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Abstract
There is substantial evidence for individual differences in personality and cognitive
abilities, but we lack clear intuitions about individual differences in visual abilities.
Previous work on this topic has typically compared performance with only two
categories, each measured with only one task. This approach is insufficient for
demonstration of domain-general effects. Most previous work has used familiar object
categories, for which experience may vary between participants and categories, thereby
reducing correlations that would stem from a common factor. In Study 1, we adopted a
latent variable approach to test for the first time whether there is a domain-general Object
Recognition Ability, 0. We assessed whether shared variance between latent factors
representing performance for each of five novel object categories could be accounted for
by a single higher-order factor. On average, 89% of the variance of lower-order factors
denoting performance on novel object categories could be accounted for by a higher-
order factor, providing strong evidence for o. Moreover, o also accounted for a moderate
proportion of variance in tests of familiar object recognition. In Study 2, we assessed
whether the strong association across categories in object recognition is due to third-
variable influences. We find that o has weak to moderate associations with a host of
cognitive, perceptual and personality constructs and that a clear majority of the variance
in and covariance between performance on different categories is independent of fluid
intelligence. This work provides the first demonstration of a reliable, specific and
domain-general Object Recognition Ability, and suggest a rich framework for future
work in this area.

Keywords: visual abilities, structural equation modeling, latent variable modeling,
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Individual Differences in Object Recognition

There is substantial evidence for individual differences in personality and
cognitive abilities. In the case of personality traits, although test-retest correlations across
1-3 years are in the .2—.5 range during childhood, they are in the .6—.8 range among
adults across even longer time spans (e.g., Hampson & Goldberg, 2006; Roberts &
DelVecchio, 2000). Cross-situational consistency of behaviors is not as high as we might
intuitively believe (e.g., Mischel, 1968; Mischel & Peake, 1982), and r = .30 is the
proverbial “personality coefficient” (Mischel, 1968). Nonetheless, personality traits: 1)
often account for substantial variance in behaviors, thoughts, and moods averaged across
situations, contexts, or measures (e.g., Rushton, Brainerd, & Pressley, 1983); 2) are
generally associated with validity coefficients comparable to modal effect sizes found in
experimental studies (Meyer, Finn, Eyde, et al. 2001); and 3) predict important life
outcomes (e.g., mortality, occupational attainment, vulnerability to psychopathology),
with effect sizes comparable to those of SES or cognitive abilities (e.g., Goodwin &
Friedman, 2006; Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007). Similarly,
psychometric intelligence is extremely stable over time (e.g., test-retest correlations
generally in the .6—.8 range in the time span between childhood and old age, e.g., Deary,
Whalley, Lemon, Crawford, & Starr, 2000; Deary, Whiteman, Starr, et al., 2004), and it
predicts achievement and other important life outcomes (e.g., health and morbidity)
independent of socio-demographic variables (e.g., Deary et al., 2004).

In contrast, we lack clear intuitions about individual differences in visual
perception. We have little to no access to the quality of others’ perception and we are
very poor at estimating our perceptual abilities, even in a specific domain, relative to
other people (Barton et al., 2009; McGugin et al., 2012). Studies of perceptual expertise
that reveal variability in ability with specific object categories, such as birds (e.g.,
Gauthier et al., 2000; Tanaka et al., 2005), fingerprints (Busey & Vanderwolk, 2005), and
cars (e.g., Gauthier et al., 2000, 2003) do not address the stability or consistency of
individual differences in object recognition performance—is ability in one domain stable
over time and related to performance in another domain? Does someone’s ability to
recognize birds predict how well they will be able to recognize fingerprints? Surprisingly,
despite decades of research on object recognition, there has been almost no work seeking
to find evidence of a common “object recognition” ability across domains. Here, we test
whether object recognition ability (o) is a valid and reliable construct that can account for
performance across categories. The o we are speculating about here would be at least
general enough to predict the ability to learn how to discriminate items in any
subordinate-level category, such as different dogs, birds or fingerprints'.

The hypothesis of a general object recognition ability parallels a number of
models in the areas of personality, psychometric intelligence, and cognitive abilities. In
these areas, hierarchical structures for individual differences have predominated for a
number of years (e.g., Guilford, 1967; Markon, Krueger, & Watson, 2005; Reeve &

1 We do not at this point address the possibility of an even more general factor that would also encompass
basic-level or superordinate-level visual judgments, or other visual tasks in very narrow stimulus domains
such as those used in perceptual learning studies. For instance, a general visual ability factor may account
for individual differences in object recognition (o) as well as more low-level perceptual factors like global
vs. local processing style (Milne & Szczerbinski, 2009).



Bonaccio, 2011; Rushton & Irwing, 2011; Spearman, 1927). Such models posit
superordinate dimensions or factors (e.g., the general intelligence factor g, negative
affectivity in the domain of emotion and temperament) that account for substantial
variability in both lower-order factors and observed measures (e.g., Markon et al., 2005;
Reeve & Bonaccio, 2011; Zinbarg & Barlow, 1996).

However, a great deal of vision research seems to suggest that visual abilities are
more fractionated than common, with the visual system dividing things by the way they
look. For instance, neuroimaging studies have identified different brain regions
associated with the processing of basic visual properties such as symmetry (e.g., Sasaki et
al., 2005), curvature (e.g., Yue et al., 2014), and rectangularity (e.g., Nasr et al., 2014),
and with different object categories such as animals, tools (e.g., Chao et al., 2002),
houses (e.g., Epstein & Kanwisher, 1998), and faces (e.g., Kanwisher et al., 1997).
Measures of connectivity to face selective-areas are found to correlate with face, but not
scene, recognition performance (Gomez et al., 2015). Such results raise the possibility
that different brain networks support independent recognition abilities for different object
categories, such that car recognition ability would not predict ability to match fingerprints
or recognize faces.

Starting with the development of the Cambridge Face Memory Test (CFMT;
Duchaine & Nakayama, 2006), which captures a wide range of face processing ability
with high reliability (e.g., test-retest with 6 months delay =.70, Duchaine & Nakayama,
2006; Cronbach’s alpha = .91, Wilmer et al., 2012), the small body of work that speaks to
this question has generally focused on the specificity of face recognition abilities; that is,
is face recognitions an independent ability or a special case of a more global ability to
learn and/or recognize objects? However, the conclusions that can be drawn from work in
this area are limited because 1) the experimental designs typically only include one task
(e.g., a single memory test) and two categories (e.g., faces and cars), and 2) only familiar
object categories are used, so experience can vary between participants and categories. In
what follows, we discuss each of these issues in turn and how they are addressed by the
present study.

Importance of Using Multiple Tasks and Categories

Wilmer et al. found only 7% shared variance (r-squared) between the CFMT and
performance on a similar task with unfamiliar abstract art (n = 3004, » = .26, Wilmer et
al., 2010; n = 1469, r = .26, Wilmer et al., 2012), and studies comparing the CFMT with
a similar task using cars have found 8% shared variance (n = 1042, » = .29; Shakeshaft &
Plomin, 2015) and 14% (n = 142, » = .37; Dennett et al., 2012). These small but
significant relationships are difficult to interpret because performance with different
categories was measured using a single task for all categories. Performance with faces,
abstract art, and cars could share a small amount of variance either due to the recruitment
of a general object recognition system or due to task-specific processes such as working
memory or sensitivity to proactive interference, and important to this task. Interpretation
1s further limited by the fact that only two categories of objects were compared (faces
with either abstract art, cars, or houses; see Gauthier & Nelson, 2001).

When studies find only a moderate correlation between a face and a non-face
object recognition task, authors often take it as evidence for a face recognition ability that
is distinct from an object recognition ability (e.g., Dennett et al., 2012; Shakeshaft &
Plomin, 2015; Wilmer et al., 2010). An untested assumption, however, is that abilities to



recognize different non-face categories would be more strongly related to one another
than each of them would be to face recognition ability. Only a few studies have used
several object categories but all with the same task (e.g., Cepuli¢ et al., 2018). In some of
these studies using the VET (McGugin et al., 2012; Van Gulick et al., 2015), the average
pairwise correlation between any two non-face categories is no larger (r=.34) than what is
typically found between face and non-face object recognition tests (e.g. r=0.37 in Dennett
et al, 2012). In other words, when many categories are used, face recognition does not
stand out as a particularly distinct ability. Testing with more than two categories shifts
the question of whether face recognition ability is distinct to a more general question:
given the domain-specificity of performance in high-level vision, is there evidence for a
strong domain general object recognition ability, 0?

