In press vision research

How faces (and cars) may become special

Mackenzie A. Sunday'*, Michael D. Dodd?, Andrew ]. Tomarken! & Isabel Gauthier?!

Vanderbilt University, Department of Psychology

2University of Nebraska-Lincoln, Department of Psychology and Center for Brain,
Biology and Behavior

*Correspondence to:

Mackenzie Sunday

Department of Psychology

Vanderbilt University

226 Wilson Hall

Nashville, TN 37204

USA

Email: mackenzie.a.sunday@vanderbilt.edu

Keywords: face recognition, object recognition, experience



Abstract:

Recent reports have shown that individuals from small hometowns show
relatively poor face recognition ability as measured by the Cambridge Face Memory
Test or CFMT (Balas & Saville, 2015; 2017), suggesting that the number of faces
present in an individual’s visual environment relates to that individual’s face
recognition ability. We replicate this finding in a sample from a different region
(Nebraska) and with more variable age distribution. We extend the study by using
another test of face recognition ability that does not require learning over trials, and
with non-face object recognition tests that share the learning format with the CFMT.
We find no hometown effect in these other tests, although more power would be
required to show the CFMT effect is significantly larger. We use the same dataset to
explore whether experience with more faces and cars in larger hometowns leads to
specialization of these abilities. We find strong and substantial support for the
hypothesis that the recognition abilities for faces and for cars are more independent
from general object recognition in people from larger hometowns. This suggests

that experience may be critical to the specialization of these abilities.



People differ in how well they can recognize faces and objects (Dennett et al,,
2012; Duchaine & Nakayama, 2006; McGugin, Richler, Herzmann, Speegle, &
Gauthier, 2012; Richler et al,, n.d.; Russell, Duchaine, & Nakayama, 2009). What
drives these individual differences remains an unanswered question. There appears
to be a strong genetic influence on these abilities (Shakeshaft & Plomin, 2015;
Wilmer et al,, 2010) and correlational studies also suggest an influence of life
experience (Gauthier et al,, 2014; Ryan & Gauthier, 2016; Tanaka, Kiefer, & Bukach,
2004). In particular, experience stemming from interest in certain domains relates
to recognition abilities (Gauthier et al., 2014; Ryan & Gauthier, 2016) and
experience due to categories present in one’s environment also relates to
recognition abilities (e.g., the other-race effect, De Heering, De Liedekerke, Deboni, &
Rossion, 2010; Sangrigoli, Pallier, Argenti, Ventureyra, & De Schonen, 2005).

Aside from the distribution of different kinds of faces one experiences or the
interest one may have individuating objects from various categories, recent work
suggests that the number of exemplars in a category—in this case, faces—within
one’s environment might also impact recognition ability (Balas & Saville, 2015).
Balas & Saville (2015) reported that people from larger hometowns (those with
higher population densities) performed better on a measure of face recognition than
those from smaller hometowns, a difference the researchers attributed to the fact
that those from less dense hometowns likely encounter fewer faces during their
childhood. Small hometown individuals would have grown up basing face
recognition judgments on a smaller “face space” (Valentine, 1991) relative to people

from larger towns, which the authors suggest could impair recognition. The result



also aligns with exemplar models wherein performance gains due to automaticity
arise from accumulations of exposures in a given task and domain (Logan, 1988;
Palmeri, 1997). Though an important finding, the original Balas & Saville (2015)
demonstration did not test a specific explanation for the phenomenon, and was
limited in a few important ways. First, there was no behavioral test with non-face
objects to determine whether hometown size influences faces specifically, or
extends beyond faces into other object domains. Second, only one type of face
learning task was used (the CFMT), leaving open the question of whether
performance on other face tasks would be similarly impacted. A more recent study
provides some evidence that this face recognition advantage may not extend to all
tasks with face stimuli since Balas & Saville replicated the relative deficit on the
CFMT but found no difference between groups in a card-sorting task with faces and
bodies (Balas & Saville, 2017). Finally, in the 2015 paper, an effect of hometown
population density (hereafter, HPD) was observed on the face-selective N170 ERP,
but the effect was entirely accounted for by a difference in N170 amplitudes
between face and non-face (chair) categories in the large hometown group but no
difference between faces and chairs in the small hometown group. In sum, a relative
deficit was observed on the CFMT but it is not clear how specific the effect may be in
terms of domain and task.

Our first goal was to replicate the effect found in Balas & Saville (2015) in a
larger and more heterogeneous sample recruited from the University of Nebraska-
Lincoln, increasing statistical power and the ecological validity of the result. Second,

we measured recognition abilities for both faces and other object domains to assess



whether the effect would generalize to another face task that is not a learning task
like the CFMT, and to other learning tasks that share the format of the CFMT, for
non-face domains.

In addition to determining if those from hometowns with lesser population
density showed relatively poor face recognition ability, our second goal was to
compare the degrees of “specialization” of faces and cars between HPD. It is well
established that car recognition correlates below-average with the recognition of
other object categories (McGugin et al.,, 2012; Van Gulick, McGugin, & Gauthier,
2016), suggesting that car recognition is more independent from general object
recognition than other object categories (e.g., birds, mushrooms). Indeed, the
dissociation between cars and other object domains is often similar in extent to
what is found between faces and other object domains (McGugin et al,, 2012; Van
Gulick et al., 2016). Since the dissociation between faces and other object domains is
often used as evidence that faces are “special” (e.g. McKone, Kanwisher, & Duchaine,
2007; Yue, Tjan, & Biederman, 2006), by this standard, cars would also have to be
considered “special.”

