, mF . The landmark from

which feature i has been extracted is denoted ti; the feature

extracted from landmark t is denoted it.

The measurement model for a single extracted feature is:

zi = hti(x) + vi (1)

where ht(·) is the measurement model function of landmark

t, x is the unknown state vector containing the robot pose,

and vi is the sensor noise corresponding to feature i’s mea-

surements. We assume white Gaussian sensor noise where

Vi is the measurement noise covariance matrix for feature i:

vi ∼ N (0,Vi) (2)

B. Innovation Vector

The difference between a feature’s measurements and the

expected measurements from a landmark is the innovation.

Small innovations are indicative of correct associations. The

innovation vector of feature i and landmark t is:

γγγi,t = zi − ht(x̄) (3)

where the state vector after the EKF prediction step x̄ is

normally distributed with mean x and covariance matrix P̄:

x̄ ∼ N
(
x, P̄
)

(4)

Substituting (1) into (3) and linearizing using a first order

Taylor expansion [10] yields:

γγγi,t ≈ yti,t + Htε̄εε+ vi (5)

where yti,t
, hti(x) − ht(x) is the innovation’s faulted

vector, Ht ,
∂ht(x)
∂x

∣
∣
∣
x̄

is the Jacobian of the measurement

model function for landmark t and, ε̄εε , x − x̄ is the predic-

tion estimate error. From (5), the innovations are normally

distributed as:

γγγi,t ∼ N
(
yti,t,Yi,t

)
(6)





III. CORRECT ASSOCIATION PROBABILITY

This section lower bounds the probability of correctly

associating features and landmarks up to, and including time

k. The probability of correct association can be recursively

evaluated as follows:

P̆ (¬IAK) = P̆ (¬IAk | ¬IAK−1)P̆ (¬IAK−1) (14)

where P̆ (¬IAk | ¬IAK−1) ≤ P (¬IAk | ¬IAK−1) and

P̆ (¬IA0) = 1. Thus, only P̆ (¬IAk | ¬IAK−1) must be

evaluated at each epoch k.

First, we analyze the events that result in an IA. Using the

LNN, an IA occurs when A) a feature i is in the validation

region of a non-corresponding landmark t ( 6= ti) and B) the

IN for such landmark t ( 6= ti) is the smallest among all INs

resulting from feature i. Then:

P (IAk | ¬IAK−1) ≤ P

(
⋃

i

⋃

t 6=ti

{

‖γγγi,t‖Y
−1

i,t

< T
︸ ︷︷ ︸

A

⋂

[
⋂

l 6=t

‖γγγi,t‖Y
−1

i,t

< ‖γγγi,l‖Y
−1

i,l

]

︸ ︷︷ ︸

B

})

(15)

where each term is marked with the letter corresponding to

its event (A,B). The next two sections analyze these two

events and upper bound their probabilities.

A. Evaluation of Term A

Event A occurs when the IN of an incorrect association

is smaller than the validation threshold, T . Then, for any i

and any t 6= ti, event A occurs if:

‖γγγi,t‖Y
−1

i,t

< T (16)

Substituting equation (5) into (16):
∥
∥yti,t + Htε̄εε+ vi

∥
∥

Y
−1

i,t

< T (17)

We define Mt ,
[
Ht I

]
and ri ,

[
ε̄εε

vi

]

. From (2) and (4):

ri ∼ N (0,Ri) where Ri =

[
P̄ 0

0 Vi

]

(18)

We bound the probability of the event A in (17) as:

P

(
∥
∥yti,t

+ Mtri
∥
∥

Y
−1

i,t

≤ T

)

≤ P

(
∥
∥yti,t

∥
∥

Y
−1

i,t

− ‖Mtri‖Y
−1

i,t
≤ T

)

≤ P

(
∥
∥yti,t

∥
∥

Y
−1

i,t

− T ≤ ‖qi‖

)

(19)

where:

qi , R
−1/2
i ri ∼ N (0, I) (20)

and ‖qi‖ ≥ ‖Mtri‖Y
−1

i,t
. More details can be found in [10],

[11]. Note that the current derivation differs from the one in

[10], [11] in that ‖qi‖ depends on the feature index.