Beyond problems for interpretation, using only two categories each assessed with
one task may underestimate true dependence on a common factor. Consider research in
the area of personality, where the cross-situational consistency of behavioral measures
(particularly when assessed on only one occasion) is typically rather low (e.g., Mischel,
1968; Mischel & Peake, 1982). Importantly, correlations are much higher when
behavioral measures are aggregated across a number of situations and correlated with
other behavioral aggregates or personality measures (e.g., Jaccard, 1974; Rushton,
Brainerd, & Pressley, 1983). Thus, the correlation between one task for cars and one task
for faces likely does not provide sufficient aggregation to reveal the influence of a
broader construct. Indeed, the few studies that used multiple tasks treated as indicators of
a higher-order category-specific latent variable (i.e., factor) found moderate to substantial
relationships between distinct face and house perception factors (44—69% shared
variance, Hildebrandt et al., 2013; 24% shared variance, Wilhelm et al., 2010). These
studies still suffer from the interpretative problems described above, as only two
categories were compared. To circumvent these problems, participants in our study
completed three tasks of visual object perception and recognition for each of five object
categories.

Importance of Controlling for Experience

Although some studies have measured performance for several categories (e.g.,
Gauthier et al., 2014; McGugin et al., 2012; Van Gulick et al., 2015), most used familiar
object categories. This makes it difficult to disentangle variability due to experience from
variability in a domain-general ability. Furthermore, differences in experience between
categories for the same individual might reduce correlations that would stem from a
common factor (Gauthier et al., 2014; Ryan & Gauthier, 2016; Van Gulick et al., 2015).
In recent work, object recognition ability was measured with three categories of novel
objects (in three groups with ns >325, each tested on two of the three categories, with a
single task). The average pairwise correlation (r=.48) was higher than the typical pairwise
correlation for familiar object categories, consistent with the idea that differences in
experience with familiar objects complicates the measurement of a common visual ability
(Richler et al., 2017). To circumvent the problems associated with variability in
experience, here we used five categories of novel, unfamiliar objects. Because these
novel object categories vary on several perceptual dimensions shown to be associated
with unique neural substrates (e.g., animate/inanimate appearance, symmetry, and



curvature), their use in the present study will provide a rigorous test of the presence of a
common ability.

It is possible, however, that some amount of experience with a category is
important for individual differences in ability to be fully reflected in performance. After
all, one important component of object recognition is the ability to learn object
categories. In other domains, differences among individuals in genetic or other
predispositions commonly require the appropriate environmental inputs to be expressed
behaviorally (for reviews see Dick, 2011; Manuck & McCaffery, 2014). Therefore, we
tested four object categories following a training phase that provided participants with the
same amount of controlled experience for each category. We tested performance with the
fifth category without any prior training, to assess whether experience affects the
expression of a domain-general ability. If so, this design leaves us with four categories to
use in the main analyses. We used a training protocol that is relatively short and limits the
contribution of non-visual abilities (e.g., it did not require naming). In addition, learning
in this task transfers to new exemplars of the category and results in training effects
typical of the early stages of perceptual expertise (Bukach et al., 2012).

Latent Variable Modeling Approach

Self-reports of visual abilities are generally poor predictors of performance for
most categories (McGugin et al., 2012; Richler et al., 2017; see also Barton et al., 2009).
Thus, individual differences in object recognition ability can only be inferred from
behavioral measures of task performance. Whatever the nature of the measure, research
in the areas of personality and temperament has shown that broad individual differences
constructs are optimally assessed using multiple measures (to allow for conclusions that
are appropriately generalizable across different measures) and often best modeled as
latent variables. Narrowly defined, latent variables are constructs (e.g., ‘object
recognition ability”’) that are not directly observable. Latent variables are useful whenever
unobserved constructs are invoked, for instance in behavioral and social sciences (e.g.,
Bollen, 2002). The present study adopts a latent variable analytic approach to test the
hypothesis that the shared variance in performance across several object categories can be
accounted for by a single domain-general visual ability that is modeled as a higher-order
latent variable (i.e., factor). This structural representation will be tested using
confirmatory factor analysis (CFA, for reviews see Brown, 2015; Tomarken & Waller,
2005). CFA confers several distinct advantages in the present context relative to
exploratory factor analysis (EFA) or principal components analysis (PCA). These include
the ability to: specify and test the absolute and relative fit of competing models using a
variety of indices; specify factor models that posit both lower-order factors that account
for correlations among observed indicators and higher-order factors that account for the
correlations among lower-order factors; estimate correlations among categories that are
free from the attenuating effects of measurement error and category-irrelevant variance,
and specify correlated error terms or task-specific method factors that can estimate the
contribution of shared methods to correlations among measures (see, e.g., Brown, 2015;
Hancock & Mueller, 2006; Tomarken & Waller, 2005).

In our study, participants completed three tasks of visual object perception and
recognition for each of five novel object categories (four categories for which they
received a fixed amount of training in a simple video game, and one for which they



received no training). We then used CFA to estimate the correlations among the different
categories in performance. Each category itself was represented as a first-order factor
with task scores as observable indicators. Our primary interest was testing a related
model that posited an overarching, second-order construct that we denote as ‘o’
representing individual difference in object recognition ability that influences
performance on specific object categories. Our goal was to assess the fit of the second-
order factor model and estimate the proportion of variance in performance on the lower-
order, category-specific factors accounted for by the overarching factor. Finally, via
CFA, we assessed the relation between individual differences on the object recognition
latent factors and scores on measures of facial recognition and perceptual expertise with
familiar objects.

Study 1

Methods

Participants

Two-hundred-and-eighty-five members of the Vanderbilt University Community
were recruited for the experiment (123 male, 162 female; mean age = 21.5, age range =
18-38; Caucasian = 170, Asian = 70, African American = 35, Hispanic = 8, Other = 2).
There were four at-home sessions of approximately 1.75 hours each, and six lab sessions
of one hour each. Participants were compensated $26.25 for each at-home session, and
$15.00 for each lab session, for a total of $195.00 for the entire experiment (13 hours).
Payment was based on the sessions participants completed, and was not contingent on
finishing the experiment. Both the original sample size (285) and the sample size
ultimately used for analyses (n=246, see Data Analysis section for elaboration) are very
large for studies in the area of perception but on the small side relative to typical
confirmatory factor analyses and structural equation models. The target N reflected a
tradeoff between practical considerations (i.e., each participant attended 5 laboratory
sessions with home sessions intermixed) and the desire to maximize sample size for a
statistical procedure that typically requires large sample sizes. In this regard, two
considerations are particularly relevant: (1) A priori power analyses indicated excellent
power to detect misspecifications under a range of reasonable parameter values with n’s
in the range of 250 or so; and, (2) Published simulation studies that mirror various
features of the present experiment (e.g., the method of treating missing data, as discussed
below) have demonstrated good performance (e.g., empirical Type 1 error rates that
correspond to nominal levels) when n’s are in the same range (e.g., Savalei & Falk,
2014).
Stimuli

We used five novel object categories (vertical Ziggerins, asymmetrical Greebles,
symmetrical Greebles, horizontal Ziggerins, and Sheinbugs; arbitrary numbers were
assigned to categories to simplify data coding and presentation of results, see Figure 1)
with 80 exemplars each, and two views per exemplar. Categories were defined by general
configuration of parts and color. Thirty exemplars (approximately 1 x 1 degree of visual
angle) were used in the training phase, and the remaining 50 exemplars (approximately 2
x 2 degrees of visual angle) were used for testing. A sixth novel object category (YUFOs,



Gauthier et al., 2003) was used to practice the training task during an introductory lab
session and in the instructions for all test tasks.
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Figure 1. Example stimuli from the five novel object categories used in this study.
Numbers were arbitrarily assigned to categories to simplify data coding and presentation
of results. Category 0 was the non-exposed category for all participants.

General Procedure

The general procedure is illustrated in Figure 2. First, participants came to the lab
for an introductory session in which they completed measures of familiar object
recognition (described below), and practiced the training game. At the end of the
introductory session (and all subsequent lab sessions), participants scheduled their next
lab session and were given a passcode to access the training game that had to be
completed at home prior to that date. Participants were told that they should return to the
lab within five days of completing the game, and this was taken into consideration during



scheduling®. Participants completed the assigned training game for a category at home,
and then completed three test tasks (described below) with the same category in the
subsequent lab test session (e.g., participants completed the training game with Cat-1 at
home, then returned to the lab to complete the test tasks with Cat-1). Home-training and
lab-test sessions were repeated until participants completed test sessions for all five
categories, with the exception that there was no training session prior to the test session
for Cat-0. Category order was randomized for each participant.