Determining that the recognition of cars is “special” (i.e. independent from
that of other object categories) would have important theoretical ramifications,
since an evolutionary explanation for why faces are special could not apply to cars
(given cars have only existed for the past century or so). Instead, we would have to
explore other possible explanations for the independence of car recognition. For
instance, people could have more knowledge about cars, though a recent study

found little evidence that knowledge mediates the correlation between car



recognition and the recognition of novel objects (Richler, Wilmer, & Gauthier, 2017).
Another possibility is that, given the ubiquity of cars in the modern world, people
have more experience with cars as compared with other object domains. If
experience was responsible (or partially responsible as it is likely more than one
explanation could apply) for the “specialness” of car recognition, then independence
of car recognition should be modulated by HPD. Thus, we predict that in a lower
density hometown sample, both face and car recognition will be more strongly
correlated with other domains than in a higher density hometown sample. This
prediction assumes people from low-density hometowns encounter fewer cars than
those from high-density hometowns given that a less dense population would imply
fewer cars in the visual environment. It is of course possible that this may not be
the case given that visual experience with cars can occur not only through in-person
interactions but also through perception of images on the Internet, television,
magazines, etc. This is also true of faces, however, and given the results from Balas
& Saville (2015), we assume that people who live in less dense towns encounter
fewer people on a daily basis than those from more dense towns, leading to
relatively less experience with faces and cars. Balas & Saville (2015) found a
significant difference between face- and chair- evoked N170 amplitudes in their
large hometown group but no difference in the small hometown group (although the
interaction was not significant), suggesting that face recognition is more distinct
from object recognition in those from more dense hometowns than those from less
dense hometowns (Balas & Saville, 2015). Therefore we have two main hypotheses:

(1) we will replicate the previous finding that people from high density hometowns



perform better on a face recognition measures - and (2) face and car recognition
will correlate more strongly with the recognition of other categories for our low-
density hometown sample than our high-density hometown sample. As an
extension, we ask whether this finding of better recognition in people from high
density hometowns generalizes to a non-learning face task or to learning non-face

tasks.

Methods
Subjects

A total of 172 subjects were recruited using flyers placed around the
University of Nebraska - Lincoln campus. Many UNL students are in-state and come
from towns just outside of Lincoln or Omaha. Subjects were compensated $37.50
($15/hr) for completing all tests and all work was conducted under the approval of
both Vanderbilt and UNL Institutional Review Boards and was conducted in
accordance with the Code of Ethics of the World Medical Association (Declaration of
Helsinki). Informed consent was obtained from all subjects. Of these 172 subjects,
111 reported their hometown zipcode in a follow-up email (as we determined in
preliminary stages of analyses that hometown population size and self-reported
hometown size were not good predictors of population density, and reasoned that
population density is likely more relevant than is hometown population to day-to-
day experience with faces and cars). From hometown zipcodes, population density

could be determined from www.unitedstateszipcodes.org. One subject was excluded




because of below or near chance performance levels (range .21-.38) on all

recognition tasks, leaving 110 subjects.

Procedure

Subjects completed all of the following tests through an online website. Total,
the tests took approximately 2.5 hours to complete and subjects were given a week
to complete the tests, in a single order: SVET- Bird, SVET-Mushroom, SVET-Car,
SVET-Plane, VET- Bird, VET-Mushroom, VET-Car, VET-Plane, CFMT, VFMT and
CCMT.

Semantic Vanderbilt Expertise Tests (SVETS)

The SVET is designed to measure semantic knowledge about a particular
domain. For 48 trials (with 3 catch trials), subjects choose the real subordinate-level
label among two plausible distractor labels (Van Gulick et al., 2016). For example,
subjects must choose the option displaying the text “Evening Grosbeak” as the
correct bird label, instead of “Dakota Raven” or “Antietam.” Here we used the SVET
for birds, mushrooms, planes and cars to provide measures of semantic knowledge
to accompany every VET. This task takes approximately five minutes to complete.

Vanderbilt Expertise Tests (VETSs)

The Vanderbilt Expertise Tests were developed to measure object
recognition for several domains using a learning-exemplar task similar to that used
in the CFMT (McGugin et al.,, 2012). Thus, subjects study six exemplars at the
beginning of each VET for 20 seconds and then complete an initial 12 three-

alternative forced-choice trials (See Figure 1). On each trial, subjects have to



determine which of three items is identical to one of the six previously studied
objects. Following the first six trials, there is a further 20-second study period, after

which subjects complete 36 trials where the correct response is not an identical

Figure 1. Example Stimuli from the VETs and the CFMT. Top row from left to
right; mushrooms, planes and birds. Bottom row from left to right; car, CFMT
stimuli, CFMT stimuli with noise added.

image to the image of studied exemplar (so no image matching is possible).
Feedback is provided on the first 12 trials but not the later 36. Our subjects
completed VETs for birds, planes, cars, and mushrooms to provide both living and

non-living domains. Responses were un-speeded and each VET for a single domain

takes approximately 10 minutes to complete.
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Cambridge Face Memory Test (CFMT)

The CFMT was designed as a measure of face recognition ability (Duchaine &
Nakayama, 2006). Subjects begin by studying six Caucasian male grayscale faces and
then complete three-alternative forced choice trials to distinguish the target faces
from two distractors (Figure 1). On the first 18 trials, faces are presented with
viewpoints that are identical to the studied viewpoint, followed by 30 trials in which
the faces vary in viewpoint and lighting, and then 24 trials in which Gaussian noise
is added to the images (bottom right image in Figure 1). Here, we used the longer
CFMT (Russell et al., 2009), which includes 30 additional difficult trials at the end of
the test in which more Gaussian noise is added to the images. Subjects studied the
target faces between each block and responses were un-speeded. The test takes
approximately 15 minutes to complete.

Cambridge Car Memory Test (CCMT)

The CCMT was designed to measure car recognition ability using the same
task used in the CFMT (Dennett et al.,, 2012). Because of limitations of the online
website we used to record responses, we had to modify the presentation of stimuli
from the original presentation format (three cars staggered along a diagonal from
upper left to bottom right) to a new format in which we presented the three car
options vertically centered and stacked. Unfortunately, we discovered that some
subjects misinterpreted the instructions and we could not reliably determine from
the responses collected which subjects were properly responding and which were

incorrectly responding. Thus, we did not include the CCMT in any of our analyses.
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Vanderbilt Face Matching Test (VFMT)

The VFMT was created to measure face recognition ability using a different
task from that used in the CFMT, CCMT and VETSs (Sunday, Lee, & Gauthier, in press).
In contrast to these tests, the VFMT does not require learning about a small set of
faces over a series of trials, but instead only requires short-term visual memory to
match face identity on a new set of faces on each trial. We included the VFMT as
another measure of face recognition ability that uses a different task from that used
by the CFMT. This inclusion allows us to determine whether the hometown-related
effects found in Balas & Saville (2015) generalize to all tests that tap into face
recognition ability or are specific to the learning exemplar CFMT task. Each of the 95
trials uses a new set of 5 face images of either male or female Caucasian faces (same
within a trial). Subjects study two faces for four seconds and then in a test display,
they must choose which of three faces matches one of the two studied faces (Figure
2). Subjects are instructed to match identity and not image, since the studied and
correct responses target faces are different images of the same individual. Feedback
is provided only on the practice trials and first three test trials. Face genders were
interleaved to reduce proactive interference and responses were unspeeded. The

VFMT takes approximately 15 minutes to complete.
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Figure 2. Example VFMT trial. Subjects studied the two top panel faces for four
seconds and then choose which of the three following faces were one of the two
studied faces. The correct response is indicated by the asterisks.

