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Abstract:	

Recent	reports	have	shown	that	individuals	from	small	hometowns	show	

relatively	poor	face	recognition	ability	as	measured	by	the	Cambridge	Face	Memory	

Test	or	CFMT	(Balas	&	Saville,	2015;	2017),	suggesting	that	the	number	of	faces	

present	in	an	individual’s	visual	environment	relates	to	that	individual’s	face	

recognition	ability.	We	replicate	this	finding	in	a	sample	from	a	different	region	

(Nebraska)	and	with	more	variable	age	distribution.	We	extend	the	study	by	using	

another	test	of	face	recognition	ability	that	does	not	require	learning	over	trials,	and	

with	non-face	object	recognition	tests	that	share	the	learning	format	with	the	CFMT.	

We	find	no	hometown	effect	in	these	other	tests,	although	more	power	would	be	

required	to	show	the	CFMT	effect	is	significantly	larger.	We	use	the	same	dataset	to	

explore	whether	experience	with	more	faces	and	cars	in	larger	hometowns	leads	to	

specialization	of	these	abilities.	We	find	strong	and	substantial	support	for	the	

hypothesis	that	the	recognition	abilities	for	faces	and	for	cars	are	more	independent	

from	general	object	recognition	in	people	from	larger	hometowns.	This	suggests	

that	experience	may	be	critical	to	the	specialization	of	these	abilities.	
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People	differ	in	how	well	they	can	recognize	faces	and	objects	(Dennett	et	al.,	

2012;	Duchaine	&	Nakayama,	2006;	McGugin,	Richler,	Herzmann,	Speegle,	&	

Gauthier,	2012;	Richler	et	al.,	n.d.;	Russell,	Duchaine,	&	Nakayama,	2009).	What	

drives	these	individual	differences	remains	an	unanswered	question.	There	appears	

to	be	a	strong	genetic	influence	on	these	abilities	(Shakeshaft	&	Plomin,	2015;	

Wilmer	et	al.,	2010)	and	correlational	studies	also	suggest	an	influence	of	life	

experience	(Gauthier	et	al.,	2014;	Ryan	&	Gauthier,	2016;	Tanaka,	Kiefer,	&	Bukach,	

2004).	In	particular,	experience	stemming	from	interest	in	certain	domains	relates	

to	recognition	abilities	(Gauthier	et	al.,	2014;	Ryan	&	Gauthier,	2016)	and	

experience	due	to	categories	present	in	one’s	environment	also	relates	to	

recognition	abilities	(e.g.,	the	other-race	effect,	De	Heering,	De	Liedekerke,	Deboni,	&	

Rossion,	2010;	Sangrigoli,	Pallier,	Argenti,	Ventureyra,	&	De	Schonen,	2005).		

Aside	from	the	distribution	of	different	kinds	of	faces	one	experiences	or	the	

interest	one	may	have	individuating	objects	from	various	categories,	recent	work	

suggests	that	the	number	of	exemplars	in	a	category—in	this	case,	faces—within	

one’s	environment	might	also	impact	recognition	ability	(Balas	&	Saville,	2015).		

Balas	&	Saville	(2015)	reported	that	people	from	larger	hometowns	(those	with	

higher	population	densities)	performed	better	on	a	measure	of	face	recognition	than	

those	from	smaller	hometowns,	a	difference	the	researchers	attributed	to	the	fact	

that	those	from	less	dense	hometowns	likely	encounter	fewer	faces	during	their	

childhood.	Small	hometown	individuals	would	have	grown	up	basing	face	

recognition	judgments	on	a	smaller	“face	space”	(Valentine,	1991)	relative	to	people	

from	larger	towns,	which	the	authors	suggest	could	impair	recognition.	The	result	
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also	aligns	with	exemplar	models	wherein	performance	gains	due	to	automaticity	

arise	from	accumulations	of	exposures	in	a	given	task	and	domain	(Logan,	1988;	

Palmeri,	1997).	Though	an	important	finding,	the	original	Balas	&	Saville	(2015)	

demonstration	did	not	test	a	specific	explanation	for	the	phenomenon,	and	was	

limited	in	a	few	important	ways.	First,	there	was	no	behavioral	test	with	non-face	

objects	to	determine	whether	hometown	size	influences	faces	specifically,	or	

extends	beyond	faces	into	other	object	domains.	Second,	only	one	type	of	face	

learning	task	was	used	(the	CFMT),	leaving	open	the	question	of	whether	

performance	on	other	face	tasks	would	be	similarly	impacted.		A	more	recent	study	

provides	some	evidence	that	this	face	recognition	advantage	may	not	extend	to	all	

tasks	with	face	stimuli	since	Balas	&	Saville	replicated	the	relative	deficit	on	the	

CFMT	but	found	no	difference	between	groups	in	a	card-sorting	task	with	faces	and	

bodies	(Balas	&	Saville,	2017).	Finally,	in	the	2015	paper,	an	effect	of	hometown	

population	density	(hereafter,	HPD)	was	observed	on	the	face-selective	N170	ERP,	

but	the	effect	was	entirely	accounted	for	by	a	difference	in	N170	amplitudes	

between	face	and	non-face	(chair)	categories	in	the	large	hometown	group	but	no	

difference	between	faces	and	chairs	in	the	small	hometown	group.	In	sum,	a	relative	

deficit	was	observed	on	the	CFMT	but	it	is	not	clear	how	specific	the	effect	may	be	in	

terms	of	domain	and	task.	

Our	first	goal	was	to	replicate	the	effect	found	in	Balas	&	Saville	(2015)	in	a	

larger	and	more	heterogeneous	sample	recruited	from	the	University	of	Nebraska-	

Lincoln,	increasing	statistical	power	and	the	ecological	validity	of	the	result.	Second,	

we	measured	recognition	abilities	for	both	faces	and	other	object	domains	to	assess	
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whether	the	effect	would	generalize	to	another	face	task	that	is	not	a	learning	task	

like	the	CFMT,	and	to	other	learning	tasks	that	share	the	format	of	the	CFMT,	for	

non-face	domains.	

In	addition	to	determining	if	those	from	hometowns	with	lesser	population	

density	showed	relatively	poor	face	recognition	ability,	our	second	goal	was	to	

compare	the	degrees	of	“specialization”	of	faces	and	cars	between	HPD.		It	is	well	

established	that	car	recognition	correlates	below-average	with	the	recognition	of	

other	object	categories	(McGugin	et	al.,	2012;	Van	Gulick,	McGugin,	&	Gauthier,	

2016),	suggesting	that	car	recognition	is	more	independent	from	general	object	

recognition	than	other	object	categories	(e.g.,	birds,	mushrooms).	Indeed,	the	

dissociation	between	cars	and	other	object	domains	is	often	similar	in	extent	to	

what	is	found	between	faces	and	other	object	domains	(McGugin	et	al.,	2012;	Van	

Gulick	et	al.,	2016).	Since	the	dissociation	between	faces	and	other	object	domains	is	

often	used	as	evidence	that	faces	are	“special”	(e.g.	McKone,	Kanwisher,	&	Duchaine,	

2007;	Yue,	Tjan,	&	Biederman,	2006),	by	this	standard,	cars	would	also	have	to	be	

considered	“special.”		

Determining	that	the	recognition	of	cars	is	“special”	(i.e.	independent	from	

that	of	other	object	categories)	would	have	important	theoretical	ramifications,	

since	an	evolutionary	explanation	for	why	faces	are	special	could	not	apply	to	cars	

(given	cars	have	only	existed	for	the	past	century	or	so).	Instead,	we	would	have	to	

explore	other	possible	explanations	for	the	independence	of	car	recognition.	For	

instance,	people	could	have	more	knowledge	about	cars,	though	a	recent	study	

found	little	evidence	that	knowledge	mediates	the	correlation	between	car	
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recognition	and	the	recognition	of	novel	objects	(Richler,	Wilmer,	&	Gauthier,	2017).	