Visit 1 Visit 2 Visit 3
T R T | T T R T T e
cFMT | Test |t Test | !
VET ]! "1Exposure Cat-1 il Exposure Cat-2 i
i | Cat-1 11| Cat-2 |
b e I e J

Visit 4 Visit 5 Visit 6

e AT s | r---------------------_----I
: Test E ! Test E
thExposure Cat 3 1 b Exposure Cat-4 i
i | Cat-3 g i | Cat-4 ;
1 1

Figure 2. General experiment procedure. Participants completed an introductory lab
session on Visit 1, followed by home-training and lab-test sessions for four novel object
categories (Cat-1—-4), and a lab-test session only for one novel object category (Cat-0).
Home sessions and lab visits were grouped for Cat-1—4, such that the home and test
sessions for a given category were always consecutive and separated by no more than
five days. Category order was randomized.

Training Game

The training game was modeled after the classic arcade game Space Invaders (see
Bukach et al., 2012). In each wave, an array of nine objects moved laterally and
downward toward participants’ avatar. Objects in the array and the avatar could appear in
one of two viewpoints. The arrow keys moved the avatar left and right. Pressmg “z”
produced a laser that changed the invader’s identity on contact, and pressing “x”
produced a laser that eliminated the invader if it matched the identity of the avatar. If an
invader with a different identity from the avatar was shot with an “x,” the speed of array
movement increased. Importantly, the target invader and avatar could be shown in the
same or different viewpoint. Thus, successful task performance required matching on
object identity, regardless of viewpoint. Participants had to successfully clear 250 waves
(approximately 90 minutes). Because the training game was relatively easy across
categories, on average participants initiated 276.41, 259.69, 271.20, and 272.22 waves for

? This was not as precisely controlled as might be desirable, but in a study of this magnitude, where the
time demands on participants were high, we had to make a compromise between control and reasonable
expectations for our participants to reduce non-compliance and drop-outs.



categories 1-4, respectively (overall mean = 269.88). A repeated measures linear mixed
effects analysis of variance (ANOV A) and subsequent pairwise comparisons indicated
that category 2 was associated with fewer waves than the three other categories (category
2 pairwise ps < .025; all other pairwise ps > .20; omnibus test F(3,219) = 7.52, p <.0001).
Waves did not have to be completed during a single sitting. Avatar identity and array
composition were randomized. During the introductory session participants had to clear
30 waves of YUFOs to familiarize themselves with the task.
Introductory Lab Session

Example trials for the familiar object recognition measures (CFMT and VET) are
shown in Figure 3. Task order and trial order within each task were the same for all
participants.

A) Familiar Object Recognition Measures
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Figure 3. A) Example trials for familiar object recognition measures (CFMT and VET).
B) Example trials for each of the three test tasks (Learning Exemplars, Matching Task,
Composite Task, denoted by LE, MA and CO in Figure 1).

Cambridge Face Memory Test (CFMT)- Long Form. In the CFMT (Duchaine &
Nakayama, 2006), participants complete an 18-trial introductory learning phase, in which
a target is presented in three views, followed by three forced-choice test displays
containing the target face and two distractor faces. Then, participants study frontal views
of all six target faces together for a total of 20 s, followed by 30 forced-choice test
displays. Participants are told to select the face that matches one of the original six target
faces. The matching faces vary from the studied versions in terms of lighting condition,
pose, or both. Next, participants are given another opportunity to study the six target
faces, followed by 24 test displays presented in Gaussian noise. Finally, the last block
includes 30 “difficult” test displays where faces are shown as silhouettes, in extreme
noise, or with varying expressions. The CFMT is scored as accuracy (percent correct)
across all blocks, excluding the introductory learning trials, for a total of 84 trials.
Previous work found that the CFMT produces measurements of high reliability in a
normal adult population (e.g., test-retest with 6 months delay = .70, Duchaine &
Nakayama, 2006; Cronbach’s alpha = .91, Wilmer et al., 2012).

Vanderbilt Expertise Test (VET). The Vanderbilt Expertise Test (VET; McGugin
et al., 2012) is similar in format to the CFMT. Participants study six target exemplars
from a category, and are then presented with triplets and asked to indicate by key-press
which object is the same identity (but different image) as any of the targets. Five
categories were tested in the following order: houses, cars, birds, planes, and butterflies.
There were 51 trials for each category. Three trials were catch trials that were not
analyzed. Participants were also asked to rate their experience with each of the five
categories (“interest in, years exposure to, knowledge of, and familiarity with” from 1 to
9). Accuracy (percent correct) was computed separately for each VET category. Previous
work has produced good reliability in measurements with a normal adult population on
the various VET subscales (e.g., Cronbach’s alpha = .64—.85 in McGugin et al., 2012;
Cronbach’s alpha =.71-.93 in Van Gulick et al., 2015).

Test Sessions

Example test task trials are shown in Figure 3. Test task order was the same for all
categories and participants. One trial order was generated for each test task for each
category and was the same for all participants.

Learning Exemplars Task. Thirty-six test objects (6 targets, 30 foils) from each
category were used. The Learning Exemplars task was similar in format to the CFMT and
VET. Participants studied an array of six target objects (three in view A, three in view B).
On the subsequent test trials, three objects were shown in any combination of views A
and B, and participants had to indicate by key-press which object matched the identity of
any of the targets, regardless of changes in viewpoint. Chance was .33. There were two
blocks of 24 trials. In the first block, targets were shown in the same view as during
study. In the second block, targets were shown in the unstudied view. In the last six trials
of block 1 and the last 12 trials of block 2 objects were presented in visual noise. All
targets were shown with an equal frequency for each trial type (e.g., same/different
identity x same/different viewpoint), and the same target was never presented on
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consecutive trials. Performance was scored as accuracy (percent correct) across all 48
trials. Cronbach alphas were .73—.89 (see Table 1). For cross-reference, this task is an
earlier version of the Novel Object Memory Test developed later for 3 of the categories
(Richler et al., 2017).

Matching Task. All 50 test objects from each category were used. On each trial, a
study object was presented (300 ms in block 1, 150 ms in block 2), followed by a
category-specific random pattern mask (500 ms), then a second object was presented
(until response or a maximum of 3 s; time-out trials accounted for less than 1% of the
data and were excluded from the analyses). Participants had to indicate by key-press
whether the two objects were the same or different identity, regardless of changes in
viewpoint or size (on different-size trials the test object was approximately 1.3 x 1.3
degrees of visual angle). There were 45 trials for each combination of correct response,
viewpoint (same or different), and size conditions (same or different) for a total of 360
trials. Due to a minor programming error, the number of same and different trials were
not evenly divided between blocks (range = 84-96 trials per block). Sensitivity (d') was
calculated separately for each block. Sensitivity was computed using Zhit rate — Zfalse
alarm rate, adjusting for hit rates of 1 or false alarm rates of 0 using 1 - 1/(2N) and
1/(2N), respectively where N is the number of same (or different) trials. These scores
were correlated (rs =.57-.78, all ps <.001) and were averaged to create a single
matching task score for each category with Cronbach alpha .88—.96 (see Table 1).

Composite Task. Because prior work suggested that using a small number of
stimuli improves the reliability of the composite task (Ross et al., 2015), the tops of five
objects and the bottoms of a different five objects were used to make composites for each
category. These ten objects were not used in the Learning Exemplars task. Trial timing
was based on Wong et al. (2009). On each trial, a study composite (top of one object
combined with the bottom of another object) was presented (500 ms), followed by a
category-specific mask (2900 ms). A cue indicating whether the top or bottom was the
target was presented during the last 500 ms of the mask presentation. Then, a test
composite was presented with the cue (until response, maximum 3 s; time-out trials
accounted for 1% of the data and were excluded from the analyses) and participants had
to indicate by key-press whether the cued part was the same or different as the study
composite, while ignoring the uncued half. On congruent trials, the cued and uncued parts
were associated with the same response (i.e., both parts were the same or both parts were
different); on incongruent trials, the cued and uncued parts were associated with different
responses (i.e., one part was the same, the other part was different). There were 36 trials
for each combination of correct response (same/different), cued part (top/bottom), and
congruency (congruent/incongruent) for a total of 288 trials. Sensitivity (d') was
calculated separately for top-congruent, bottom-congruent, top-incongruent, and bottom-
incongruent conditions. These scores were correlated (average rs = .41-.60, all ps <.001)
and were averaged to create a single composite task score for each category with
Cronbach’s alpha .91-.97 (see Table 1). This average composite score indexes overall
performance on the task, which is the construct that is most similar to that measured by
the other two tasks. It does not reflect congruency (the difference in performance between
congruent and incongruent trials), which is an index of holistic processing (Richler &
Gauthier, 2014). We did however compute congruency effects for use in an analysis
comparing the 4 categories that received pre-training to the 5™, untrained, category.
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Data Analysis

The data and software code for the primary analyses are available in the figshare
repository (see supplemental online material). Due to experimenter or computer error,
VET data for one or more subscales were missing for five participants and CFMT data
were missing from one participant. Thirty-six participants withdrew from the study after
the pre-test session (leaving 249 participants from the original 285). CFMT accuracy did
not differ between participants who withdrew after the introductory session (M % correct
=61.77, SD = 10.85) and those who completed test sessions for at least one category (M
% correct = 63.22, SD = 14.23; 23, = 0.59, p = .56, Cohen’s d = .11); however, VET
accuracy (aggregated across all categories) was significantly lower for participants who
withdrew (M % correct = 63.00, SD = 9.87) vs. those who completed any number of test
sessions (M % correct = 66.96, SD = 9.60; 273 = 2.30, p = .022, Cohen’s d = .41). Data
from three participants were excluded for not completing the exposure game for any
category. Thus, data from 246 participants (86% of sample; 105 male, 140 female, 1 not
disclosed; mean age = 21.4 years; Caucasian = 144, Asian = 64, African American = 30,
Hispanic = 6, Other = 2) are included in the analyses.