Self-Reported Expertise

Subjects were also asked to report their experience with each domain (bird,
mushrooms, planes, and cars) on a Likert scale from 1-9 using the general
statement: Please rate your expertise with {domain}. By expertise we mean your
experience with, interest in, and knowledge about items in this category, relative to
other people. Subjects also rated their general interest in object recognition through
a series of four questions rating from 1-7: (1) their interest in classifying objects in
their various sub-categories, (2) how easily they learn to recognize objects visually,

(3) how much of their time at work or school involves recognizing things visually,
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and (4) how much of their free time involves recognizing things visually (Van Gulick
etal, 2016).
Self-Reported Hometown Size and Zipcodes

Subjects answered the question “How would you classify the place you
consider your hometown?” on a scale from 1-5 (1: very small town (population less
than 1,000), 2: small town (population greater than 1,000 but less than 30,000), 3:
small city (population greater than 30,000 but less than 250,000), 4: large city
(population greater than 250,000 but less than 1 million), 5: major metropolitan
area (population greater than 1 million)). We chose 1,000 and 30,000 as our cutoffs
because they are the cutoffs used in Balas and Saville (2015). To get a more
continuous estimate of hometown size, we asked subjects to report their hometown
zipcode in a follow-up email (111 out of 172 responded). We obtained population

and population density (people per square mile) values for each of these zipcodes

from www.unitedstateszipcodes.org. These population and population density
values are derived from multiple sources, including the U.S. Postal Service, U.S.
Census Bureau, Yahoo, Google, FedEx and UPS. We did not ask our subjects to report
the exact years during which they lived in the reported hometown, however,
meaning that these population values may not exactly correspond to when the
subjects lived in their hometowns.

When comparing performance across groups, in addition to NHST results, we
provide Bayes Factor (evidence favoring better performance in the high than low
population group) and Bayesian estimation of the effect size in the form of the 95%

highest density interval (95% HDI) using the BEST program (Kruschke, 2013),
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computed using the program’s default normal prior, which has been shown to have
minimal impact on the posterior distribution. BEST uses an MCMC algorithm to
generate the posterior distribution, and we used a chain length of 100,000. When

zero does not fall in the 95% HDI, it indicates a credible difference.

Results

Face recognition ability changes over a lifespan, though this ability remains
relatively stable across ages 18-50 (Germine, Duchaine, & Nakayama, 2011). Thus,
to limit age-related variance, we excluded subjects over the age of 50 (3 subjects),
leaving a total of 107 subjects (30 male; mean age = 25.0 years, range = 19-49;
85.0% were Caucasian, 7.5% Asian, 2.8% Hispanic/Latino, 1.9% African-American,

0.9% other and 1.9% Middle Eastern) in the analyses. Within these 107 subjects,
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Figure 3. Dot plot showing population density distributions for each self-reported
hometown size.
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CFMT scores showed no correlation with age (ri07 =-0.09, p = .38).

While Balas & Saville (2015) categorically compared two groups of subjects
for whom they did not obtain the exact hometown size (Small hometown group self-
reported hometown populations < 1,000; Large hometown group self-reported
hometown populations > 30,000), our more continuous measure affords us the
opportunity to examine subjects from a total 72 different hometown zipcodes.
Considering the relation between reported hometown size and population density
derived from zipcodes, we find that while hometowns of size less than 1,000
(Hometown 1) do show smaller zipcode population density, there is considerable
overlap among the other four groups (Figure 3). We reasoned that population
density was the variable more relevant to daily experience with faces, thus we
grouped our subjects based on population density. Because our population densities
ranged from 2 to 34,190, we log-transformed the density measure using base 10,
although we report raw un-transformed values in the text and Table 1 for clarity.

Balas & Saville had a small hometown group from towns of less than 10
people per square mile and a large hometown group from a town of around 85
people per square mile (Balas & Saville, 2015). To compare our results to theirs, we
created three groups: Small HPD (population density < 10 ppl/mi?); Medium HPD
(10 < population density < 85 ppl/mi?); Large HPD (population density > 85
ppl/mi?). We chose 85 ppl/mi? as a cutoff point because it approximates the average
population density of the entire United States (87.4 ppl/mi?; Balas & Saville, 2015)
and falls within a gap between our largest medium population density (77 ppl/mi?)

and smallest large population density (159 ppl/mi?). Two of our subjects reported
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hometown sizes of less than 1,000 but had zipcode population densities that would
place them in the medium group (log population densities of 12 and 75) were
included in the small hometown group based on Figure 3. The demographics for

each group are reported in Table 1.

Hometown N Mean Percent Percent Mean Pop. Density (SD)
Group Age (SD) female Caucasian

Small 10 26.7(3.8) 80% 80% 13.30 (21.9)
Medium 13 28.4(10.4) 69% 92% 379 (21.1)
Large 84 24.3(5.6) 71% 85% 3142.1 (5166.7)

Table 1. Demographics for small, medium and large hometown groups.