Another	possibility	is	that,	given	the	ubiquity	of	cars	in	the	modern	world,	people	

have	more	experience	with	cars	as	compared	with	other	object	domains.	If	

experience	was	responsible	(or	partially	responsible	as	it	is	likely	more	than	one	

explanation	could	apply)	for	the	“specialness”	of	car	recognition,	then	independence	

of	car	recognition	should	be	modulated	by	HPD.	Thus,	we	predict	that	in	a	lower	

density	hometown	sample,	both	face	and	car	recognition	will	be	more	strongly	

correlated	with	other	domains	than	in	a	higher	density	hometown	sample.	This	

prediction	assumes	people	from	low-density	hometowns	encounter	fewer	cars	than	

those	from	high-density	hometowns	given	that	a	less	dense	population	would	imply	

fewer	cars	in	the	visual	environment.		It	is	of	course	possible	that	this	may	not	be	

the	case	given	that	visual	experience	with	cars	can	occur	not	only	through	in-person	

interactions	but	also	through	perception	of	images	on	the	Internet,	television,	

magazines,	etc.		This	is	also	true	of	faces,	however,	and	given	the	results	from	Balas	

&	Saville	(2015),	we	assume	that	people	who	live	in	less	dense	towns	encounter	

fewer	people	on	a	daily	basis	than	those	from	more	dense	towns,	leading	to	

relatively	less	experience	with	faces	and	cars.	Balas	&	Saville	(2015)	found	a	

significant	difference	between	face-	and	chair-	evoked	N170	amplitudes	in	their	

large	hometown	group	but	no	difference	in	the	small	hometown	group	(although	the	

interaction	was	not	significant),	suggesting	that	face	recognition	is	more	distinct	

from	object	recognition	in	those	from	more	dense	hometowns	than	those	from	less	

dense	hometowns	(Balas	&	Saville,	2015).	Therefore	we	have	two	main	hypotheses:	

(1)	we	will	replicate	the	previous	finding	that	people	from	high	density	hometowns	
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perform	better	on	a	face	recognition	measures	–	and	(2)	face	and	car	recognition	

will	correlate	more	strongly	with	the	recognition	of	other	categories		for	our	low-

density	hometown	sample	than	our	high-density	hometown	sample.	As	an	

extension,	we	ask	whether	this	finding	of	better	recognition	in	people	from	high	

density	hometowns	generalizes	to	a	non-learning	face	task	or	to	learning	non-face	

tasks.		

	

Methods	

Subjects	

	 A	total	of	172	subjects	were	recruited	using	flyers	placed	around	the	

University	of	Nebraska	–	Lincoln	campus.	Many	UNL	students	are	in-state	and	come	

from	towns	just	outside	of	Lincoln	or	Omaha.	Subjects	were	compensated	$37.50	

($15/hr)	for	completing	all	tests	and	all	work	was	conducted	under	the	approval	of	

both	Vanderbilt	and	UNL	Institutional	Review	Boards	and	was	conducted	in	

accordance	with	the	Code	of	Ethics	of	the	World	Medical	Association	(Declaration	of	

Helsinki).	Informed	consent	was	obtained	from	all	subjects.	Of	these	172	subjects,	

111	reported	their	hometown	zipcode	in	a	follow-up	email	(as	we	determined	in	

preliminary	stages	of	analyses	that	hometown	population	size	and	self-reported	

hometown	size	were	not	good	predictors	of	population	density,	and	reasoned	that	

population	density	is	likely	more	relevant	than	is	hometown	population	to	day-to-

day	experience	with	faces	and	cars).	From	hometown	zipcodes,	population	density	

could	be	determined	from	www.unitedstateszipcodes.org.	One	subject	was	excluded	
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because	of	below	or	near	chance	performance	levels	(range	.21-.38)	on	all	

recognition	tasks,	leaving	110	subjects.		

	

Procedure	

	 Subjects	completed	all	of	the	following	tests	through	an	online	website.	Total,	

the	tests	took	approximately	2.5	hours	to	complete	and	subjects	were	given	a	week	

to	complete	the	tests,	in	a	single	order:	SVET-	Bird,	SVET-Mushroom,	SVET-Car,	

SVET-Plane,	VET-	Bird,	VET-Mushroom,	VET-Car,	VET-Plane,	CFMT,	VFMT	and	

CCMT.	

Semantic	Vanderbilt	Expertise	Tests	(SVETs)	

	 The	SVET	is	designed	to	measure	semantic	knowledge	about	a	particular	

domain.	For	48	trials	(with	3	catch	trials),	subjects	choose	the	real	subordinate-level	

label	among	two	plausible	distractor	labels	(Van	Gulick	et	al.,	2016).	For	example,	

subjects	must	choose	the	option	displaying	the	text	“Evening	Grosbeak”	as	the	

correct	bird	label,	instead	of	“Dakota	Raven”	or	“Antietam.”	Here	we	used	the	SVET	

for	birds,	mushrooms,	planes	and	cars	to	provide	measures	of	semantic	knowledge	

to	accompany	every	VET.	This	task	takes	approximately	five	minutes	to	complete.	

Vanderbilt	Expertise	Tests	(VETs)	

	 The	Vanderbilt	Expertise	Tests	were	developed	to	measure	object	

recognition	for	several	domains	using	a	learning-exemplar	task	similar	to	that	used	

in	the	CFMT	(McGugin	et	al.,	2012).	Thus,	subjects	study	six	exemplars	at	the	

beginning	of	each	VET	for	20	seconds	and	then	complete	an	initial	12	three-

alternative	forced-choice	trials	(See	Figure	1).	On	each	trial,	subjects	have	to	
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Cambridge	Face	Memory	Test	(CFMT)	

	 The	CFMT	was	designed	as	a	measure	of	face	recognition	ability	(Duchaine	&	

Nakayama,	2006).	Subjects	begin	by	studying	six	Caucasian	male	grayscale	faces	and	

then	complete	three-alternative	forced	choice	trials	to	distinguish	the	target	faces	

from	two	distractors	(Figure	1).	On	the	first	18	trials,	faces	are	presented	with	

viewpoints	that	are	identical	to	the	studied	viewpoint,	followed	by	30	trials	in	which	

the	faces	vary	in	viewpoint	and	lighting,	and	then	24	trials	in	which	Gaussian	noise	

is	added	to	the	images	(bottom	right	image	in	Figure	1).	Here,	we	used	the	longer	

CFMT	(Russell	et	al.,	2009),	which	includes		30	additional	difficult	trials	at	the	end	of	

the	test	in	which	more	Gaussian	noise	is	added	to	the	images.		Subjects	studied	the	

target	faces	between	each	block	and	responses	were	un-speeded.	The	test	takes	

approximately	15	minutes	to	complete.		

Cambridge	Car	Memory	Test	(CCMT)	

	 The	CCMT	was	designed	to	measure	car	recognition	ability	using	the	same	

task	used	in	the	CFMT	(Dennett	et	al.,	2012).	Because	of	limitations	of	the	online	

website	we	used	to	record	responses,	we	had	to	modify	the	presentation	of	stimuli	

from	the	original	presentation	format	(three	cars	staggered	along	a	diagonal	from	

upper	left	to	bottom	right)	to	a	new	format	in	which	we	presented	the	three	car	

options	vertically	centered	and	stacked.	Unfortunately,	we	discovered	that	some	

subjects	misinterpreted	the	instructions	and	we	could	not	reliably	determine	from	

the	responses	collected	which	subjects	were	properly	responding	and	which	were	

incorrectly	responding.	Thus,	we	did	not	include	the	CCMT	in	any	of	our	analyses.		