B. Evaluation of Term B

Event B occurs when the IN of an IA is the smallest among

all INs of a certain feature. Then, for any feature i and any

landmark t 6= ti, event B occurs if:
⋂

l 6=t

‖γγγi,t‖Y
−1

i,t

< ‖γγγi,l‖Y
−1

i,l

(21)

and thus, it must be true that:

‖γγγi,t‖Y
−1

i,t

< ‖γγγi,ti‖Y
−1

i,ti

(22)

Following a similar derivation to the evaluation of term A,

we can bound the probability of event B using (22) as:

P
(

‖γγγi,t‖Y
−1

i,t

< ‖γγγi,ti‖Y
−1

i,ti

)

≤ P

(
∥
∥yti,t

∥
∥

Y
−1

i,t

− ‖Mtri‖Y
−1

i,t
< ‖Mtiri‖Y

−1

i,ti

)

≤ P

(
∥
∥yti,t

∥
∥

Y
−1

i,t

< ‖Mtri‖Y
−1

i,t
+ ‖Mtiri‖Y

−1

i,ti

)

≤ P

(
1

2

∥
∥yti,t

∥
∥

Y
−1

i,t

< ‖qi‖

)

(23)

Events A and B were bounded with expressions that can be

computed if the mean IN,
∥
∥yti,t

∥
∥

Y
−1

i,t

is known. The next

section upper bounds the probability in (15), which can be

efficiently evaluated without knowledge of the mean IN.

C. Bound on the Correct Association Probability

This section incorporates the probabilistic bounds from the

previous two sections and eliminates the need to explicitly

identify the mean IN to further lower bound the probability

of correct association.

1) Events A & B: First, we substitute the probability

bounds of events A in (19) and event B in (23) into (15)

and bound the probability of the union for a summation:

P (IAk | ¬IAK−1) ≤
nF∑

i=1

P

(
⋃

t 6=ti

∥
∥yti,t

∥
∥

Y
−1

i,t

−T ≤ ‖qi‖

⋂ 1

2

∥
∥yti,t

∥
∥

Y
−1

i,t

< ‖qi‖

)

(24)

In this expression, the only random variable is ‖qi‖, which

is independent of the landmark index t. Therefore, we can

substitute the remaining union with a minimum over all non-

corresponding landmarks (t 6= ti), i.e.:

P (IAk | ¬IAK−1) ≤
nF∑

i=1

P

(

min
t 6=ti

∥
∥yti,t

∥
∥

Y
−1

i,t

− T ≤ ‖qi‖

⋂

min
t 6=ti

1

2

∥
∥yti,t

∥
∥

Y
−1

i,t

< ‖qi‖

)

≤
nF∑

i=1

P

(

min

{

min
t 6=ti

∥
∥yti,t

∥
∥

Y
−1

i,t

− T,

min
t 6=ti

1

2

∥
∥yti,t

∥
∥

Y
−1

i,t

}

< ‖qi‖

)

(25)



We simplify the expression by only considering the second

term in the brackets, which is usually the most restrictive.

After which, squaring both sides yields:

P (IAk | ¬IAK−1) ≤
nF∑

i=1

P

(

min
t 6=ti

1

4

∥
∥yti,t

∥
∥
2

Y
−1

i,t

< ‖qi‖
2

)

(26)

From (26), the correct association probability is:

P (¬IAk | ¬IAK−1) = 1− P (IAk | ¬IAK−1) ≥

1− nF +

nF∑

i=1

P

(

‖qi‖
2
< min

t 6=ti

1

4

∥
∥yti,t

∥
∥
2

Y
−1

i,t

)

(27)

From (20), we know that ‖qi‖
2 ∼ χ2

m+mF
. Thus, the only

missing terms in (27) are the mean INs,
∥
∥yti,t

∥
∥

Y
−1

i,t

.