Our small and large density groups correspond well to those groups in the Balas &
Saville study, but it was not clear what to predict for our medium density group (i.e.
whether we should expect a linear effect, or whether there is a point at which
population density reaches a ceiling in its effects). In examining the average
accuracies for the CFMT-long with the three groups (small: M = 57.1%, SD = 11.9%;
medium: M = 58.1%, SD = 10.7%; large: M = 63.1%, SD = 10.2%), we noted the small
vs. large group difference consistent with Balas & Saville (2015), with the medium
group very similar in accuracy and variance relative to the small density group.
Thus, to increase the power of our analyses, we combined the small and medium
groups into one group (now called “low”) for comparison with those from places
with a large population density (“high”). These two groups had roughly similar

demographics (low: N = 23, mean age = 27.7, SD age = 9.6, 74% female, 87%



17

Caucasian, mean population density = 27.2 ppl/mi?, SD population density = 24.4
ppl/mi?; high: N = 84, mean age = 24.3, SD age = 5.6, 71% female, 85% Caucasian,
mean population density = 3142.1 ppl/mi?, SD population density = 5166.7

ppl/mi?).

Analyses of the patterns of mean performances: Will the small hometown sample show
lower performance on the CFMT, as in Balas & Saville (2015)? Will this extend to

another test of face recognition or to other learning tests with non-face categories?

For all analyses, no quantitative difference was observed between the short
72-trial CFMT version used in Balas & Saville (2015) and the extended score.
Because the longer version is more sensitive to high range performance, from now
on we report only this version, which we will call CFMT. Accuracies for each
recognition test separated by group are shown in Figure 4.

Because of the difference in sample size, we tested for equality of variance
between groups for each test, using Levene’s test. The high group had higher
variance than the low group on the VET-Bird (F = 5.11, p =.026) so for that test we
used a Welch test to adjust degrees of freedom. None of the other tests showed
significant evidence of unequal variance (p’s > .25).

The only significant difference between low and high group average
accuracies was found for CFMT-scores (two-tailed ¢(105) = 2.25, p = 0.03, d = -0.52,
one tail BF: 3.87; 95% HDI: 0.002, 0.110, Figure 4). Indeed, both the long and short

CFMT scores show a significant difference between hometown groups, and thus



18

test-level difficulty does not seem to modulate the observed effect (average
performance for the CFMT short form was 71.6 (.12) was 62.0 (.11) for the long
form). t-tests and Bayesian estimates qualitatively agreed for all tests: for all the
other tests (t-tests and Welch test for birds), p-values were large (p > .4), BFs
favored the null hypothesis and the 95%HDI included 0.

Following Richler et al (2017), we aggregated the four VET scores to produce
one total VET score that can be used as an estimate of general object recognition
ability. This aggregation is useful since experience and interest in different VET
categories do not correlate across categories (Richler et al.,, 2017). We then ran a 2
(hometown groups) x 3 (VET, VFMT, CFMT) ANOVA in which neither the main effect
of group F(1,105) = 2.57, p =.11, n p?=.02, nor the group x category interaction,
F(2,210)=1.77,p = .17, n p?=.02, was significant!.

Thus, we replicate the effect of HPD on CFMT, but we may lack the power to
show that this this effect is larger than that for non-face learning tests or a non-
learning face recognition task. We performed a power calculation specifying the
same group ratios as in the present study and found that to detect the present
interaction with 80% power, a sample size 2.6 times as large (278 subjects) would

be required?.

" There was a significant effect of Category, F(2,210) = 4.04, p = .02, which we do not interpret because the
different tests were not meant to be equated in difficulty, so only within-tests effects or interactions were of
interest.

* Note that such power calculations, based on a 95% confidence interval around the noncentrality
parameter, are relatively imprecise (Taylor & Muller, 1996).
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Figure 4. Bar graph of average accuracies for low and high hometown groups.
Error bars show 95% confidence intervals.

We provide the full set of first-order correlations for the entire sample here
(Table 3), to provide evidence that speaks to the convergent and discriminant
validity of the various measures. As expected, because they are the only two tests in
the same domain, the two face measures (CFMT and VFMT) showed the strongest
correlation (rio7 = 0.67, p <.001). Overall, the correlations that involved a face test
or the VET-Car were lower (ranging from .28 to .48) than the correlations among
the other categories (plane/bird/mushroom, ranging from .56 to .61). This is

consistent with face and car recognition being relatively “specialized” abilities and
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this issue is addressed specifically under Section 2, “Analyses of the patterns of

correlations as a function of hometown population density”.

VET-Bird VET-Mush  VET-Plane VET-Car VFMT CFMT
VET-Bird oa=.85 0.61 0.61 0.44 0.48 0.48
VET-Mush 0.45 o=.64 0.56 0.28 0.31 0.30
VET-Plane 0.51 0.41 a=.82 0.39 0.35 0.35
VET-Car 0.35 0.19 0.30 a=.74 0.48 0.44
VFMT 0.38 0.22 0.31 0.35 a=.74 0.84
CFMT 0.41 0.22 0.29 0.35 0.67 a=.85

Table 3. Correlations between each test are shown in the lower left corner with the
Cronbach alpha reliability shown along the diagonal (italicized). Dis-attenuated
correlations are reported in the upper right corner. r >.31 are significant at alpha =
.001; r >.24 are significant at a =.01; r > .18 are significant at a =.05.

Each VET correlated significantly with the SVET from its respective domain
(Table 4, Birds: r107 = 0.38, p <.001; Mushrooms: r197 = 0.23, p =.02; Planes: rig7 =
0.24, p =.01; Cars: r107 = 0.40, p <.001). As in prior work (Van Gulick et al., 2016)—
and indicative of good validity of the tests as measures of specific experience with
various categories—all but the VET-Mush/SVET-Mush (r107 = 0.18, p = .13) within-
domain correlations remained significant after regressing out the averaged other

domains (e.g. VET-Bird scores after the averaged VET-Mush, VET-Plane and VET-Car

score is partialed out; Appendix, Table 2, r’'s107 > 0.21, p’s <.03)
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VET- VET- VET- SVET- SVET- SVET- SVET-
Bird Mush VET-Car Plane Bird Mush Car Plane
VET-
Bird a=.85 0.61 0.44 0.61 0.58 0.43 0.23 0.23
VET-
Mush 0.45 a=.64 0.28 0.56 0.18 0.40 0.16 0.08
VET-
Car 0.35 0.19 a=.74 0.39 0.33 0.21 0.51 0.01
VET-
Plane 0.51 0.41 0.30 a=.82 0.30 0.33 0.24 0.32
SVET-
Bird 0.38 0.10 0.20 0.19 a=.50 0.45 0.36 0.03
SVET-
Mush 0.29 0.23 0.13 0.22 0.23 a=.52 0.30 0.43
SVET-
Car 0.19 0.12 0.40 0.20 0.23 0.20 a=.82 0.48
SVET-
Plane 0.17 0.05 0.01 0.24 0.02 0.26 0.36 a=.67

Table 4. Correlations between VETs and SVETSs for the 107 subjects. Cronbach alpha
values are shown along the diagonal (italicized) and disattenuated correlations are
reported in the upper right corner. r > .31 are significant at alpha =.001; r > .24 are
significant at a =.01; r > .18 are significant at a =.05. Within-domain correlations
are bolded.