Among the 246 participants included in analyses, data for some task-category
combinations were not collected due to experimenter or computer error (2.68%) or
because participants withdrew from the study after completing at least one test session (n
=30; 8.21% of expected data). Both the intraclass correlation analyses and the
confirmatory factor analyses that we report below can accommodate such participants
with incomplete data. Of the collected data, 96.95% was included in the analyses. The
remaining 3.05% of observations were excluded because of: 1) Failure to finish the
exposure game for a given category or excessive delay between home-exposure and lab-
test sessions for that category (1.38%); and, 2) Median RTs less than 200 ms for
individual Composite and Matching Task categories and median RTs less than 1000 ms
for individual Learning Exemplars categories (1.67%).

Intraclass Correlations. We computed intraclass correlation coefficients (ICCs)
on a within-task basis to assess the consistency of individual differences in task
performance across categories. [CCs indicate the proportion of the total variability in the
data due to consistent differences among people. They are simultaneously a measure of
between-subjects variability and within-subjects similarity (for reviews, see, e.g., Shrout
& Fleiss, 1979; Strube & Newman, 2007). Here, ICCs assessed the proportion of the total
variability in the data due to differences among subjects that are stable across categories.

We computed two different types of ICCs because we think that a case could be
made for each. Because we did not equate categories on task difficulty, we calculated the
consistency of individual differences (Shrout and Fleiss, 1979). Like a Pearson
correlation, it rewards consistency in the relative ranks of a given participant across
categories and does not penalize for overall shifts in category means due to variations in
task difficulty or other factors that can produce absolute shifts in a participant’s scores
across categories. Because categories were made of novel objects, one could argue that
the specific categories we used are a random sample from a hypothetical universe of
categories. This perspective would favor a second ICC model (categories as random
effects) and so we computed a measure of agreement (Shrout and Fleiss, 1979). Within
each ICC type, we computed two measures. The first (denoted ICC, below) indicates the
proportion of variance in performance on one category that is due to individual
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differences and is analogous to a test-retest correlation coefficient. The second (denoted
ICC;s below) applied the Spearman-Brown formula to the ICC; values and assesses the
proportion of variance in composite scores averaged across the 5 categories that is due to
individual differences.

To estimate ICCs including participants with incomplete data and compute
confidence intervals, we adopted a Bayesian analytic approach previously implemented
by Tomarken, Han, and Corbett (2015) (cf. Spielhalter, 2001; Turner, Omar, &
Thompson, 2001) using SAS PROC MCMC, Version 9.4 of the SAS System for
Windows™ (Copyright © 2002-2014 SAS Institute Inc). We computed medians of the
posterior distribution as our ICC estimates and formed 95% Bayesian Highest Posterior
Density (HPD) intervals that represent the narrowest intervals with 95% probability (e.g.,
Christensen, Johnson, Brascum, & Hanson, 2011).

Confirmatory Factor Analyses. Confirmatory factor analyses were conducted
using EQS Version 6.3 (Bentler, 2008). The top panel of Figure 4 depicts the base model
that was elaborated in subsequent steps. This model specifies that each of the 15 tasks
(Matching (MA), Composite (CO), and Learning Exemplars (LE), for each of the five
categories) loads on the factor denoting individual differences in performance on the
target category. Rectangles denote observed measures (e.g., MA1) and ovals denote
latent variables or, equivalently, factors (e.g., Catl). The directed arrows from factors to
observed measures specifies that a proportion of the variance of each observed task
measure is influenced by the latent construct indicating individual differences in ability
on a given category. Each directed arrow is associated with a factor-loading coefficient
denoting the regression of the observed measure on the latent factor. The double-headed
arrows among the category factors specify covariances among the factors. The small
circles shown at the bottom of the model (e.g., em0) are residual (i.e., error) terms that
denote a combination of reliable influences on observed scores that is specific to that
indicator and random measurement error.
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Figure 4. Confirmatory Factor Analysis models for measurement structure of five latent
category factors (represented as ovals) each assessed with three measures (indicators) of
visual object perception and recognition (represented as rectangles). Both models specify
that each of the three tasks assessing performance with a given category loads on the
appropriate lower-order category factor. The directed arrows from the factors to each
observed measure reflects the specification that a proportion of the variance of each
observed task measure (e.g., MA1) is due to the latent construct (e.g., Catl) of individual
differences in ability with a given category. Task-specific correlated errors are not shown
for the sake of brevity. Top panel: 1¥-order Correlated Factor Model. Bottom panel: 2™-
order Factor Model specifying that covariances among category factors are entirely
accounted for by one over-arching Object Recognition Ability (o). The R terms (e.g.,
R_C0) in the 2™ order model denote the component of the variance of each category
factor that is not due to o.
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We developed a systematic sequence of models to test both substantive and
methodological questions of interest. First, we tested Model 1, depicted in the top panel
of Figure 4, that specifies five correlated lower-order category factors. Model 2 assessed
whether task-specific influences on the correlations among the observed indicators should
be added to the specifications of Model 1. Such influences, often termed “method
effects”, could partially account for the inter-correlations among measures of a given task
(e.g., MA) assessed across different categories. If so, such effects should be specified and
estimated to obtain a better fitting model and less biased estimates of the covariances and
correlations among category factors. Although, in theory, the optimal approach would be
to specify three method factors, CFA models with a full array of method factors
commonly run into failures to converge and inadmissible estimates due to empirical
under-identification and other factors (see, e.g., Kenny & Kashy, 1992; Lance, Noble, &
Scullen, 2002). We experienced such difficulties when trying to fit models specifying
three method factors, one each for the LME, CO, and MA tasks. Instead we estimated
task-specific components of variance by specifying covariances among the residual terms
(e.g., em0-em4) for a given task. We specified correlated errors among each of the five
LME, CO, and MA performance measures, respectively. This correlated uniqueness (CU)
(e.g., Lance et al., 2002) approach to modeling method effects is commonly used in
confirmatory factor analyses and structural equation modeling (SEM) (Brown, 2015). In
terms of our sequence of models, we adopted the decision rule that, if, as we expected,
the correlated uniqueness model (Model 2) fit better than Model 1 this feature would be
included in all subsequent models that we tested. For clarity, Figure 4 omits correlated
error terms.

Model 3 built on the best-fitting model from the previous stage and constrained
the factor loadings of the three tasks to be equal (i.e., invariant) across the five categories.
These constraints were imposed on a within-task cross-category basis (e.g., each of the
five MA factor loadings were constrained to be equal). This specification did not reflect a
strong prediction of invariance because categories were not equated on task difficulty and
other psychometric features. However, this model was of interest because it provided a
rather rigorous test of the consistency of individual differences across categories. It
additionally allowed us to assess whether the category for which participants received no
training (category 0) had a different psychometric structure than the trained categories (1-
4).

Model 4 directly tested our prediction that performance across all categories is
driven by a higher-order construct that reflects a general visual ability with objects. As
shown in the bottom panel of Figure 4, this is a second-order factor model specifying that

3 There are alternatives to the CU approach, the most viable of which at the present time
is the correlated traits, correlated methods minus 1, or CT-C(M-1)) approach (Eid, 2000;
Eid, Lischetzke, Nussback, & Trierweiler, 2003) characterized by specification of one
less method factor than the full array possible (e.g., 2 task factors in the present context).
Although these two approaches have relative advantages and disadvantages (see, e.g., Eid
et al., 2003), our results and conclusions were unchanged when we applied the most
conceptually meaningful version of a CT-C(M-1) model instead of the CU model. A
summary of these analyses is available upon request. This issue is also discussed in the
Supplemental Section.
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an over-arching Object Recognition Ability (0) dimension of individual differences
influences performance on the lower-order factors. The residual terms (e.g., R_CO0) that
also influence the lower-order factors represent category-specific influences on individual
differences in performance. Model 4 specifies that the higher-order factor is the only
determinant of the correlations among the lower-order category factors. It can be shown
that this model is a restricted version of the correlated factors model shown in the top
panel of Figure 1, such that the relative fit of the two models can be directly compared
(see details below). A popular alternative to the second-order factor model is a bifactor
model (e.g., Chen, West, & Sousa, 2006; Reise, 2012). The online supplemental
discusses bifactor modeling in the present context and why we have chosen to focus on
the second-order factor model.