	 11	

	

Vanderbilt	Face	Matching	Test	(VFMT)	

	 The	VFMT	was	created	to	measure	face	recognition	ability	using	a	different	

task	from	that	used	in	the	CFMT,	CCMT	and	VETs	(Sunday,	Lee,	&	Gauthier,	in	press).	

In	contrast	to	these	tests,	the	VFMT	does	not	require	learning	about	a	small	set	of	

faces	over	a	series	of	trials,	but	instead	only	requires	short-term	visual	memory	to	

match	face	identity	on	a	new	set	of	faces	on	each	trial.	We	included	the	VFMT	as	

another	measure	of	face	recognition	ability	that	uses	a	different	task	from	that	used	

by	the	CFMT.	This	inclusion	allows	us	to	determine	whether	the	hometown-related	

effects	found	in	Balas	&	Saville	(2015)	generalize	to	all	tests	that	tap	into	face	

recognition	ability	or	are	specific	to	the	learning	exemplar	CFMT	task.	Each	of	the	95	

trials	uses	a	new	set	of	5	face	images	of	either	male	or	female	Caucasian	faces	(same	

within	a	trial).	Subjects	study	two	faces	for	four	seconds	and	then	in	a	test	display,	

they	must	choose	which	of	three	faces	matches	one	of	the	two	studied	faces	(Figure	

2).	Subjects	are	instructed	to	match	identity	and	not	image,	since	the	studied	and	

correct	responses	target	faces	are	different	images	of	the	same	individual.	Feedback	

is	provided	only	on	the	practice	trials	and	first	three	test	trials.	Face	genders	were	

interleaved	to	reduce	proactive	interference	and	responses	were	unspeeded.	The	

VFMT	takes	approximately	15	minutes	to	complete.	
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and	(4)	how	much	of	their	free	time	involves	recognizing	things	visually	(Van	Gulick	

et	al.,	2016).	

Self-Reported	Hometown	Size	and	Zipcodes	

	 Subjects	answered	the	question	“How	would	you	classify	the	place	you	

consider	your	hometown?”	on	a	scale	from	1-5	(1:	very	small	town	(population	less	

than	1,000),	2:	small	town	(population	greater	than	1,000	but	less	than	30,000),	3:	

small	city	(population	greater	than	30,000	but	less	than	250,000),	4:	large	city	

(population	greater	than	250,000	but	less	than	1	million),	5:	major	metropolitan	

area	(population	greater	than	1	million)).	We	chose	1,000	and	30,000	as	our	cutoffs	

because	they	are	the	cutoffs	used	in	Balas	and	Saville	(2015).	To	get	a	more	

continuous	estimate	of	hometown	size,	we	asked	subjects	to	report	their	hometown	

zipcode	in	a	follow-up	email	(111	out	of	172	responded).	We	obtained	population	

and	population	density	(people	per	square	mile)	values	for	each	of	these	zipcodes	

from	www.unitedstateszipcodes.org.	These	population	and	population	density	

values	are	derived	from	multiple	sources,	including	the	U.S.	Postal	Service,	U.S.	

Census	Bureau,	Yahoo,	Google,	FedEx	and	UPS.	We	did	not	ask	our	subjects	to	report	

the	exact	years	during	which	they	lived	in	the	reported	hometown,	however,	

meaning	that	these	population	values	may	not	exactly	correspond	to	when	the	

subjects	lived	in	their	hometowns.		

	 When	comparing	performance	across	groups,	in	addition	to	NHST	results,	we	

provide	Bayes	Factor	(evidence	favoring	better	performance	in	the	high	than	low	

population	group)	and	Bayesian	estimation	of	the	effect	size	in	the	form	of	the	95%	

highest	density	interval	(95%	HDI)	using	the	BEST	program	(Kruschke,	2013),	
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CFMT	scores	showed	no	correlation	with	age	(r107	=	-0.09,	p	=	.38).	

While	Balas	&	Saville	(2015)	categorically	compared	two	groups	of	subjects	

for	whom	they	did	not	obtain	the	exact	hometown	size	(Small	hometown	group	self-

reported	hometown	populations	<	1,000;	Large	hometown	group	self-reported	

hometown	populations	>	30,000),	our	more	continuous	measure	affords	us	the	

opportunity	to	examine	subjects	from	a	total	72	different	hometown	zipcodes.	

Considering	the	relation	between	reported	hometown	size	and	population	density	

derived	from	zipcodes,	we	find	that	while	hometowns	of	size	less	than	1,000	

(Hometown	1)	do	show	smaller	zipcode	population	density,	there	is	considerable	

overlap	among	the	other	four	groups	(Figure	3).	We	reasoned	that	population	

density	was	the	variable	more	relevant	to	daily	experience	with	faces,	thus	we	

grouped	our	subjects	based	on	population	density.	Because	our	population	densities	

ranged	from	2	to	34,190,	we	log-transformed	the	density	measure	using	base	10,	

although	we	report	raw	un-transformed	values	in	the	text	and	Table	1	for	clarity.		

Balas	&	Saville	had	a	small	hometown	group	from	towns	of	less	than	10	

people	per	square	mile	and	a	large	hometown	group	from	a	town	of	around	85	

people	per	square	mile	(Balas	&	Saville,	2015).	To	compare	our	results	to	theirs,	we	

created	three	groups:	Small	HPD	(population	density	≤	10	ppl/mi2);	Medium	HPD	

(10	<	population	density	≤	85	ppl/mi2);	Large	HPD	(population	density	>	85	

ppl/mi2).	We	chose	85	ppl/mi2	as	a	cutoff	point	because	it	approximates	the	average	

population	density	of	the	entire	United	States	(87.4	ppl/mi2;	Balas	&	Saville,	2015)	

and	falls	within	a	gap	between	our	largest	medium	population	density	(77	ppl/mi2)	

and	smallest	large	population	density	(159	ppl/mi2).	Two	of	our	subjects	reported	
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hometown	sizes	of	less	than	1,000	but	had	zipcode	population	densities	that	would	

place	them	in	the	medium	group	(log	population	densities	of	12	and	75)	were	

included	in	the	small	hometown	group	based	on	Figure	3.	The	demographics	for	

each	group	are	reported	in	Table	1.	

	

Hometown	
Group	

N	 Mean	
Age	(SD)	

Percent		
female	

Percent	
Caucasian	

Mean	Pop.	Density	(SD)	

Small	 10	 26.7	(3.8)	 80%	 80%	 13.30	(21.9)	

Medium	 13	 28.4	(10.4)	 69%	 92%	 37.9	(21.1)	

Large	 84	 24.3	(5.6)	 71%	 85%	 3142.1	(5166.7)	

Table	1.	Demographics	for	small,	medium	and	large	hometown	groups.		
	

Our	small	and	large	density	groups	correspond	well	to	those	groups	in	the	Balas	&	

Saville	study,	but	it	was	not	clear	what	to	predict	for	our	medium	density	group	(i.e.	

whether	we	should	expect	a	linear	effect,	or	whether	there	is	a	point	at	which	

population	density	reaches	a	ceiling	in	its	effects).		In	examining	the	average	

accuracies	for	the	CFMT-long	with	the	three	groups	(small:	M	=	57.1%,	SD	=	11.9%;	

medium:	M	=	58.1%,	SD	=	10.7%;	large:	M	=	63.1%,	SD	=	10.2%),	we	noted	the	small	

vs.	large	group	difference	consistent	with	Balas	&	Saville	(2015),	with	the	medium	

group	very	similar	in	accuracy	and	variance	relative	to	the	small	density	group.	