Within-domain VETSs and relevant self-reported experience showed small
correlations, consistent with prior work demonstrating that people are not very
good at predicting their recognition performance relative to other people (Van
Gulick et al., 2016, see Appendix, Table 1). Correlations between recognition tests
and average self-reported general object recognition interest and experience were

also small but consistent (Mean rio7 =.09, range r = -.07-.16).
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Population density did not correlate with performance on any of our tests (all rip7 <
.15, p’s >.13). Adding a quadratic trend for log population density to the linear effect
did not substantially improve the fit (R goes from .15 to .18 for the CFMT, the

measure that showed the strongest numerical increase).
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Figure 5. Scatterplots of recognition test scores versus log of the population density
with quadratic fits in red.
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Analyses of the patterns of correlations as a function of hometown population density:
Are face and car recognition abilities more strongly related to other kinds of object

recognition in a small hometown sample as compared with a large hometown sample?

This second set of analyses concerns not the mean performance on each test,
but whether we can find evidence that in the absence of early experience with a
large number of faces and cars, as represented by HPD, face and car recognition is
more strongly related to other kinds of object recognition. That is, we already know
that in large samples for which HPD is not controlled (but is presumed to be
relatively large), performance with faces and with cars shows correlations with
object recognition for other categories that are lower than average. Here, we
examine whether this effect is stronger in high than low HPD groups, for each
individual face and car test.

We performed three separate sets of analyses that focused on the relations
among bird, mushroom, and plane recognition and the CFMT, VFMT, and VET-Car
recognition measures, respectively. Thus, each analysis involved the correlations
among a set of four variables, each assessed within the high and low HPD groups.
Below, for the sake of brevity, we state our hypotheses in terms of face recognition
(applying to the CFMT and VFMT), but the logic is parallel for cars (VET-Car). Our
hypotheses can be framed in terms of the relative magnitude of correlations
involving birds, mushrooms, and planes. We predicted that (see Table 5): (1) Of all
the correlations involving birds in the high- and low-density groups (e.g., bird-

mushroom-high, bird-plane-high, bird-face-high, bird-mushroom-low) the lowest
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correlation would be that between birds and faces in the high density group; (2) Of
all the correlations involving mushrooms in the high- and low-density groups the
lowest correlation would be that between mushrooms and faces in the high-density
group; and, (3) Of all the correlations involving planes in the high- and low-density
groups the lowest correlation would be that between planes and faces in the high-
density group. Thus, within each of the three non-face categories, our hypotheses
imposed five inequality constraints. For example, in the case of birds, the
correlations for each of the five members of the set bird-mushroom-high, bird-
plane-high, bird-mushroom-low, bird-plane-low, and bird-face-low would be
greater than the correlation between bird and faces in the high-density group. Thus,
across birds, mushrooms, and planes there were 15 inequality constraints in all. We
should note that we did not specify any specific pattern of inequalities among pairs
of correlations that: (1) Did not involve faces (e.g., there were no inequality
constraints on the relation between bird-mushroom-high, bird-plane-high, bird-
mushroom-low, and bird-plane-low); (2) Only involved faces within a given density
group (e.g., our hypotheses did not constrain the relative magnitude of bird-face-low
and mushroom-face-low); and (3) Had no stimuli in common (e.g., the bird-
mushroom and plane-face correlations within or across density groups).3 Based on
our prior findings, our predictions here were strongest for the CFMT and VET-Car,
as these tests have been used in combination with tests for several other object

categories (e.g., VET battery for birds, mushrooms, planes, motorcycles...) in prior

? When we imposed additional constraints that also included these correlations (e.g., r between bird and
mushroom > r between plane and face) the pattern of results was very similar to those reported below and
conclusions about magnitude of effects were identical.
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studies with large samples (unscreened for hometown size) and have repeatedly
shown lower than average correlations (McGugin et al., 2012; Van Gulick et al,,
2016). In contrast, the VFMT has not been used yet in that context. The VFMT has
been found to correlate well with the CFMT (Sunday et al., in press) which could
lead to the prediction that performance with the VFMT becomes more independent
from object recognition with experience. Our results from the above analysis
suggest that the VFMT is less sensitive to experience than the CFMT as it relates to

mean performance.

r(H bird,face)
r(H bird,face)
r(H bird,face)
r(H bird,face)
r(H bird,face)
r(H mush,face)
r(H mush,face)
r(H mush,face)
r(H mush,face)
r(H mush,face)
r(H plane,face)
r(H plane,face)
r(H plane,face)
r(H plane,face)
r(H plane,face)

r(H bird,mush)
r(H bird,plane)
r(L bird,face)

r(L bird,mush)
r(L bird,plane)
r(H mush,bird)
r(H mush,plane)
r(L mush,face)
r(L mush,bird)
r(L mush,plane)
r(H plane,bird)
r(H plane,mush)
r(L plane,face)
r(L plane,bird)
r(L plane,mush)

AN N AN AN AN AN N N N AN N AN AN AN A

Table 5. The 15 inequality constraints included in the combined groups
hypothesis. The 6 constraints in bold are those that form the within group (here,
High Density) hypothesis. Here, face could denote either CFMT or VFMT scores, or
it would be replaced by the VET-Car. H and L denote the high and low population
density groups.