After modeling the internal structure of the performance on the five categories,
we addressed the issue of relations to external variables. In model 5, using the best-fitting
model from the previous sequence of models 1-4, we examined the correlation between
individual differences in performance on the manipulated categories and individual
differences in the ability to recognize familiar object categories as assessed by the VET
and CFMT. We computed two sets of correlations. The first set is between the observed
measures and the latent factor or factors of interest. Using estimated reliabilities, the
second set corrected the individual difference measures for measurement error using a
latent variable approach in which: 1) Each measure constituted a factor with a single
indicator; and, 2) The variances of error terms were fixed at values that yielded the
appropriate true score variance estimate for the factor. Random measurement error can
attenuate correlations and such reliability corrections are consistent with our emphasis on
latent variables.

To estimate all models, we used the robust two-stage estimator (TS) developed by
Savalei, Bentler, and colleagues (Savalei & Bentler, 2009; Savalei & Falk, 2014; see also
Yuan & Lu, 2008) because of two features of our data: 1) The presence of some missing
data; and 2) Non-normality. For the 246 participants included in analyses (i.e., those who
completed at least one task for at least one category), 14.94% of the maximal possible
number of data points across tasks and categories were missing. In addition, although the
most commonly used SEM estimators assume multivariate normality, the set of 15 tasks
demonstrated deviations from multivariate normality according to the Doornik-Hansen
(2008) test, x*(30) = 412.42, p < .001 and to Yuan, Lambert, and Fouladi’s (2004)
extension to incomplete data structures of Mardia’s (1970) test of multivariate kurtosis, z

=21.78, p <.001. On univariate assessments, the Shapiro-Francia tests of non-normality
(Shapiro & Francia, 1972; Royston, 1983) and assessments of skew and kurtosis

(D’ Agostino, Belanger, & D’ Agostino, 1990) indicated significant deviations from
normality for all five of the Matching tasks, three of the five Learning Exemplar tasks,

and one Composite task (see Table 1). Violations of normality were not extreme but of
sufficient magnitude to warrant a robust estimator.

In the first stage of the robust TS algorithm, maximum likelihood (ML) estimates
of the vector of means and the covariance matrix of the observed data (including
observations with incomplete data) are obtained from a saturated (i.e., unrestricted)
model. In the second stage, the specified model is estimated with the covariance matrix
generated in the first stage used in place of the observed sample covariance matrix
typically used for maximum likelihood (ML) estimation of CFA models. These steps
allow for the inclusion of observations with incomplete data. The robust TS estimator
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uses two additional mechanisms to correct for non-normality: (1) A sandwich-type
covariance matrix (Yuan & Lu, 2008) that yields standard errors for parameter estimates
that are adjusted for non-normality and for the fact that a two-stage estimation procedure
is used; and, (2) The Satorra-Bentler (SB; Satorra & Bentler, 1994) scaled chi-square
correction to adjust the overall chi-square test of model fit and fit indices. This correction
is used by a variety of SEM estimation methods when data are non-normal and is
specifically designed to adjust for non-normal kurtosis. In accord with the statistical
theory underlying structural equation modeling (e.g., Cudeck, 1989), all analyses were
performed on the covariance matrix estimated in the first-stage and not the correlation
matrix. To aid interpretation, however, at several points below we report standardized
results (e.g., correlations among factors) calculated either directly (when models allowed
fixing factor variances at 1) or from re-scaling of the non-standardized estimates yielded
by the TS estimator.”

We assessed both the absolute and relative fit of models using several measures.
In conventional null hypothesis testing, the hypothesis tested is typically not the
researcher’s substantive hypothesis (which is typically aligned with the alternative
hypothesis). In contrast, in CFA and structural equation modeling (SEM) in general, the
model being directly tested often reflects the researcher’s substantive hypothesis. Thus,
non-significant results often favor the researcher’s hypothesis. In terms of absolute fit,
although we report the chi-square test of exact fit, it has well-known limitations: 1) There
is a strong influence of sample size such that models with only rather trivial
misspecifications can be rejected (e.g., Tomarken & Waller, 2003). Although our sample
size was on the small side for a SEM analysis, such influence might still have been
operative to some extent; 2) It is a measure of model “mis-fit” that favors binary
reject/no-reject decisions rather than an evaluation of degree of fit on a more continuous
metric; and, 3) It imposes a criterion — that a model fits perfectly — that may be too
stringent considering that SEM models have numerous facets and that all models are, at
best, approximations (e.g., MacCallum, Browne, & Sugawara, 1996). For this reason,
SEM analysts almost always rely on other indices to evaluate model fit. We used the root
mean-squared error of approximation (RMSEA; Steiger & Lind, 1980), standardized root
mean squared residual (SRMR; Bentler, 1995), and Comparative Fit Index (CFI; Bentler,
1990) to assess model fit. The SRMR is a measure of absolute fit that can be interpreted
as the average discrepancy between the correlations among the observed variables and
the correlations predicted by the model. Lower values indicate better fit. The RMSEA is
an estimate of a parsimony-corrected fit index because it assesses the degree of
discrepancy between the observed and model-implied covariances while also penalizing
for model complexity (e.g., for equivalent discrepancy it rewards the more parsimonious
model that estimates fewer parameters and has more degrees of freedom). Smaller values
indicate better fit. The RMSEA is typically treated as the degree to which a model fits
approximately in the population, with values < .06 typically taken to indicate close fit
(e.g., Hu & Bentler, 1998, 1999). Confidence intervals can also be formed around the
estimated RMSEA value in a given sample. We computed the RMSEA estimate and

* See the online supplemental material for further discussion of the TS robust approach
and our rationale for using it instead of a robust full-information maximum likelihood
(FIML) approach or other robust alternatives for incomplete, non-normal data.
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confidence bounds for non-normal data that was developed by Li and Bentler (2006; see
Brosseau-Liard, Savalei, & Li, 2012) and that is an option in EQS. The CFI is an index of
the incremental or comparative fit of the target model relative to a baseline model of
independence in which all the covariances among the observed indicators are fixed at 0.
CFI values vary from 0 to 1, with values closer to 1 indicating better fit. Given that the
comparison is to the independence model, the CFI often tends to indicate better fit than
the other indices. Based on simulations, Hu and Bentler (1998, 1999) recommend the
following criteria for adequate fit on these measures: SMSR < .08, RMSEA < .06, and
CFI > .95. The RMSEA and CFI were computed using the Satorra-Bentler scaled chi-
square values.

A primary focus was the comparison of alternative models, most of which were
nested versions of one another. Model A is nested in model B if it is a restricted version
of model B; that is, if it is identical to model B except that certain parameters that are
freely estimated in B are restricted in A by being fixed at specific values (often 0) or
constrained to be equal to other parameters or combinations of parameters. Nested

models were compared using the scaled y” difference test (Satorra & Bentler, 2001) that

is appropriate when the Satorra-Bentler (S-B) correction for non-normality is used. We
used the version of the scaled difference test developed by Satorra and Bentler (2001)
that computes a scaling factor for the test as

. [dfMo xcy, = dfy, xcy, -'
v df, =,

3

where df,, and df,, are the degrees of freedom for the more and less restrictive models,
respectively, and ¢,, and c,, are the scaling factors for the two models (equal to the ratio

of the uncorrected y” value for the test of exact fit to the S-B corrected value for each

model) (e.g., Bryant & Satorra, 2012). In turn, the scaled difference test is computed as
the difference between the uncorrected tests of exact fit divided by cqir, with degrees of
freedom equal to the difference in degrees of freedom between the two models. We used
an Excel macro written by Bryant and Satorra (2013) to conduct the S-B difference tests.’
If restrictions imposed by Model A do not impair overall model fit relative to Model B,
the result would be a non-significant y* test. Thus, in the context of nested tests, non-
significant results often serve to corroborate the researcher’s hypotheses.