2) Mean Innovation’s Norm: Exact knowledge of
∥
∥yti,t

∥
∥

Y
−1

i,t

is not necessary to bound the probability in (27).

A lower bound on the minimum mean IN will be employed

instead. In order to lighten notation, we define:
∥
∥yti

∥
∥

Y
−1

i

, min
t 6=ti

∥
∥yti,t

∥
∥

Y
−1

i,t

(28)

The lower bound on the minimum mean IN,
∥
∥y∗

ti

∥
∥

Y
−1

i

, is

obtained such that it bounds the actual minimum mean IN,
∥
∥yti

∥
∥

Y
−1

i

, with preallocated probability Iyi
, i.e.:

P
(∥
∥yti

∥
∥

Y
−1

i

<
∥
∥y∗ti

∥
∥

Y
−1

i

)

≤ Iyi
(29)

where Iyi
is a fraction of the total integrity risk allocation

for the bounding of the minimum mean INs of all extracted

features, Iy, which is set to a very low value, e.g. 10−10.

The terms inside the summation in (27) can be lower

bounded using
∥
∥y∗

ti

∥
∥

Y
−1

i

and accounting for the integrity risk

allocation. First, we rewrite each term as:

P

(

‖qi‖
2
<

1

4

∥
∥yti

∥
∥
2

Y
−1

i

)

= P

(

‖qi‖
2
<

1

4

∥
∥yti

∥
∥
2

Y
−1

i

∩
∥
∥y∗ti

∥
∥

Y
−1

i

≤
∥
∥yti

∥
∥

Y
−1

i

)

+

P

(

‖qi‖
2
<

1

4

∥
∥yti

∥
∥
2

Y
−1

i

∩
∥
∥y∗ti

∥
∥

Y
−1

i

>
∥
∥yti

∥
∥

Y
−1

i

)

(30)

Then, we bound the second term by 0, rewrite the first term

using conditional probabilities and substitute (29) into (30):

P

(

‖qi‖
2
<

1

4

∥
∥yti

∥
∥
2

Y
−1

i

)

≥ P

(

‖qi‖
2
<

1

4

∥
∥yti

∥
∥
2

Y
−1

i

|
∥
∥y∗ti

∥
∥

Y
−1

i

≤
∥
∥yti

∥
∥

Y
−1

i

)

P
(∥
∥y∗ti

∥
∥

Y
−1

i

≤
∥
∥yti

∥
∥

Y
−1

i

)

≥ P

(

‖qi‖
2
<

1

4

∥
∥y∗ti

∥
∥
2

Y
−1

i

)

P
(∥
∥y∗ti

∥
∥

Y
−1

i

≤
∥
∥yti

∥
∥

Y
−1

i

)

≥ X2
m+mF

[
1

4

∥
∥y∗ti

∥
∥
2

Y
−1

i

]
(
1− Iyi

)

(31)

where X2
a [·] is a chi-squared CDF with a degrees of freedom.

3) Bound definition: The probability of correct associa-

tion at time k can be bounded by substituting (31) into (27):

P̆ (¬IAk | ¬IAK−1) ,

1− nF +

(

1−
Iy

nF

) nF∑

i=1

X2
m+mF

[
1

4

∥
∥y∗ti

∥
∥
2

Y
−1

i

]

(32)

where Iy = nF Iyi
is equally allocated among all features.

We substitute (32) into (14) to recursively obtain P̆ (¬IAK).
This section lower bounded the probability of correct

association using a lower bound of the minimum mean IN.

Next, we derive an analytical expression for
∥
∥y∗ti

∥
∥

Y
−1

i

.

D. Mean Innovation’s Norm Bound

In this section, the minimum mean IN is bounded for

a given pose estimate and map of landmarks, but prior to

obtaining sensor measurements.