In addition to an analysis that combined both groups, we were interested in

testing our hypotheses focusing only on the high population density group. In this
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group, we predicted that (see Table 5, bold constraints): (1) The bird-face
correlation would be lower than both the bird-mushroom and bird-plane
correlations; (2) The mushroom-face correlation would be lower than both the bird-
mushroom and mushroom-plane correlations; and, (3) The plane-face correlation
would be lower than both the bird-plane and mushroom-plane correlations. Thus,
six constraints in all were imposed within the high-density group. Although we did
not hypothesize the same effect in the low-density group, for comparative purposes
we also assessed the strength of the evidence for this group. The logic of our
predictions for cars again directly paralleled that just described for both face tests
(i.e., the smallest correlations would be the three involving cars within the high-
density group).

Note that the hypotheses across both groups and within the high-density
group consist of sets of ordinal (i.e., inequality) constraints among pairs of
correlations. Each constraint specifies that a given correlation is less than another
correlation. Although one-tailed tests are commonly used to test a single inequality
constraint considered in isolation, it is difficult to test sets of ordinal constraints
using traditional statistical methods. Such predictions can, however, be tested using
a Bayesian order-constrained hypothesis testing (BOHT) approach (e.g., Hoijtink,
Klugkist, & Boelen, 2008; Klugkist, Landy, & Hoijinkk, 2005; Klutymans, van de
Schoot, Mulder, & Hoijtink, 2012; Mulder, 2014, 2016). We used the analytic
framework and software program BOCORR developed by Mulder (2016) for testing
order-constrained hypotheses on correlations. This approach allowed us to test the

two sets of composite hypotheses as a whole, rather than relying on tests of
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individual pairs of correlations, one by one. In addition to allowing a more direct
test of our hypotheses than a piecemeal approach, the BOHT approach had two
additional advantages: (1) It does not require the multiplicity corrections
necessitated when testing a large number of differences between pairs of
correlations (e.g., Boelen & Hoitjtink, 2008; Hoitjtink, Huntjens, Reijntes et al.,
2008); and, (2) It yields Bayes factors (BFs) that allowed us to quantify the degree of
support for our hypotheses rather than relying on a series of reject/no-reject
decisions.

Because of the complexity of the BOHT approach, we emphasize a more
intuitive than mathematically rigorous description and refer readers interested in a
more technical description to Mulder (2016) and the other sources cited above.
Consider our predictions that span both density groups. Consider the 15 inequality
constraints shown in Table 5 as the null hypothesis (Ho). Although some
applications of BOHT involve multiple competing hypotheses of interest, in our case
we simply compared Hp to its alternative (Ha), that is, any admissible pattern of
correlations other than that specified by the null hypothesis. When predictions
were tested within the high-density group alone, Ho specified six inequality
constraints. Correspondingly Ha was any possible pattern of correlations in the
high-density group other than those that would be consistent with Ho.

In both cases, the overriding goal was to compute BFs that quantify the
degree of evidence in the data for Ho relative to Ha. Before these BFs would be
computed, it was first necessary to compute the BF for a given Ho relative to what is

known as the unconstrained, encompassing model, denoted as H, (e.g., Berger &
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Mortera, 1999; Klugkist & Hoijtink, 2007; Klugkist et al. 2005). This model imposes
no ordinal constraints on the pattern of correlations but does specify an
encompassing prior distribution that was designed to be a reasonable model of the

multivariate distribution of correlations. We specified a joint prior for the

. : . L 1Y
unstructured correlation matrix that resulted in beta (E’E) distributions on the

interval (-1,1) for the marginal priors of the separate correlations. Relative to
alternative priors, this specification has been shown to enhance the sensitivity to
detect a valid set of order constraints on correlations (Mulder, 2016).

To compute the BF comparing Ho to Hy it was first necessary to compute both
the prior and posterior probabilities that Ho is correct. The prior probability that Ho
is correct does not incorporate the actual data collected. It is simply the proportion
of outcomes under the encompassing prior that is consistent with the restrictions.
To choose a simple example, if a single order constraint was being tested specifying
that the difference between two correlations was greater than 0, the prior
probability of Ho would be .50 because half of all possible values of the two
correlations would be consistent with this constraint. As the number of constraints
within a set increase, the proportion of the total correlation space that is consistent
with the complete set of restrictions becomes smaller and smaller. After observing
the data, the prior distribution is updated using Bayes’ theorem and the posterior
probability of Ho is computed. If the data are consistent with the restrictions, the

posterior probability of Ho is larger than the prior probability of Ho; that is, the
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average probability density within the restricted space demarcated by H, has
increased.

These computations are generally analytically intractable. For this reason,
using BOCORR (Mulder, 2016), both the prior and posterior probabilities were
calculated by generating a large number of samples from the prior and posterior
distributions and counting the proportion of samples that were consistent with the
restrictions. To test the more complex models that included both the high- and low-
density groups, we drew 10,000,000 samples and for the within-group analyses we
drew 1,000,000 samples. In each case, we then computed the BF for H, relative to
H, as the ratio of the posterior probability of H, to the prior probability of H,. BFs >
1 indicate that, consideration of the actual data increased the probability of H, while
BFs < 1 indicated that the observed data decreased the probability of H,. Because
the set of outcomes represented by Ho and Ha are mutually exclusive, prior and
posterior probabilities for Hya were simply 1 - the corresponding probabilities for
Ho. In turn, these probabilities were used to compute the BF for Ha relative to Hu.

Although the BF for H, relative to H, was of interest, our primary goal was to
compute a BF indicating the relative strength of the evidence for H, relative to its

alternative, Ha. It can be shown that this quantity is the simple ratio of the BF for H,

FH(J JHy,

relative to Hyand the BF for Harelative to Hy; thatis, BF,, ,, = .In

H, Hy

interpreting BF

Hl)’HA'

we used Jeffreys’ (1961) guidelines according to which BFs

between 3 and 10, between 10 and 30, and between 30 and 100 offered,

respectively, substantial, strong, and very strong support for the target hypothesis
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relative to its alternative. Although Jeffreys considered BFs between 1 and 3 barely
worthy of mention, we favor the descriptor ‘only marginal’ support. When BFs are
less than 1 and appear to favor H,, the reciprocals of the ranges noted above provide
descriptors for the strength of evidence. These descriptors facilitate communication
but are essentially rough guidelines.