Thus,	to	increase	the	power	of	our	analyses,	we	combined	the	small	and	medium	

groups	into	one	group	(now	called	“low”)	for	comparison	with	those	from	places	

with	a	large	population	density	(“high”).		These	two	groups	had	roughly	similar	

demographics	(low:	N	=	23,	mean	age	=	27.7,	SD	age	=	9.6,	74%	female,	87%	
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Caucasian,	mean	population	density	=	27.2	ppl/mi2,	SD	population	density	=	24.4	

ppl/mi2;	high:	N	=	84,	mean	age	=	24.3,	SD	age	=	5.6,	71%	female,	85%	Caucasian,	

mean	population	density	=	3142.1	ppl/mi2,	SD	population	density	=	5166.7	

ppl/mi2).		

	

Analyses	of	the	patterns	of	mean	performances:	Will	the	small	hometown	sample	show	

lower	performance	on	the	CFMT,	as	in	Balas	&	Saville	(2015)?	Will	this	extend	to	

another	test	of	face	recognition	or	to	other	learning	tests	with	non-face	categories?	

	

For	all	analyses,	no	quantitative	difference	was	observed	between	the	short	

72-trial	CFMT	version	used	in	Balas	&	Saville	(2015)	and	the	extended	score.	

Because	the	longer	version	is	more	sensitive	to	high	range	performance,	from	now	

on	we	report	only	this	version,	which	we	will	call	CFMT.	Accuracies	for	each	

recognition	test	separated	by	group	are	shown	in	Figure	4.		

Because	of	the	difference	in	sample	size,	we	tested	for	equality	of	variance	

between	groups	for	each	test,	using	Levene’s	test.	The	high	group	had	higher	

variance	than	the	low	group	on	the	VET-Bird	(F	=	5.11,	p	=	.026)	so	for	that	test	we	

used	a	Welch	test	to	adjust	degrees	of	freedom.	None	of	the	other	tests	showed	

significant	evidence	of	unequal	variance	(p’s	>	.25).	

The	only	significant	difference	between	low	and	high	group	average	

accuracies	was	found	for	CFMT-scores	(two-tailed	t(105)	=	2.25,	p	=	0.03,	d	=	-0.52,	

one	tail	BF:	3.87;	95%	HDI:	0.002,	0.110,	Figure	4).	Indeed,	both	the	long	and	short	

CFMT	scores	show	a	significant	difference	between	hometown	groups,	and	thus	
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test-level	difficulty	does	not	seem	to	modulate	the	observed	effect	(average	

performance	for	the	CFMT	short	form	was	71.6	(.12)	was	62.0	(.11)	for	the	long	

form).	t-tests	and	Bayesian	estimates	qualitatively	agreed	for	all	tests:	for	all	the	

other	tests	(t-tests	and	Welch	test	for	birds),	p-values	were	large	(p	>	.4),	BFs	

favored	the	null	hypothesis	and	the	95%HDI	included	0.	

Following	Richler	et	al	(2017),	we	aggregated	the	four	VET	scores	to	produce	

one	total	VET	score	that	can	be	used	as	an	estimate	of	general	object	recognition	

ability.	This	aggregation	is	useful	since	experience	and	interest	in	different	VET	

categories	do	not	correlate	across	categories	(Richler	et	al.,	2017).	We	then	ran	a	2	

(hometown	groups)	x	3	(VET,	VFMT,	CFMT)	ANOVA	in	which	neither	the	main	effect	

of	group	F(1,105)	=	2.57,	p	=.11,	ηp2	=	.02,	nor	the	group	x	category	interaction,	

F(2,210)	=	1.77,	p	=	.17,	ηp2	=	.02,	was	significant1.		

Thus,	we	replicate	the	effect	of	HPD	on	CFMT,	but	we	may	lack	the	power	to	

show	that	this	this	effect	is	larger	than	that	for	non-face	learning	tests	or	a	non-

learning	face	recognition	task.	We	performed	a	power	calculation	specifying	the	

same	group	ratios	as	in	the	present	study	and	found	that	to	detect	the	present	

interaction	with	80%	power,	a	sample	size	2.6	times	as	large	(278	subjects)	would	

be	required2.	

	

																																																								
1
 There was a significant effect of Category, F(2,210) = 4.04, p = .02, which we do not interpret because the 

different tests were not meant to be equated in difficulty, so only within-tests effects or interactions were of 

interest. 
2
 Note that such power calculations, based on a 95% confidence interval around the noncentrality 

parameter, are relatively imprecise (Taylor & Muller, 1996). 
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this	issue	is	addressed	specifically	under	Section	2,	“Analyses	of	the	patterns	of	

correlations	as	a	function	of	hometown	population	density”.	

	

	

		 VET-Bird	 VET-Mush	 VET-Plane	 VET-Car	 VFMT	 CFMT	

VET-Bird	 α	=	.85	 0.61	 0.61	 0.44	 0.48	 0.48	

VET-Mush	 0.45	 α	=	.64	 0.56	 0.28	 0.31	 0.30	

VET-Plane	 0.51	 0.41	 α	=	.82	 0.39	 0.35	 0.35	

VET-Car	 0.35	 0.19	 0.30	 α	=	.74	 0.48	 0.44	

VFMT	 0.38	 0.22	 0.31	 0.35	 α	=	.74	 0.84	

CFMT		 0.41	 0.22	 0.29	 0.35	 0.67	 α	=		.85	

	

Table	3.	Correlations	between	each	test	are	shown	in	the	lower	left	corner	with	the	
Cronbach	alpha	reliability	shown	along	the	diagonal	(italicized).	Dis-attenuated	
correlations	are	reported	in	the	upper	right	corner.	r	>	.31	are	significant	at	alpha	=	
.001;	r	>	.24	are	significant	at	α	=	.01;	r	>	.18	are	significant	at	α		=	.05.		
	

	 Each	VET	correlated	significantly	with	the	SVET	from	its	respective	domain	

(Table	4,	Birds:	r107	=	0.38,	p	<	.001;	Mushrooms:	r107	=	0.23,	p	=	.02;	Planes:	r107	=	

0.24,	p	=	.01;	Cars:	r107	=	0.40,	p	<	.001).	As	in	prior	work	(Van	Gulick	et	al.,	2016)—

and	indicative	of	good	validity	of	the	tests	as	measures	of	specific	experience	with	

various	categories—all	but	the	VET-Mush/SVET-Mush	(r107	=	0.18,	p	=	.13)	within-

domain	correlations	remained	significant	after	regressing	out	the	averaged	other	

domains	(e.g.	VET-Bird	scores	after	the	averaged	VET-Mush,	VET-Plane	and	VET-Car	

score	is	partialed	out;	Appendix,	Table	2,	r’s107	>	0.21,	p’s	<	.03)	
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VET-
Bird	

VET-
Mush	 VET-Car	

VET-
Plane	

SVET-
Bird	

SVET-
Mush	

SVET-
Car	

SVET-
Plane	

VET-
Bird	 a	=	.85	 0.61	 0.44	 0.61	 0.58	 0.43	 0.23	 0.23	

VET-
Mush	 0.45	 a	=	.64	 0.28	 0.56	 0.18	 0.40	 0.16	 0.08	

VET-	
Car	 0.35	 0.19	 a	=	.74	 0.39	 0.33	 0.21	 0.51	 0.01	

VET-
Plane	 0.51	 0.41	 0.30	 a	=	.82	 0.30	 0.33	 0.24	 0.32	

SVET-
Bird	 0.38	 0.10	 0.20	 0.19	 a	=	.50	 0.45	 0.36	 0.03	

SVET-
Mush	 0.29	 0.23	 0.13	 0.22	 0.23	 a	=	.52	 0.30	 0.43	

SVET-
Car	 0.19	 0.12	 0.40	 0.20	 0.23	 0.20	 a	=	.82	 0.48	

SVET-
Plane	 0.17	 0.05	 0.01	 0.24	 0.02	 0.26	 0.36	 a	=	.67	

	
	
Table	4.	Correlations	between	VETs	and	SVETs	for	the	107	subjects.	Cronbach	alpha	
values	are	shown	along	the	diagonal	(italicized)	and	disattenuated	correlations	are	
reported	in	the	upper	right	corner.	r	>	.31	are	significant	at	alpha	=	.001;	r	>	.24	are	
significant	at	α	=	.01;	r	>	.18	are	significant	at	α		=	.05.	Within-domain	correlations	
are	bolded.	
	