In addition, we report values of the Akaike Information Criterion (AIC; Akaike,
1973) and the Bayesian Information Criterion (BIC; Raftery, 1995; Schwarz, 1978) to
convey the relative fit of both nested and non-nested models. Both indices penalize for
model complexity, operationalized as the number of free parameters estimated by a given
model. To compute these indices. we used what is probably the most common approach
in SEM analyses, adding to the chi-square test of overall fit a penalty factor that is a

> Satorra and Bentler (2010) proposed an updated scaled difference chi-square test
primarily because the original test can sometimes produce a negative correction factor.
The original test never yielded negative correction factors for our data and we used the
original test primarily because it is more widely used and easier to perform than the
updated version.
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function of the number of free parameters estimated by a model (denoted below as k).
We computed these indices using the following formulae:

AIC = y2, +2k
BIC = yx;, + kIn(N)

We also present a small-sample corrected version of the BIC (e.g., Enders & Tofigi,
2008), computed as,

SBIC=x§B+k1n(N+2)

Lower values of all three indices indicate better fit. The information indices were
computed using the Satorra-Bentler scaled chi-square values.

A major focus of our analyses was not simply evaluation of model fit but
examining and interpreting parameter estimates of interest (e.g., correlations among
factors). Much of the discussion of results below emphasizes model fit not only because
it is important in its own right but also because good fit can be considered a necessary
condition for examination and evaluation of parameter estimates.

Results

Univariate Descriptive Statistics

Reliability (Cronbach’s alpha), mean performance measures (mean accuracy or
d’) and tests of normality (skewness, kurtosis, Shapiro-Francia normality test) for the test
tasks and familiar object recognition measures (CFMT and VET) are shown in Tables 1
and 2, respectively. All tasks demonstrated good internal consistency reliability and 10 of
the 15 tasks demonstrated statistically significant violations of normality. It is also of
interest that average performance on the Learning Exemplar task ranged from .48 to .68
depending on the category. Coupled with the fact that per-subject proportions were
calculated across 48 trials, these values indicate that ceiling and floor effects were not
significant factors and that transformations of proportions (e.g., computing odds or log
odds) were not necessary.
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Table 1. Reliability (Cronbach’s o), mean performance measures, and tests of normality
for each test task and category (see Figure 2 for number-category mappings).

Mean (SD) accuracy Shapiro-Francia
Category N Cronbach’s o (% correct or d*) Skewness  Kurtosis  Normality Test (V)
Learning Exemplars
0 225 84 65.16 (15.04) -0.44 3.37 2.59"
1 199 78 49.82 (14.02) 0.17 2.81 1.46
2 208 89 68.35 (17.69) -0.58" 3.16 4.45™
3 201 74 48.05 (12.68) 0.62"" 3.58 3.627
4 212 73 50.47 (12.36) 0.14 2.68 0.81
Matching Task
0 225 95 1.62 (.62) -1.077 6.497 10.827
1 203 92 1.04 (.50) -0.79"" 57977 6.22""
2 212 96 1.83 (.71) -1.26™ 671" 12.107
3 210 91 1.03 (.42) -0.50 4.72 486"
4 218 88 .82 (.40) -0.55" 3.837 3.57"
Composite Task
0 225 91 1.72 (.92) -0.29 3.38 1.83
1 208 95 1.25 (.71) -0.10 3.34° 0.87
2 213 97 1.69 (.97) 0.17 3.23 1.11
3 208 95 1.23 (.73) -0.29 3.03 1.99
4 215 95 1.12 (.69) -0.42" 3.56" 230"

Note. Accuracy measures are percent correct for Learning Exemplars and d’ for Matching and Composite
tasks. Under normality, the expected values of measures of skewness and kurtosis are 0 and 3, respectively.
Under normality, when scores are sampled from a normal distribution, the median value of the Shapiro-
Francia V' measure equals 1 (Royston, 1991).

"p<.05 " p<.01,  p<.00l.

Table 2. Reliability (Cronbach’s o), mean performance measures, and tests of normality
for the CEMT and VET sub-scales.

Mean (SD) Accuracy Shapiro-Francia
N Cronbach’s a (% correct) Skewness Kurtosis  Normality Test

CFMT (faces) 245 90 63.27 (14.23) -0.22 207 3.26°

VET Subscales

Birds 243 83 68.98 (13.44) 0527 3.44 3.61°
Butterflies 241 80 60.17 (13.71) -0.39" 2.82 2.50"

Cars 243 80 59.60 (14.60) 0.17 3.09 1.11

Houses 243 83 75.90 (13.10) -0.33" 2.63 2.05

Planes 242 77 70.38 (12.02) -0.40 3.35 3397

Note. Under normality, the expected values of measures of skewness and kurtosis are 0 and 3, respectively.
Under normality, when scores are sampled from a normal distribution, the median value of the Shapiro-
Francia V' measure equals 1 (Royston, 1991).

"p<.05 " p<.01,  p<.001.
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Effect of Training

Because we did not equate categories for difficulty, we cannot directly compare
mean performance to test for a training effect (in fact, Table 1 suggests that the non-
exposed category was generally one of the easier categories). However, the composite
task has been used in previous studies to assess training effects, and controls for difficulty
differences across categories as it includes its own baseline, allowing a within-category
measure of whether training had an influence on performance. Specifically, a difference
in performance between congruent and incongruent trials (in either accuracy or RT) is a
common marker of face-like expertise (see Richler & Gauthier, 2014), and has been
observed following individuation training for novel objects like the ones used here (e.g.,
Chua et al., 2015; Wong et al., 2009). Indeed, we based the composite task parameters on
Wong et al. (2009), who found slower response times on incongruent compared to
congruent trials only in participants trained to individuate objects from the tested
category.

To test whether a similar effect of training was observed here on the same
dependent measures as in Wong et al. (2009), we conducted 2 x 2 repeated measures
ANOVAs on sensitivity (d’) and correct RT in the composite task with category
(untrained vs. average of trained categories) and congruency (congruent vs. incongruent)
as factors. The qualitative effects were the same for both RT and d’ (see Figure 5). There
were significant main effects of training (RT: F 219 =9.18 , MSE = 15999.67, p = .003,
np =.04; d’: Fi219=81.59, MSE = .40, p <.001 np = 27) and congruency (RT: F] 219 =
17.26, MSE = 1561.11, p < 001 np =.07;d’: F1219="7.06, MSE = .18, p = .008, np =
.03). More importantly, the interaction between tralnlng and congruency was significant
(RT: F, 219—46 34, MSE =1659.16, p <.001 np A8, d’: Fi2190=8.13, MSE=.16,p =
.005, np =.04), such that there was a 51gn1ﬁcant congruency effect for the trained
categorles (RT: F1 219 =99.60, MSE =978.16, p <.001 np =.31;d’: Fi219=37.20, MSE

=.07, p <.001 np =.15), but not the untrained category (RT: F 29= =2. 85 MSE =
224211, p= 09 np =.01;d’: F1219<.00, MSE = .27, p=.99, np <.00)°.

6 Separate paired-sample ¢-tests for each exposed category revealed a significant
congruency effect in RT for Categories 1-3 (s = 4.97-8.76, ps < .001, Cohen’s d = .48—
.86), but not Category 4 (¢t = .50, p = .61, Cohen’s d = .05). In sensitivity, congruency
effects were significant for categories 1 and 2 (zs > 4, ps <.001, Cohen’s d > .4) and
marginally significant for categories 3 (= 1.84, p = .068, Cohen’s d =.18) and 4 (¢ =
1.97, p = .05, Cohen’s d = .2).
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Figure 5. Mean correct RTs (left) and sensitivity (d’; right) for congruent and
incongruent composite task trials for the non-exposed category and average of exposed
categories. Error bars show 95% confidence intervals for within-subject effects.

We also computed correlations between all categories for each task to determine
whether some amount of experience is necessary for individual differences in ability to be
reflected in performance. As indicated in Table 3, for each of the three tasks, the means
of the correlations between the untrained and trained categories were almost identical to
the average of the correlations within trained categories. Thus, although training
influenced performance, resulting in effects similar to those seen in previous studies (e.g.,
Wong et al., 2009) only for trained categories, it does not influence the expression of
individual differences. We therefore included the untrained category in the ICC and CFA
analyses. As described below, the results of specific CFA analyses also underscore the
similarity between the untrained category and the trained ones.
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Table 3. Correlations (Pearson’s r) between all categories for each task. Correlations
with the untrained category are highlighted in gray. N per cell ranges from 182 to 207.
All correlations are significant at p < .001. (See Figure 2 for number-category

mappings).

Category 0 1 2 3 Mean Mean
untrained trained

Learning Exemplars .50 49

1 43

2 53 .54

3 52 52 .56

4 S0 32 53 42

Matching Task 54 52

1 52

2 53 45

3 .60 .46 .56

4 52 .55 .50 .59

Composite Task .61 .62

1 .64

2 .64 .64

3 .60 .66 .59

4 .60 .61 .61 .59

Note. Correlations were Fisher-transformed before averaging.