From a conceptual perspective, there are two critical features concerning the

interpretation of BF, , thatshould be emphasized. First, like all Bayes factors, it

indicates the proportional change in the relative probability (i.e., the odds) of the
null and alternative hypotheses brought about by consideration of the actual data
(e.g., Lavine & Schervish, 1999). Thus, even if a given Ho has low a priori probability
because it limits the set of possible correlations nested under it, it can be associated
with a high BF relative to its alternative if the data are highly consistent with it: The
data have markedly changed the relative probability of the two hypotheses. The
second essential feature is that BFs can be considered the ratio of model fit to model
complexity (e.g., Kluytmans, Schoot, Mulder, & Hoijtink, 2012). Prior probabilities
are linked to model complexity. In this context, complexity is inversely related to
precision and specificity: Less complex models make more precise and restrictive
predictions and thus have lower prior probabilities. On the other hand, the better
the fit of the data to the model, the higher the posterior probability. Because a BF is
the ratio of posterior to prior probabilities, they will especially favor models that fit
well despite being highly restrictive. That is, at equivalent levels of complexity, the
higher the fit the higher the BF and at equivalent levels of fit, the less complex (i.e.,

more restrictive) the model the higher the BF. Finally, we note that: (1) BFs take



31

into account sample size; (2) There is evidence that a Bayesian approach to the
analysis of correlations has better properties than frequentist approaches when ns
are relatively small (e.g., as was the case in the low-density group; Fosdick &
Raftery, 2012); and, (3) The BOCOR program can accommodate both within-group
and across-group predictions (Mulder 2016).

Table 6 shows the correlations within the high- and low-density groups for
each of three measures of interest (CMFT, VFMT, and VET-Car) and Table 7 shows
BFs for both the combined groups and within-group analyses. Recall that our
predictions applied to both the combined groups and within-high density analyses,
with the low-density analyses included for comparative purposes. In addition, our
predictions were strongest for CFMT and cars. We first consider the hypotheses that
involved the pattern of correlations across both hometown groups. The CFMT
analyses provided strong support for our predictions. An examination of the
correlations in Table 6 show that the three lowest correlations among faces (as
assessed by the CFMT), birds, mushrooms, and planes were the three correlations
involving faces within the high-density group. Consistent with this observation, the
BF for the combined group indicated strong support for hypotheses (BF = 22.91). In
contrast the BOHT analysis performed on the VFMT showed only marginal support
the target hypothesis (BF = 2.36). The BF for VET-Car indicated “substantial”

support for the target hypothesis based on Jeffreys’ (1961) criteria.



CFMT VET-Bird | VET-Mush

VET-Bird 76/.27

VET-Mush | .54/.11 .63/.37

VET-Plane | .51/.20 .64/.46 36/.42
VFMT VET-Bird | VET-Mush

VET-Bird 50/.34

VET-Mush | .52/.12 .63/.37

VET-Plane | .16/.35 .64/.46 .36/.42
VET-Car | VET-Bird VET-Mush

VET-Bird 49/.30

VET-Mush | .47/.09 .63/.37

VET-Plane | .35/.28 .64/.46 .36/.42
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Table 6. Pearson Correlations for the Low/High population density groups (note the
results for birds, mushrooms and planes are repeated in each sub-table, to form 3
sets of correlations used to test 3 sets of order-constrained correlations).

Measure Model
Combined Groups High Density Low Density
CFMT 2291 15.87 0.11
VFMT 2.36 4.67 1.97
VET-Car 7.91 9.07 1.77

Table 7. Bayes Factors for Inequality-Constrained Hypotheses for Correlations

Note: Bayes Factors > 1 indicate greater support for Hy, relative to H,, and Bayes Factors

<1 indicate greater relative support for H.. According to Jeffreys’ (1961) criteria,

3 > BF <1 indicates only marginal support for Ho, 10 >BF >3 indicates substantial support for
Ho, and 30 >BF >10 indicates strong support for Ho, while the reciprocals of these ranges
indicate strength of support for H..

Examination of the correlation matrices indicated that correlations for the
low-density group were generally higher than those for the high-density group,

especially on the CFMT. Tests of the equality of correlation matrices (Steiger, 1980)
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conducted for the three 4-variable sets (CMFT-bird-mushroom-car, VFMT-bird-
mushroom-car, and VET-car-bird-mushroom-car) indicated significant differences

on the matrix that included CFMT scores, y; =16.45, p <.02, but no significant

differences on the matrices that included VFMT and VET-Car scores,
X. =734, p>.25, and y, =6.33, p > .35, respectively.

Although there were also no significant differences on tests of the equality of
covariance matrices, all Box M (Morrison, 1976) p’s > .20, the overall differences in
magnitude evident on the CFMT correlation matrices could themselves in part
account for the high BF for the cross-groups analysis. Thus, for this variable in
particular we deemed the separate within-high and within-low density analyses
particularly determinant. On the CFMT measure, the BOHT analysis of the high-
density group indicated strong support for the target hypothesis (BF = 15.87). In
sharp contrast, if anything, the correlations involving the CFMT in the low-density
group indicated that consideration of the actual data yielded increased support for
the alternative relative to the null hypothesis (BF = 0.11). Two of the six target
correlations were in the hypothesized direction within the low-density group but
four of six were in the opposite direction. For both the VFMT and VET-Car analyses,
the strength of the evidence for the target hypothesis within the high-density group
was in the “substantial” range, with the magnitude for cars midway between that of
the CFMT and VFMT (BFs = 4.67 and 9.07, respectively for VFMT and cars). On both
measures, BFs within the low-density group were only marginal (BFs = 1.97 and

1.77, respectively for VFMT and VET-Car).



34

In sum, Bayesian tests of order-constrained hypotheses that specifically
addressed the prediction that faces and cars are more independent from object
recognition in the high than in the low HPD group found strong and substantial
support, respectively, for the CFMT and the VET-Car, but only marginal support for
the VFMT. These results offer the first evidence in support of any hypothesis for why
face recognition (and car recognition) may be “special”. Interestingly, our analyses
that addressed patterns of correlations among abilities are independent from those
addressing mean patterns of performance, in both cases we find that the VFMT did
not show the same sensitivity to HPD as the CFMT. This illustrates how variance on
any one test includes both aspects that tap into a construct of interest (here, face
recognition ability) as well as more test-specific components. We speculate that the
CFMT format measures a face-learning component that is not as important in the
VFMT where each trial is independent, but future work could test this hypothesis
with a number of different face recognition tests designed to tap or not into such a
process. Interestingly, we find no evidence that the CFMT and VFMT are any less
related in one group than the other (Low-density group: r =.68, High-density group:

r=.66).