We bound the mean IN of every landmark pair in the

extended Field of View (FoV), defined as the region around

the robot’s positioning estimate within:

rFoV = rmax − λFoV Φ
−1

[
IFoV

2mxyz

]

(33)

where rmax is the sensor range, λ2
FoV is the maximum

eigenvalue of the covariance matrix elements corresponding

to the robot’s position, Φ−1[·] denotes the standard normal

CDF, mxyz is the number of states for positioning only (e.g.

two in a plane), and IFoV is an integrity risk allocation.

IFoV accounts for cases where the extended FoV does not

enclose all landmarks in the actual FoV of the robot and

will be subtracted from (32). Thus, given the EKF estimate

prediction x̄ at time k (not indicated here), we define:

ȳl,t , hl(x̄)− ht(x̄) (34)

which can be linearized as:

ȳl,t ≈ hl(x) + Hlε̄εε− (ht(x) + Htε̄εε)

≈ hl(x)− ht(x) + (Hl − Ht) ε̄εε

≈ yl,t + (Hl − Ht) ε̄εε

(35)

and, from (35):

ȳl,t ∼ N
(

yl,t, (Hl − Ht) P̄ (Hl − Ht)
T

︸ ︷︷ ︸

,Ml,t

)

(36)

Thus, the weighted norm is distributed as:
∥
∥ȳl,t

∥
∥
2

M
−1

l,t

, ȳT
l,tM

−1
l,t ȳl,t ∼ χ2

mF ,‖yl,t‖
2

M
−1

l,t

(37)

In order to lower bound the mean IN,
∥
∥yl,t

∥
∥

Y
−1

il,t

, we use

the sample,
∥
∥ȳl,t

∥
∥

M
−1

l,t

, from (37) and relate both terms as:

∥
∥yl,t

∥
∥
2

Y
−1

il,t

= yTl,tY
−1
il,t

yl,t

= yTl,tM
−1/2
l,t M

1/2
l,t Y−1

il,t
M

1/2
l,t

︸ ︷︷ ︸

≥λ2

l,t

M
−1/2
l,t yl,t

≥ λ2
l,ty

T
l,tM

−1
l,t yl,t

≥ λ2
l,t

∥
∥yl,t

∥
∥
2

M
−1

l,t

(38)



where λ2
l,t is the smallest eigenvalue of M

1/2
l,t Y−1

l,t M
1/2
l,t .

Then, the lower bound of each landmark pair is defined as:
∥
∥y∗l,t

∥
∥

Y
−1

il,t

, λl,t

∥
∥y∗l,t

∥
∥

M
−1

l,t

(39)

The lower bound on
∥
∥yl,t

∥
∥

M
−1

l,t

is obtained by creating a

confidence set:

C(
∥
∥ȳl,t

∥
∥

M
−1

l,t

) =

{
∥
∥yl,t

∥
∥

M
−1

l,t

:
∥
∥y∗l,t

∥
∥

M
−1

l,t

<
∥
∥yl,t

∥
∥

M
−1

l,t

}

(40)

such that the same integrity risk allocation, Iyi
, in (29) is

met. Note that the bound,

∥
∥
∥y∗l,t

∥
∥
∥

M
−1

l,t

, will be a function of

the sample,
∥
∥ȳl,t

∥
∥

M
−1

l,t

. We rewrite this set as:

C(
∥
∥ȳl,t

∥
∥

M
−1

l,t

) =

{
∥
∥yl,t

∥
∥

M
−1

l,t

: Ql,t < β

}

(41)

where Ql,t ,
∥
∥ȳl,t

∥
∥

M
−1

l,t

−
∥
∥yl,t

∥
∥

M
−1

l,t

To meet equation (29),

it must be true that:

P (Ql,t < β) > 1− Iyi
(42)

or, using a more restrictive condition:

P (Ql,t < β) > P
(
Q′

l,t < β
)
> 1− Iyi

(43)

where Q′
l,t ,

∥
∥ȳl,t − yl,t

∥
∥

M
−1

l,t

≥ Ql,t and thus, (Q′
l,t)

2 ∼

χ2
mF

. Then, we can obtain β by equalizing (43):