Intraclass Correlations

Intraclass correlations and 95% HPD intervals are shown in Table 4. Several
patterns are evident. First, the ICC, values indicate that a significant proportion of the
variance in task performance on any single category was attributable to individual
differences among participants. Across the three tasks, when consistency of performance
was assessed (i.e., category is modeled as a fixed effect), approximately 50-60% of the
total variability in the data was due to individual differences. When category was
modeled as a random effect and agreement assessed, the proportions of variance were
lower, especially for the LE and MA tasks, but by no means trivial. Measurably lower
correlations for the agreement measure would be expected in this case because no attempt
was made to equate categories on difficulty level. Finally, the ICCs values indicating the
reliability of task performance averaged across categories were quite high and either
approached or exceeded the expected range (>.70) for measures of individual differences
in the areas of personality and temperament. This conclusion holds for both measures of
consistency and agreement. These results exemplify the beneficial effects of aggregation
on reliability and consistency (e.g., Rushton et al., 1983).
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Table 4. Intraclass correlations for each measure.

ICC; ICCs
Measure Consistency Agreement Consistency Agreement
.50 34 .83 72
Learning Exemplars  (.44,.55) (.17,.46) (.80, .87) (.52,.82)
49 31 .83 .69
Matching Task (.43,.56) (.15,.43) (.79, .86) (.49,.81)
.62 .55 .89 .86
Composite Task (.56,.68) (.40,.65) (.87, .91) (.78,.90)

Note: 1CC1 estimates both the average correlation in performance among pairs of categories and the
proportion of variance in a given category due to between-person differences. ICCs is the estimated
correlation between the aggregate of scores across the five categories and a hypothetical equivalent
set of aggregate scores. It estimates the proportion of variance in the average score across categories
due to between-person differences. 95% Bayesian highest posterior density (HPD) intervals are
shown for each measure. The category factor is modeled as a fixed effect when consistency is
assessed and as a random effect when agreement is assessed.

Confirmatory Factor Analysis

Fit statistics for the sequence of CFA models are provided in Table 5. As
summarized above, we relied more on other indices than the chi-square test of exact fit.
Model 1 specified five correlated category factors, with the relevant LE, MA, and CO
task performance measures serving as the observed indicators for each factor. As
anticipated, the overall fit of this model was unsatisfactory because it omitted parameters
reflecting the correlations within a task (e.g., MA) across categories (see Table 5). For
example, the RMSEA was clearly above the range typically recommended for evaluation
of fit as adequate. Model 1 also was associated with several inadmissible estimates (e.g.,
covariances among factors that implied correlations greater than 1) that may also indicate
model mis-specification, although other factors (e.g., the generally high correlations
among variables) may also have contributed.
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Table 5. Fit statistics for confirmatory factor analyses.

Mode | Description df 5 RMSEA
1 Robust x* | (90% CI) | CFI | SRMR | AIC | BIC | SABIC
Correlated Categories 218.17, 116
1 (No Task Effects) 80 <001 | (098..134) 977 | .078 |298.17 | 438.38 | 311.59
Model 1 +Errors 73.95, .050
2 Across Tasks 50 =02 (022, 073) 996 | .030 |213.95 | 459.32 | 23743
. 11\40d§1 2t+LW1$1n—task . 89.56, 054
frvariant -oadings on p=.005 | (.030,.074) | .995 | .069 |213.56 | 430.89 | 234.35
Category Factors ’
4 | Model 3+Second-order | 3 | 9201, 049 1 995 | 048 |206.01 | 405.82 | 225.22
Category Factor p=.01 (.025,.070)
Model 4 + CFMT and 216.34 .050
5 147 967 | .064 | 384.34 | 678.79 | 412.51
VET measures P <.001 (.035,.064)

Note: Robust x> =Satorra-Bentler robust chi-square test of overall fit generated by the Savalei-Bentler robust two-
stage estimator. RMSEA = root mean squared error of approximation. CFI = Comparative Fit Index. SRMR =
standardized root mean squared residual. AIC = Akaike Information Criterion. BIC = Bayesian Information
Criterion. SABIC = Small-sample corrected Bayesian Information Criterion. Lower scores on the RMSEA,

SRMR,

AIC, BIC, and SABIC and higher scores on the CFI indicate better fit. Hu and Bentler (1998, 1999)

recommended the following criteria for adequate fit on the first three measures: CFI > .95, RMSEA <
.06, and SRMR < .08. Because Model 5 includes measures not included in Models 1-4, its values for the
AIC, BIC, and SABIC are not directly comparable to those of Models 1-4.

As expected, when correlated errors among the observable task indicators were
added in Model 2, the fit was notably improved (nested » %(30) = 108.61, p <.0001). The
values of the RMSEA, CFI, and SMMR all indicate that this model met conventional
criteria for adequate fit. Although the AIC and SABIC values for Model 2 were notably
lower than the corresponding values for Model 1, somewhat surprisingly the model 2 BIC
was higher. This discrepancy is likely due to the fact that the BIC more strongly favors
parsimony than the other indices. Nevertheless, the clear weight of the evidence and the
plausibility of task-specific shared variance favors Model 2 relative to Model 1.

Using Model 2, we also assessed whether the correlations involving the factor for
the untrained category (denoted category 0) were different from the correlations
involving only the other four categories. We imposed the linear constraint that the
average of the four correlations involving category 0 was equal to the average of the six
correlations not involving category 0. That this constraint did not produce a significant
impairment in fit relative to Model 2 (S-B nested y*(1) =1.51, p =.22) indicates that

correlations involving the untrained category were not unique. Similarly there were no
differences when the same linear constraint was imposed on factor covariances rather

than correlations (S-B nested x(1) = 0.80, p =.37).
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We also assessed whether correlations within the two relatively visually similar
Ziggerin (categories 0 and 3) and the two Greeble (categories 1 and 2) stimulus types
were higher than the between-type correlations. We conducted four sets of analyses, each
of which compared within-type to across-type correlations. Specifically we tested
whether: (1) ros=ro1=ro2; (2) ro3=r13=123; (3) 112=T01=T13; and, (4) r12=rox=r>3. In all four
cases, Satorra-Bentler nested chi-square tests indicated that these equality constraints
induced no significant impairment in model fit, or even trends, relative to Model 2
(x*(2)=3.03,p=22; x*(2)=1.69, p=.44; »*(2)=2.58,p=28; x*(2)=1.75, p=.42,
respectively). Thus, correlations within a stimulus type were not different from
correlations across stimulus types.

Model 3 built upon Model 2 but imposed the restriction of equal factor loadings
across categories (e.g., the loadings of MA1-MAS on their respective category factors
were constrained equal). This model also fit adequately (see Table 5). Although the
value of the SRMR clearly increased in Model 3 relative to Model 2, it still falls within
the conventional range of good fit on this measure. The other 5 indices all adjust for
complexity to some degree (i.e., rewarding more parsimonious models) and indicate
much smaller differences between the two models (RMSEA, CFI) or favor Model 3
(AIC, BIC, SABIC). A nested chi-square test indicated that the restrictions imposed by
Model 3 did not significantly impair fit relative to Model 2, although caution is necessary
because the significance level was very close to the rejection threshold (nested y*(8) =
15.36, p =.052). On balance, we think that these results indicate that the restrictions
imposed by Model 3 fit well enough to use it as the starting point for the next steps in the
modeling sequence. However, we report below the fit of separate higher-order factor
models that include and do not include the restrictions on the loadings. Overall the Model
3 results indicate that the factor structure of the three tasks could be considered
reasonably invariant across categories. Such invariance is another indication that that the
untrained category (0) did not have a unique structure relative to the other categories.

A notable feature of Model 3 (also characteristic of Model 2) is the magnitude of
the association among the category factors. Table 6 shows the correlations among the
factors generated by the standardized solution and 95% bias-corrected bootstrap
confidence intervals (Williams & MacKinnon, 2008) around these values. As indicated,
the correlations among the category factors were quite high, ranging from .82 to .96
(mean r = .895), with even the lower bounds of confidence intervals at very high values
(all were greater than .73).

Using Model 3 as a starting point, Model 4 specified the higher-order factor (o) to
account for the covariances and correlations among the category factors. This model did
not significantly impair fit compared to Model 3 (nested x*(5) = 2.11, p = .83) and fit well
in an absolute sense (see Table 5). Indeed, as indicated by Table 5, the Model 4 values of
the fit indices that most explicitly penalize for model complexity were the lowest
(RMSEA, AIC, BIC, and SABIC) or essentially tied for the lowest (CFI) among the four
models tested. This provides support for our hypothesis that performance across novel
object categories can be accounted for by a single overarching Object Recognition
Ability factor.
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Table 6 Correlations among the Category Factors (Model 3)

Category 0 1 2 3 4
0 | -
1 .82
(.74,89) | --------
2 .87 .90
(.78,.96) | (.81,98) | ---—----
3 91 .96 93
(.81,.98) | (.88,1.00) | (.85,1.00) | ---------
4 92 .84 .92 91
(.84,.99) | (.74,.92) | (.85,1.00) | (.80,.99) | ---------

Note: All ps <.001. 95% bias-corrected bootstrap confidence intervals
are shown in parentheses. When an upper bound slightly exceeded 1.00, it was fixed at
1.00.