	

Within-domain	VETs	and	relevant	self-reported	experience	showed	small	

correlations,	consistent	with	prior	work	demonstrating	that	people	are	not	very	

good	at	predicting	their	recognition	performance	relative	to	other	people	(Van	

Gulick	et	al.,	2016,	see	Appendix,	Table	1).	Correlations	between	recognition	tests	

and	average	self-reported	general	object	recognition	interest	and	experience	were	

also	small	but	consistent	(Mean	r107	=	.09,	range	r	=	-.07-.16).		
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Analyses	of	the	patterns	of	correlations	as	a	function	of	hometown	population	density:	

Are	face	and	car	recognition	abilities	more	strongly	related	to	other	kinds	of	object	

recognition	in	a	small	hometown	sample	as	compared	with	a	large	hometown	sample?	

	

This	second	set	of	analyses	concerns	not	the	mean	performance	on	each	test,	

but	whether	we	can	find	evidence	that	in	the	absence	of	early	experience	with	a	

large	number	of	faces	and	cars,	as	represented	by	HPD,	face	and	car	recognition	is	

more	strongly	related	to	other	kinds	of	object	recognition.		That	is,	we	already	know	

that	in	large	samples	for	which	HPD	is	not	controlled	(but	is	presumed	to	be	

relatively	large),	performance	with	faces	and	with	cars	shows	correlations	with	

object	recognition	for	other	categories	that	are	lower	than	average.	Here,	we	

examine	whether	this	effect	is	stronger	in	high	than	low	HPD	groups,	for	each	

individual	face	and	car	test.	

We	performed	three	separate	sets	of	analyses	that	focused	on	the	relations	

among	bird,	mushroom,	and	plane	recognition	and	the	CFMT,	VFMT,	and	VET-Car	

recognition	measures,	respectively.	Thus,	each	analysis	involved	the	correlations	

among	a	set	of	four	variables,	each	assessed	within	the	high	and	low	HPD	groups.	

Below,	for	the	sake	of	brevity,	we	state	our	hypotheses	in	terms	of	face	recognition	

(applying	to	the	CFMT	and	VFMT),	but	the	logic	is	parallel	for	cars	(VET-Car).	Our	

hypotheses	can	be	framed	in	terms	of	the	relative	magnitude	of	correlations	

involving	birds,	mushrooms,	and	planes.	We	predicted	that	(see	Table	5):	(1)	Of	all	

the	correlations	involving	birds	in	the	high-	and	low-density	groups	(e.g.,	bird-

mushroom-high,	bird-plane-high,	bird-face-high,	bird-mushroom-low)	the	lowest	
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correlation	would	be	that	between	birds	and	faces	in	the	high	density	group;	(2)	Of	

all	the	correlations	involving	mushrooms	in	the	high-	and	low-density	groups	the	

lowest	correlation	would	be	that	between	mushrooms	and	faces	in	the	high-density	

group;	and,	(3)	Of	all	the	correlations	involving	planes	in	the	high-	and	low-density	

groups	the	lowest	correlation	would	be	that	between	planes	and	faces	in	the	high-

density	group.		Thus,	within	each	of	the	three	non-face	categories,	our	hypotheses	

imposed	five	inequality	constraints.	For	example,	in	the	case	of	birds,	the	

correlations	for	each	of	the	five	members	of	the	set	bird-mushroom-high,	bird-

plane-high,	bird-mushroom-low,	bird-plane-low,	and	bird-face-low	would	be	

greater	than	the	correlation	between	bird	and	faces	in	the	high-density	group.	Thus,	

across	birds,	mushrooms,	and	planes	there	were	15	inequality	constraints	in	all.	We	

should	note	that	we	did	not	specify	any	specific	pattern	of	inequalities	among	pairs	

of	correlations	that:	(1)	Did	not	involve	faces	(e.g.,	there	were	no	inequality	

constraints	on	the	relation	between	bird-mushroom-high,	bird-plane-high,	bird-

mushroom-low,	and	bird-plane-low);	(2)	Only	involved	faces	within	a	given	density	

group	(e.g.,	our	hypotheses	did	not	constrain	the	relative	magnitude	of	bird-face-low	

and	mushroom-face-low);	and	(3)	Had	no	stimuli	in	common	(e.g.,	the	bird-

mushroom	and	plane-face	correlations	within	or	across	density	groups).3		Based	on	

our	prior	findings,	our	predictions	here	were	strongest	for	the	CFMT	and	VET-Car,	

as	these	tests	have	been	used	in	combination	with	tests	for	several	other	object	

categories	(e.g.,	VET	battery	for	birds,	mushrooms,	planes,	motorcycles…)	in	prior	

																																																								
3
 When we imposed additional constraints that also included these correlations (e.g., r between bird and 

mushroom > r between plane and face) the pattern of results was very similar to those reported below and 

conclusions about magnitude of effects were identical.  
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group,	we	predicted	that	(see	Table	5,	bold	constraints):	(1)	The	bird-face	

correlation	would	be	lower	than	both	the	bird-mushroom	and	bird-plane	

correlations;	(2)	The	mushroom-face	correlation	would	be	lower	than	both	the	bird-

mushroom	and	mushroom-plane	correlations;	and,	(3)	The	plane-face	correlation	

would	be	lower	than	both	the	bird-plane	and	mushroom-plane	correlations.		Thus,	

six	constraints	in	all	were	imposed	within	the	high-density	group.	Although	we	did	

not	hypothesize	the	same	effect	in	the	low-density	group,	for	comparative	purposes	

we	also	assessed	the	strength	of	the	evidence	for	this	group.		The	logic	of	our	

predictions	for	cars	again	directly	paralleled	that	just	described	for	both	face	tests	

(i.e.,	the	smallest	correlations	would	be	the	three	involving	cars	within	the	high-

density	group).		

	 Note	that	the	hypotheses	across	both	groups	and	within	the	high-density	

group	consist	of	sets	of	ordinal	(i.e.,	inequality)	constraints	among	pairs	of	

correlations.	Each	constraint	specifies	that	a	given	correlation	is	less	than	another	

correlation.	Although	one-tailed	tests	are	commonly	used	to	test	a	single	inequality	

constraint	considered	in	isolation,	it	is	difficult	to	test	sets	of	ordinal	constraints	

using	traditional	statistical	methods.		Such	predictions	can,	however,	be	tested	using	

a	Bayesian	order-constrained	hypothesis	testing	(BOHT)	approach	(e.g.,	Hoijtink,	

Klugkist,	&	Boelen,	2008;	Klugkist,	Landy,	&	Hoijinkk,	2005;	Klutymans,	van	de	

Schoot,	Mulder,	&	Hoijtink,	2012;	Mulder,	2014,	2016).	We	used	the	analytic	

framework	and	software	program	BOCORR	developed	by	Mulder	(2016)	for	testing	

order-constrained	hypotheses	on	correlations.	This	approach	allowed	us	to	test	the	

two	sets	of	composite	hypotheses	as	a	whole,	rather	than	relying	on	tests	of	
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individual	pairs	of	correlations,	one	by	one.		In	addition	to	allowing	a	more	direct	

test	of	our	hypotheses	than	a	piecemeal	approach,	the	BOHT	approach	had	two	

additional	advantages:	(1)	It	does	not	require	the	multiplicity	corrections	

necessitated	when	testing	a	large	number	of	differences	between	pairs	of	

correlations	(e.g.,	Boelen	&	Hoitjtink,	2008;	Hoitjtink,	Huntjens,	Reijntes	et	al.,	

2008);	and,	(2)	It	yields	Bayes	factors	(BFs)	that	allowed	us	to	quantify	the	degree	of	

support	for	our	hypotheses	rather	than	relying	on	a	series	of	reject/no-reject	

decisions.			