β =
√

X−2
mF

[
1− Iyi

]
(44)

where X−2
a [·] denotes the chi-squared inverse CDF with a

degrees of freedom. Substituting Ql,t and β in (41) and

reorganizing terms:

C(
∥
∥ȳl,t

∥
∥

M
−1

l,t

) =
{
∥
∥yl,t

∥
∥

M
−1

l,t

:
∥
∥ȳl,t

∥
∥

M
−1

l,t

−
√

X−2
mF

[
1− Iyi

]
<
∥
∥yl,t

∥
∥

M
−1

l,t

}

(45)

Comparing (45) with (40), we define:

∥
∥y∗l,t

∥
∥

M
−1

l,t

,
∥
∥ȳl,t

∥
∥

M
−1

l,t

−
√

X−2
mF

[
1− Iyi

]
(46)

Finally, substituting (46) into (39) and taking the minimum

over the landmarks in the extended FoV, the lower bound is:

‖y∗l ‖Y
−1

il

, min
t∈ΩFoV

t 6=l

λl,t

(
∥
∥ȳl,t

∥
∥

M
−1

l,t

−
√

X−2
mF

[
1− Iyi

]
)

(47)

where the set ΩFoV includes all landmarks in the extended

FoV. Including only the landmarks in the extended FoV

defined by (33) results in a lower ‖y∗l ‖Y
−1

il

, but directly

decreases the bound on the probability of correct association

in (32) by IFoV as will be noted in the next section.

This section derived a lower bound on the minimum

mean IN that is used to compute the probability of correct

association bound. The next section summarizes the complete

integrity risk bounding process.

TABLE I

SIMULATION PARAMETERS

Std. dev. on lidar range, bearing 0.3m, 2◦

Std. dev. on robot velocity, steering angle 0.3m/s, 2◦

lidar range 25m
lidar sampling interval 0.1s
Alert limit 1m
Iy 10

−10

IFoV 10
−12

E. Summary of Equations

This section presents the equations needed for the com-

putation of the integrity risk bound at time k. The HMI

probability or integrity risk is upper bounded as:

P̆ (HMIk) = 1 + (P (HMIk) | ¬IAK)− 1) P̆ (¬IAK)
(48)

where:

P (HMIk | ¬IAK) = 2Φ

[

−
l

σ̂k

]

(49)

P̆ (¬IAK) =
k∏

j=1

P̆ (¬IAj | ¬IAJ−1) (50)

In order to do integrity prediction, we assume that all

landmarks in the FoV, nFoV , are detected. Thus:

P̆ (¬IAk | ¬IAK−1) =

1−IFoV −nFoV +

(

1−
Iy

nFoV

) nFoV∑

l=1

X2
m+mF

[
1

4
‖y∗

l ‖
2
Y

−1

il

]

(51)

where, allocating Iy equally among landmarks:

‖y∗
l ‖Y

−1

il

= min
t∈ΩFoV

t 6=l

λl,t

(

∥
∥ȳl,t

∥
∥

M
−1

l,t

−

√

X−2
mF

[

1−
Iy

nFoV

])

(52)

Ml,t = (Hl − Ht) P̄ (Hl − Ht)
T

(53)

λl,t = min eigenvalue of M
1/2
l,t Y−1

il,t
M

1/2
l,t (54)

This section lower bounded the probability of correct

association for the LNN data association method specified

in Section II-C. The bound is used to calculate the integrity

risk bound (Section III-E), which is implemented next.

IV. SIMULATION RESULTS

In this section, a simulated car-like robot follows a straight

path with landmarks on both sides (see Fig. 2) to demon-

strate the integrity risk bound summarized in Section III-

E. Velocity and steering angle are read at every epoch,

and a simulated lidar provides range and bearing to point

landmarks (mF = 2). All are disturbed with white Gaussian

noise (see Table I). An EKF tracks the robot state (x, y, θ)

and equations (48)-(54) predict the integrity risk one epoch

ahead of the current time. During the first 430m, landmarks

are well-spaced with respect to the system uncertainty (30m

in both X and Y directions between landmarks). At 430m,