Discussion
First, we compared mean performance on a number of tests of face and
object recognition in people who came from hometowns with relatively low vs. high

population density. We replicated a relative disadvantage on the CFMT for people
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from low population density hometowns. While this effect has been reported twice
(Balas & Saville, 2015; 2017), we extend it in a few ways. The original two studies
were conducted in undergraduates in North Dakota who came from small (less than
1000) or large (>30000) hometowns. Here, we did not restrict on hometown size,
and after collecting information on both hometown size and hometown zipcode,
used HPD measured directly to consider hometown experience on a more
continuous basis. Accordingly, we were able to determine that those coming from
the untested intermediate range of population density in the original study (those
from hometowns with population densities between 10 and 85 per square mile)
showed results on the CFMT similar to those from the smaller hometowns. In
addition, the Balas & Saville studies tested only undergraduates, between 18 and 24.
We tested subjects in a much wider age range (19-49, with 37% of our sample older
than 24) and nonetheless replicated the population density effect on CFMT
performance. While this suggests that later life experiences do not erase the
influence of hometown environment, we did not collect data on current location
population density or how it may have varied through our subjects’ lives, and we
would not exclude that such later experience could account for meaningful variance
in face recognition if it was measured.

In addition to replicating the effect of HPD on the CFMT, we compared the
face learning task to a non-learning face task, and to a battery of tests of learning
various non-face objects. On the one hand, the CFMT was the only task that showed
a significant effect of HPD. On the other hand, we did not have sufficient power to

claim that the effect for CFMT was larger than the non-significant effects, in the
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same direction, observed on the other tasks. Our results may suggest that this effect
could be relatively specific to a face-learning task. We speculate that this may reflect
those from small hometowns needing to learn and repeatedly individuate fewer
faces than those from larger hometowns, but the ubiquity of the internet and
television make face-processing skills unrelated to learning more equal between
different hometown sizes.

Before any strong conclusion is made about whether the effect is specific to
faces and the extent to which it depends on the learning format of the CFMT, it is
clear that a larger sample size, especially in the low population density group, will
be necessary. Future work should include other tests in which subjects learn faces
over trials as in the CFMT (e.g., the Vanderbilt Face Expertise Tests, Ryan &
Gauthier, 2016) with tests that involve less face learning (e.g., ensemble-perception
face tasks like Haberman, Brady, & Alvarez, 2015) in samples of varying hometown
populations.

Second, we compared the pattern of correlations among various abilities in
the two hometown groups. Car and face recognition have been reported to be
special abilities that are surprisingly independent of other object recognition
abilities and from each other (McGugin et al., 2012; Van Gulick et al., 2015; Richler et
al., 2017). While no study to date has offered an explanation for this, one suggestion
is that high levels of experience for both categories—as mediated by population
density—could lead to the development of specialized recognition mechanisms
(Gauthier, in press). Here, using sensitive Bayesian tests of order-constrained

correlations, we found support for the hypothesis that car and face recognition as
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measured by learning tests (CFMT and VET-Car) are more independent from
general object recognition in people who come from large hometowns than in those
who come from much smaller hometowns. The differences in the direction and/or
magnitude of BFs were particularly striking when computed separately within the
high and low population density groups. We found only meager support for the
same pattern when measuring face recognition ability with the VFMT, despite the
fact that the tests are strongly related. Just as for the effect of population density on
mean performance, it appears that although relatively small, the non-error related,
unshared variance between the CFMT and VFMT is critical in revealing the role of
experience.

In sum, this work replicates prior findings that people in low population
density hometowns are poorer at face learning than those in larger hometowns. It
also reveals for the first time that face and car recognition abilities are not
particularly “special” for people who grew up in small hometowns, while there is
much stronger evidence that they are special for people who grew up in larger
hometowns. When only faces are special, a nativist account may be plausible. The
finding that in terms of individual differences, cars are equally as special made such
account less plausible, and the current results point further in the direction of
experience as a driving factor. However, HPD is only an indirect measure of
experience with faces or cars and we and others (Balas & Saville, 2015; 2017) did
not collect a great deal of information on other ways these individuals may differ.
Future studies should consider gathering converging evidence from other correlates

of experience, both early and late. Finally, our work shows the importance of using a



38

multiplicity of measures with different formats to help clarify the nature of these
effects. That is, we have previously cautioned against strong conclusions based on
only two object categories (Gauthier & Nelson, 2001; Gauthier, in press) and here
we add caution about strong conclusions based on abilities measured using a single

test format.
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Appendix:

Table 1. Correlations between VETs and Self-Reported Expertise (SR). Within-
domain correlations are bolded. r > .24 are significantat « =.01; r>.18 are
significant at @ =.05. Within-domain correlations are bolded.

VET- VET- VET- SR-
Bird Mush VET-Car Plane SR-Bird Mush SR-Car

VET-Mush  0.448 -

VET-Car 0.351 0.19 -

VET-Plane  0.507 0.406 0.3 -

SR-Bird 0.265 0.055 0.116 0.27 -

SR-Mush 0.102 -0.142 -0.055 0.131 0.45 -

SR-Car 0.209 0.069 0.219 0.289 0.306 0.326 -
SR-Plane 0.021 -0.115 -0.043 0.28 0.402 0.592 0.436

Table 2. Correlations between VETs and SVETSs on the averaged score of the other
domains was been regressed out. Within-domain correlations are bolded.

VET- VET- SVET- SVET- SVET-
VET-Bird Mush VET-Car Plane Bird Mush Car
VET-
Mush -0.15 -
VET-
Car -0.21 -0.33 -
VET-
Plane -0.16 -0.17 -0.24 -
SVET-
Bird 0.28 -0.06 0.07 0.00 -
SVET-
Mush 0.12 0.15 -0.05 0.03 -0.00 -
SVET-
Car -0.13 -0.05 0.37 -0.04 -0.13 -0.30 -
SVET-

Plane 0.06 -0.04 -0.17 0.21 -0.36 -0.07 -0.11
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