	 Because	of	the	complexity	of	the	BOHT	approach,	we	emphasize	a	more	

intuitive	than	mathematically	rigorous	description	and	refer	readers	interested	in	a	

more	technical	description	to	Mulder	(2016)	and	the	other	sources	cited	above.		

Consider	our	predictions	that	span	both	density	groups.	Consider	the	15	inequality	

constraints	shown	in	Table	5	as	the	null	hypothesis	(H0).	Although	some	

applications	of	BOHT	involve	multiple	competing	hypotheses	of	interest,	in	our	case	

we	simply	compared	H0	to	its	alternative	(Ha),	that	is,	any	admissible	pattern	of	

correlations	other	than	that	specified	by	the	null	hypothesis.		When	predictions	

were	tested	within	the	high-density	group	alone,		H0	specified	six	inequality	

constraints.	Correspondingly	HA	was	any	possible	pattern	of	correlations	in	the	

high-density	group	other	than	those	that	would	be	consistent	with	H0.	

	 In	both	cases,	the	overriding	goal	was	to	compute	BFs	that	quantify	the	

degree	of	evidence	in	the	data	for	H0	relative	to	HA.		Before	these	BFs	would	be	

computed,	it	was	first	necessary	to	compute	the	BF	for	a	given	H0	relative	to	what	is	

known	as	the	unconstrained,	encompassing	model,	denoted	as	Hu	(e.g.,	Berger	&	
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Mortera,	1999;	Klugkist	&	Hoijtink,	2007;	Klugkist	et	al.	2005).		This	model	imposes	

no	ordinal	constraints	on	the	pattern	of	correlations	but	does	specify	an	

encompassing	prior	distribution	that	was	designed	to	be	a	reasonable	model	of	the	

multivariate	distribution	of	correlations.		We	specified	a	joint	prior	for	the	

unstructured	correlation	matrix	that	resulted	in	beta	
1 1
,
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

	distributions	on	the	

interval	(-1,1)	for	the	marginal	priors	of	the	separate	correlations.	Relative	to	

alternative	priors,	this	specification	has	been	shown	to	enhance	the	sensitivity	to	

detect	a	valid	set	of	order	constraints	on	correlations	(Mulder,	2016).			

	 To	compute	the	BF	comparing	H0	to	HU	it	was	first	necessary	to	compute	both	

the	prior	and	posterior	probabilities	that	H0	is	correct.	The	prior	probability	that	H0	

is	correct	does	not	incorporate	the	actual	data	collected.	It	is	simply	the	proportion	

of	outcomes	under	the	encompassing	prior	that	is	consistent	with	the	restrictions.	

To	choose	a	simple	example,	if	a	single	order	constraint	was	being	tested	specifying	

that	the	difference	between	two	correlations	was	greater	than	0,	the	prior	

probability	of	H0	would	be	.50	because	half	of	all	possible	values	of	the	two	

correlations	would	be	consistent	with	this	constraint.		As	the	number	of	constraints	

within	a	set	increase,	the	proportion	of	the	total	correlation	space	that	is	consistent	

with	the	complete	set	of	restrictions	becomes	smaller	and	smaller.	After	observing	

the	data,	the	prior	distribution	is	updated	using	Bayes’	theorem	and	the	posterior	

probability	of	H0	is	computed.		If	the	data	are	consistent	with	the	restrictions,	the	

posterior	probability	of	H0	is	larger	than	the	prior	probability	of	H0;	that	is,	the	



	 29	

average	probability	density	within	the	restricted	space	demarcated	by	Ho	has	

increased.			

	 These	computations	are	generally	analytically	intractable.	For	this	reason,	

using	BOCORR	(Mulder,	2016),	both	the	prior	and	posterior	probabilities	were	

calculated	by	generating	a	large	number	of	samples	from	the	prior	and	posterior	

distributions	and	counting	the	proportion	of	samples	that	were	consistent	with	the	

restrictions.		To	test	the	more	complex	models	that	included	both	the	high-	and	low-

density	groups,	we	drew	10,000,000	samples	and	for	the	within-group	analyses	we	

drew	1,000,000	samples.		In	each	case,	we	then	computed	the	BF	for	Ho	relative	to	

Hu	as	the	ratio	of	the	posterior	probability	of	Ho	to	the	prior	probability	of	Ho.		BFs	>	

1	indicate	that,	consideration	of	the	actual	data	increased	the	probability	of	Ho	while	

BFs	<	1	indicated	that	the	observed	data	decreased	the	probability	of	Ho.	Because	

the	set	of	outcomes	represented	by	H0	and	HA	are	mutually	exclusive,	prior	and	

posterior	probabilities	for	HA	were	simply	1	–	the	corresponding	probabilities	for	

H0.	In	turn,	these	probabilities	were	used	to	compute	the	BF	for	HA	relative	to	HU.		

	 Although	the	BF	for	Ho	relative	to	Hu	was	of	interest,	our	primary	goal	was	to	

compute	a	BF	indicating	the	relative	strength	of	the	evidence	for	Ho	relative	to	its	

alternative,	HA.		It	can	be	shown	that	this	quantity	is	the	simple	ratio	of	the	BF	for	Ho	

relative	to	HU	and	the	BF	for	HA	relative	to	HU;	that	is,	 0
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= .	In	

interpreting	
0 ,

BF
A

H H
,	we	used	Jeffreys’	(1961)	guidelines	according	to	which	BFs	

between	3	and	10,	between	10	and	30,	and	between	30	and	100	offered,	

respectively,	substantial,	strong,	and	very	strong	support	for	the	target	hypothesis	
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relative	to	its	alternative.	Although	Jeffreys	considered	BFs	between	1	and	3	barely	

worthy	of	mention,	we	favor	the	descriptor	‘only	marginal’	support.	When	BFs	are	

less	than	1	and	appear	to	favor	Ha,	the	reciprocals	of	the	ranges	noted	above	provide	

descriptors	for	the	strength	of	evidence.		These	descriptors	facilitate	communication	

but	are	essentially	rough	guidelines.		

	 From	a	conceptual	perspective,	there	are	two	critical	features	concerning	the	

interpretation	of	
0 , A

H H
BF that	should	be	emphasized.	First,	like	all	Bayes	factors,	it	

indicates	the	proportional	change	in	the	relative	probability	(i.e.,	the	odds)	of	the	

null	and	alternative	hypotheses	brought	about	by	consideration	of	the	actual	data	

(e.g.,	Lavine	&	Schervish,	1999).	Thus,	even	if	a	given	H0	has	low	a	priori	probability	

because	it	limits	the	set	of	possible	correlations	nested	under	it,	it	can	be	associated	

with	a	high	BF	relative	to	its	alternative	if	the	data	are	highly	consistent	with	it:	The	

data	have	markedly	changed	the	relative	probability	of	the	two	hypotheses.		The	

second	essential	feature	is	that	BFs	can	be	considered	the	ratio	of	model	fit	to	model	

complexity	(e.g.,	Kluytmans,	Schoot,	Mulder,	&	Hoijtink,	2012).		Prior	probabilities	

are	linked	to	model	complexity.	In	this	context,	complexity	is	inversely	related	to	

precision	and	specificity:	Less	complex	models	make	more	precise	and	restrictive	

predictions	and	thus	have	lower	prior	probabilities.	On	the	other	hand,	the	better	

the	fit	of	the	data	to	the	model,	the	higher	the	posterior	probability.	Because	a	BF	is	

the	ratio	of	posterior	to	prior	probabilities,	they	will	especially	favor	models	that	fit	

well	despite	being	highly	restrictive.		That	is,	at	equivalent	levels	of	complexity,	the	

higher	the	fit	the	higher	the	BF	and	at	equivalent	levels	of	fit,	the	less	complex	(i.e.,	

more	restrictive)	the	model	the	higher	the	BF.	Finally,	we	note	that:	(1)	BFs	take	



	 31	

into	account	sample	size;	(2)	There	is	evidence	that	a	Bayesian	approach	to	the	

analysis	of	correlations	has	better	properties	than	frequentist	approaches	when	ns	

are	relatively	small	(e.g.,	as	was	the	case	in	the	low-density	group;	Fosdick	&	

Raftery,	2012);	and,	(3)	The	BOCOR	program	can	accommodate	both	within-group	

and	across-group	predictions	(Mulder	2016).		

	 Table	6	shows	the	correlations	within	the	high-	and	low-density	groups	for	

each	of	three	measures	of	interest	(CMFT,	VFMT,	and	VET-Car)	and	Table	7	shows	

BFs	for	both	the	combined	groups	and	within-group	analyses.		Recall	that	our	

predictions	applied	to	both	the	combined	groups	and	within-high	density	analyses,	

with	the	low-density	analyses	included	for	comparative	purposes.	In	addition,	our	

predictions	were	strongest	for	CFMT	and	cars.	We	first	consider	the	hypotheses	that	

involved	the	pattern	of	correlations	across	both	hometown	groups.	The	CFMT	

analyses	provided	strong	support	for	our	predictions.	An	examination	of	the	

correlations	in	Table	6	show	that	the	three	lowest	correlations	among	faces	(as	

assessed	by	the	CFMT),	birds,	mushrooms,	and	planes	were	the	three	correlations	

involving	faces	within	the	high-density	group.	Consistent	with	this	observation,	the	

BF	for	the	combined	group	indicated	strong	support	for	hypotheses	(BF	=	22.91).	In	

contrast	the	BOHT	analysis	performed	on	the	VFMT	showed	only	marginal	support	

the	target	hypothesis	(BF	=	2.36).		The	BF	for	VET-Car	indicated	“substantial”	

support	for	the	target	hypothesis	based	on	Jeffreys’	(1961)	criteria.			
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conducted	for	the	three	4-variable	sets	(CMFT-bird-mushroom-car,	VFMT-bird-

mushroom-car,	and	VET-car-bird-mushroom-car)	indicated	significant	differences	

on	the	matrix	that	included	CFMT	scores	, 2

6
16.45, .02,pχ = < 	but	no	significant	

differences	on	the	matrices	that	included	VFMT	and	VET-Car	scores,	

2

6
7.34, .25,pχ = > 	and 2

6 6.33, .35,  respectively.pχ = > 		

Although	there	were	also	no	significant	differences	on	tests	of	the	equality	of	

covariance	matrices,	all	Box	M	(Morrison,	1976)	p’s	>	.20,	the	overall	differences	in	

magnitude	evident	on	the	CFMT	correlation	matrices	could	themselves	in	part	

account	for	the	high	BF	for	the	cross-groups	analysis.	Thus,	for	this	variable	in	

particular	we	deemed	the	separate	within-high	and	within-low	density	analyses	

particularly	determinant.		On	the	CFMT	measure,	the	BOHT	analysis	of	the	high-

density	group	indicated	strong	support	for	the	target	hypothesis	(BF	=	15.87).	In	

sharp	contrast,	if	anything,	the	correlations	involving	the	CFMT	in	the	low-density	

group	indicated	that	consideration	of	the	actual	data	yielded	increased	support	for	

the	alternative	relative	to	the	null	hypothesis	(BF	=	0.11).	Two	of	the	six	target	

correlations	were	in	the	hypothesized	direction	within	the	low-density	group	but	

four	of	six	were	in	the	opposite	direction.	For	both	the	VFMT	and	VET-Car	analyses,		

the	strength	of	the	evidence	for	the	target	hypothesis	within	the	high-density	group	

was	in	the	“substantial”	range,	with	the	magnitude	for	cars	midway	between	that	of	

the	CFMT	and	VFMT	(BFs	=	4.67	and	9.07,	respectively	for	VFMT	and	cars).	On	both	

measures,	BFs	within	the	low-density	group	were	only	marginal	(BFs	=	1.97	and	

1.77,	respectively	for	VFMT	and	VET-Car).		
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	 In	sum,	Bayesian	tests	of	order-constrained	hypotheses	that	specifically	

addressed	the	prediction	that	faces	and	cars	are	more	independent	from	object	

recognition	in	the	high	than	in	the	low	HPD	group	found	strong	and	substantial	

support,	respectively,	for	the	CFMT	and	the	VET-Car,	but	only	marginal	support	for	

the	VFMT.	These	results	offer	the	first	evidence	in	support	of	any	hypothesis	for	why	

face	recognition	(and	car	recognition)	may	be	“special”.	Interestingly,	our	analyses	

that	addressed	patterns	of	correlations	among	abilities	are	independent	from	those	

addressing	mean	patterns	of	performance,	in	both	cases	we	find	that	the	VFMT	did	

not	show	the	same	sensitivity	to	HPD	as	the	CFMT.	This	illustrates	how	variance	on	

any	one	test	includes	both	aspects	that	tap	into	a	construct	of	interest	(here,	face	

recognition	ability)	as	well	as	more	test-specific	components.	We	speculate	that	the	

CFMT	format	measures	a	face-learning	component	that	is	not	as	important	in	the	

VFMT	where	each	trial	is	independent,	but	future	work	could	test	this	hypothesis	

with	a	number	of	different	face	recognition	tests	designed	to	tap	or	not	into	such	a	

process.	Interestingly,	we	find	no	evidence	that	the	CFMT	and	VFMT	are	any	less	

related	in	one	group	than	the	other	(Low-density	group:	r	=	.68,	High-density	group:	

r	=	.66).	

	

	

Discussion	

	 First,	we	compared	mean	performance	on	a	number	of	tests	of	face	and	

object	recognition	in	people	who	came	from	hometowns	with	relatively	low	vs.	high	

population	density.	We	replicated	a	relative	disadvantage	on	the	CFMT	for	people	
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from	low	population	density	hometowns.	While	this	effect	has	been	reported	twice	

(Balas	&	Saville,	2015;	2017),	we	extend	it	in	a	few	ways.	The	original	two	studies	

were	conducted	in	undergraduates	in	North	Dakota	who	came	from	small	(less	than	

1000)	or	large	(>30000)	hometowns.	Here,	we	did	not	restrict	on	hometown	size,	

and	after	collecting	information	on	both	hometown	size	and	hometown	zipcode,	

used	HPD	measured	directly	to	consider	hometown	experience	on	a	more	

continuous	basis.	Accordingly,	we	were	able	to	determine	that	those	coming	from	

the	untested	intermediate	range	of	population	density	in	the	original	study	(those	

from	hometowns	with	population	densities	between	10	and	85	per	square	mile)	

showed	results	on	the	CFMT	similar	to	those	from	the	smaller	hometowns.	In	

addition,	the	Balas	&	Saville	studies	tested	only	undergraduates,	between	18	and	24.	

We	tested	subjects	in	a	much	wider	age	range	(19-49,	with	37%	of	our	sample	older	

than	24)	and	nonetheless	replicated	the	population	density	effect	on	CFMT	

performance.	While	this	suggests	that	later	life	experiences	do	not	erase	the	

influence	of	hometown	environment,	we	did	not	collect	data	on	current	location	

population	density	or	how	it	may	have	varied	through	our	subjects’	lives,	and	we	

would	not	exclude	that	such	later	experience	could	account	for	meaningful	variance	

in	face	recognition	if	it	was	measured.	

	 In	addition	to	replicating	the	effect	of	HPD	on	the	CFMT,	we	compared	the	

face	learning	task	to	a	non-learning	face	task,	and	to	a	battery	of	tests	of	learning	

various	non-face	objects.	On	the	one	hand,	the	CFMT	was	the	only	task	that	showed	

a	significant	effect	of	HPD.	On	the	other	hand,	we	did	not	have	sufficient	power	to	

claim	that	the	effect	for	CFMT	was	larger	than	the	non-significant	effects,	in	the	
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same	direction,	observed	on	the	other	tasks.	Our	results	may	suggest	that	this	effect	

could	be	relatively	specific	to	a	face-learning	task.	We	speculate	that	this	may	reflect	

those	from	small	hometowns	needing	to	learn	and	repeatedly	individuate	fewer	

faces	than	those	from	larger	hometowns,	but	the	ubiquity	of	the	internet	and	

television	make	face-processing	skills	unrelated	to	learning	more	equal	between	

different	hometown	sizes.			

Before	any	strong	conclusion	is	made	about	whether	the	effect	is	specific	to	

faces	and	the	extent	to	which	it	depends	on	the	learning	format	of	the	CFMT,	it	is	

clear	that	a	larger	sample	size,	especially	in	the	low	population	density	group,	will	

be	necessary.	Future	work	should	include	other	tests	in	which	subjects	learn	faces	

over	trials	as	in	the	CFMT	(e.g.,	the	Vanderbilt	Face	Expertise	Tests,	Ryan	&	

Gauthier,	2016)	with	tests	that	involve	less	face	learning	(e.g.,	ensemble-perception	

face	tasks	like	Haberman,	Brady,	&	Alvarez,	2015)	in	samples	of	varying	hometown	

populations.		

	 Second,	we	compared	the	pattern	of	correlations	among	various	abilities	in	

the	two	hometown	groups.	Car	and	face	recognition	have	been	reported	to	be	

special	abilities	that	are	surprisingly	independent	of	other	object	recognition	

abilities	and	from	each	other	(McGugin	et	al.,	2012;	Van	Gulick	et	al.,	2015;	Richler	et	

al.,	2017).	While	no	study	to	date	has	offered	an	explanation	for	this,	one	suggestion	

is	that	high	levels	of	experience	for	both	categories—as	mediated	by	population	

density—could	lead	to	the	development	of	specialized	recognition	mechanisms	

(Gauthier,	in	press).	Here,	using	sensitive	Bayesian	tests	of	order-constrained	

correlations,	we	found	support	for	the	hypothesis	that	car	and	face	recognition	as	
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measured	by	learning	tests	(CFMT	and	VET-Car)	are	more	independent	from	

general	object	recognition	in	people	who	come	from	large	hometowns	than	in	those	

who	come	from	much	smaller	hometowns.	The	differences	in	the	direction	and/or	

magnitude	of	BFs	were	particularly	striking	when	computed	separately	within	the	

high	and	low	population	density	groups.	We	found	only	meager	support	for	the	

same	pattern	when	measuring	face	recognition	ability	with	the	VFMT,	despite	the	

fact	that	the	tests	are	strongly	related.	Just	as	for	the	effect	of	population	density	on	

mean	performance,	it	appears	that	although	relatively	small,	the	non-error	related,	

unshared	variance	between	the	CFMT	and	VFMT	is	critical	in	revealing	the	role	of	

experience.		

	 In	sum,	this	work	replicates	prior	findings	that	people	in	low	population	

density	hometowns	are	poorer	at	face	learning	than	those	in	larger	hometowns.	It	

also	reveals	for	the	first	time	that	face	and	car	recognition	abilities	are	not	

particularly	“special”	for	people	who	grew	up	in	small	hometowns,	while	there	is	

much	stronger	evidence	that	they	are	special	for	people	who	grew	up	in	larger	

hometowns.	When	only	faces	are	special,	a	nativist	account	may	be	plausible.	The	

finding	that	in	terms	of	individual	differences,	cars	are	equally	as	special	made	such	

account	less	plausible,	and	the	current	results	point	further	in	the	direction	of	

experience	as	a	driving	factor.	However,	HPD	is	only	an	indirect	measure	of	

experience	with	faces	or	cars	and	we	and	others	(Balas	&	Saville,	2015;	2017)	did	

not	collect	a	great	deal	of	information	on	other	ways	these	individuals	may	differ.	

Future	studies	should	consider	gathering	converging	evidence	from	other	correlates	

of	experience,	both	early	and	late.	Finally,	our	work	shows	the	importance	of	using	a	
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multiplicity	of	measures	with	different	formats	to	help	clarify	the	nature	of	these	

effects.	That	is,	we	have	previously	cautioned	against	strong	conclusions	based	on	

only	two	object	categories	(Gauthier	&	Nelson,	2001;	Gauthier,	in	press)	and	here	

we	add	caution	about	strong	conclusions	based	on	abilities	measured	using	a	single	

test	format.	
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Appendix:	

Table	1.	Correlations	between	VETs	and	Self-Reported	Expertise	(SR).	Within-

domain	correlations	are	bolded.	r	>	.24	are	significant	at	α	=	.01;	r	>	.18	are	

significant	at	α	=	.05.	Within-domain	correlations	are	bolded.	

	

		
VET-
Bird	

VET-
Mush	 VET-Car	

VET-
Plane	 SR-Bird	

SR-
Mush	 SR-Car	

VET-Mush	 0.448	 -	
	 	 	 	 	

VET-Car	 0.351	 0.19	 -	
	 	 	 	

VET-Plane	 0.507	 0.406	 0.3	 -	
	 	 	

SR-Bird	 0.265	 0.055	 0.116	 0.27	 -	
	 	

SR-Mush	 0.102	 -0.142	 -0.055	 0.131	 0.45	 -	
	

SR-Car	 0.209	 0.069	 0.219	 0.289	 0.306	 0.326	 -	

SR-Plane	 0.021	 -0.115	 -0.043	 0.28	 0.402	 0.592	 0.436	

	

	

	

Table	2.	Correlations	between	VETs	and	SVETs	on	the	averaged	score	of	the	other	
domains	was	been	regressed	out.	Within-domain	correlations	are	bolded.	
	

		 VET-Bird	
VET-
Mush	 VET-Car	

VET-
Plane	

SVET-
Bird	

SVET-
Mush	

SVET-
Car	

VET-
Mush	 -0.15	 -	

	 	 	 	 	VET-	
Car	 -0.21	 -0.33	 -	

	 	 	 	VET-
Plane	 -0.16	 -0.17	 -0.24	 -	

	 	 	SVET-
Bird	 0.28	 -0.06	 0.07	 0.00	 -	

	 	SVET-
Mush	 0.12	 0.15	 -0.05	 0.03	 -0.00	 -	

	SVET-
Car	 -0.13	 -0.05	 0.37	 -0.04	 -0.13	 -0.30	 -	
SVET-
Plane	 0.06	 -0.04	 -0.17	 0.21	 -0.36	 -0.07	 -0.11	
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