Model 4 is shown in Figure 6 with standardized parameter estimates. The lower-
order loadings of the observed measures on factors are generally high, with values for
MA, CO and LE ranging, respectively from .68 to .80, .73 to .80, and .47 to .56.” The
most notable feature of Model 4 is that the standardized loadings from the higher-order
factor (o) to lower-order category factors are quite high (.910—-.995; all ps highly
significant based on bootstrap assessments), suggesting that the higher-order o factor
accounts for on average 89% of the variance in lower-order category factors (% variance
= .83, .85,.91,.99, and .89 for categories 0-4). Because of the borderline acceptability of
the model imposing invariant factor loadings, we also specified a higher-order factor
model in which the lower-order loadings (i.e., of observed indicators on category factors)
were not constrained to be equal and compared its fit to model 2 rather than model 3.
This model also fit well in an absolute sense (e.g., Satorra-Bentler x*(55) = 81.10,
RMSEA=.050), with no impairment in fit relative to model 2 (nested x*(5) = 7.16, p
=.21) and almost identical factor loadings proportions of variance accounted for by the
higher-order factor as Model 4.

7 Model 4 specifies invariance of the unstandardized lower-order factor loadings per
measure. This restriction does not imply complete invariance of standardized loadings.
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Figure 6. Higher-order factor model standardized solution (both factors and observed
measures standardized). For the sake of clarity, correlated errors among within-task
errors are not shown but were specified as part of the model. Factor loadings for a given
task are not invariant because invariance was imposed on the non-standardized solution
based on covariances instead of correlations.

Correlations Between o and Familiar Object Recognition

Results summarized so far indicate that a single higher-order factor, o, accounts
for performance across novel object categories. To test whether o also predicts
recognition performance on familiar object categories, we specified a fifth model that
examined correlations between o and each familiar object category (faces measured with
the CFMT; birds, butterflies, houses, cars, and planes measured with the VET). Table 7
presents correlations when the familiar object measures were corrected for unreliability
(using the values of coefficient alpha summarized in Table 2), and uncorrected values.
We reliability-corrected the latter by specifying each individual measure as a latent
variable and fixing the error variance and factor loading at appropriate values such that
the proportion of variance of the observed measure accounted for by the latent factor
equaled the reliability of the variable. We then allowed these latent variables to be freely
correlated with each other and, most importantly, with 0. Other model specifications were
identical to that of Model 4. As indicated by Table 5, this model fit well. Because Model
5 introduces several additional variables not included in Models 1-4, its fit indices should
not be directly compared to those of the other models. As shown in Table 7, all corrected
correlations were statistically significant, with o more highly correlated with performance
on birds, butterflies, houses, and planes than faces and cars. The un-corrected
correlations shown in the right-hand columns are slightly attenuated but still statistically
significant.
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Table 7. Correlations between o and each familiar object category.

Predictor Reliabilty

Corrected Un-corrected

2 2

r 14 r r
Faces 28 .08 .26 .07
Birds 43 18 .39 .15
Butterflies .60 .36 .54 .29
Cars 27 .07 .24 .06
Houses 47 22 42 17
Planes 53 28 .46 21

Note: All ps <.001

Study 2

In Study 1 we found evidence for o, a higher order factor supporting object
recognition performance across different tasks and categories. In Study 2, as an initial
effort to establish the divergent validity of o, we explore the extent to which it is related
to a battery of cognitive and perceptual constructs, as well as measures of personality.
The primary goal is to quantify how much of the individual differences captured in our
tasks remain after controlling for such factors. To this end, we measured performance on
all three tasks with two of the object categories from Study 1. Although we use a smaller
sample in Study 2, we expected to replicate results from Study 1 with moderate to strong
relations between categories and object recognition tasks but, at the same time, evidence
for discriminant validity.

Prior work with LE tasks with both familiar and novel objects found that
performance for each object recognition task was correlated with 1Q (r ~ .1-.3) but that
virtually none of the shared variance among different categories was explained by 1Q
(Richler et al., 2017). Here, we also assess 1Q, using tests associated with fluid
intelligence (gF) and targeting the ability to solve new problems (Engle, Tuholski,
Laughlin & Conway, 1999). We expect that despite moderate correlations with some
individual object recognition tasks, most of the shared variance between object
recognition tasks will not be accounted for by 1Q.

Aside from 1Q, we selected a variety of tasks from prior individual differences
research that could be plausibly expected to account for some of the variance in o (note
that our goal was not to decompose o into its constituent parts). We included tasks that
tap into different aspects of executive function (Miyake & Friedman, 2012): two Stroop
tasks and a shifting task that requires switching between mental sets. We also included a
measure of visual short-term memory capacity and a measure of local/global perceptual
style. Finally, because our approach requires completion of a large number of tasks (over
many sessions in Study 1), we were concerned that more conscientious subjects may have
performed better, accounting for some of the shared variance across tasks and categories
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in Study 1. In Study 2 we gave subjects a personality inventory that includes a measure of
conscientiousness. Aside from this self-report measure, the contribution of any aspect of
motivation or personality to our object recognition tasks would also be evidenced by
strong correlations between object recognition tasks and any of the other performance
measures mentioned above.

Methods
Participants

We analyze data for fifty-four participants (13 male, 41 female, 0 not disclosed,;
mean age = 20.4 years; 50 right-handed). Sixty-six Vanderbilt University Community
members were originally recruited (15 male, 51 female, 0 not disclosed; mean age = 20.5
years; 61 right-handed). Four participants only completed the first session and were thus
excluded. Additionally, data from 5 participants were excluded because of median RTs
less than 200 ms for Composite or Matching Tasks and/or median RTs less than 1000 ms
for individual Learning Exemplars categories. Lastly, all data from 3 additional
participants were excluded because of too many (>57 out of 144 trials) timed-out trials on
the Composite task (on which trials timed out after 3 seconds). Thus, data from 12 total
participants were excluded. Power calculations for Pearson correlations indicated that
with n=54 we would have 80% power to detect a correlation of .37 or higher and 70%
power to detect a correlation of .33 or higher. Note that our primary concern was not so
much whether there was any correlation between our object recognition measures and
individual difference measures but whether there was a sufficiently large correlation to
warrant significant concern that the strong correlations between categories were largely
due to associations with individual difference measures.

Of these remaining 54 participants, Fluid 1Q data for 3 participants, Stroop data
for 1 participant and VSTM data for 1 participant were missing due to computer error,
but the rest of their data were analyzed. Finally, due to experimenter error, Stroop data
from 4 additional participants were missing after the first session. Thus, these participants
completed the Stroop task again at the beginning of the second session.

Test Sessions and Tasks

Participants completed all tasks in two 1.5-hour sessions occurring a maximum of
seven days apart and were compensated a total of $45. Because the results of Study 1
suggested that measurement of o was not strongly influenced by whether participants
received experience in the Space Invaders Game or not, we did not include a training
phase in Study 2. In the first session, participants completed the Stroop tasks, the IPIP,
Learning Exemplars-0, Composite-0, Matching Task-0, L-EFT and Number/Letter
Shifting Task. In the second session, participants completed the Fluid 1Q tasks, the
Learning Exemplars-2, Composite-2, Matching-2 and VSTM tasks. Participants
completed all tasks in the same order and were allowed to take a break between each
task.

Learning Exemplars Task. This task was identical to that used in Study 1. Here,
participants completed the task for categories 0 and 2.

Composite Task. Participants completed this task as in Study 1, for categories 0
and 2, with the following modifications. Because of the high reliability of this task in
Study 1, we shortened the task by using a random selection of only half of the trials (144
instead of 288), with the constraints of keeping the number of trials of each condition
type equal (same/different, top/bottom, congruent/incongruent).
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Matching Task. Participants completed this task as in Study 1, for categories 0
and 2, with two modifications. Because reliability of the previous matching tasks was
high, to shorten the task we randomly selected half of the original 360 trials to include in
this task. Study objects were all presented for 300 ms (instead of both 150 ms and 300 ms
in Study 1).

Stroop. In the first of two blocks, participants reported the color of a word and the
word was presented in either a congruent or incongruent color. In a second block,
participants reported the quantity of a group of numbers while the numbers themselves
were either congruent or incongruent with the quantity (e.g., “4444” is congruent and
“33” is incongruent). In each block, trials began with a 500 ms fixation cross followed by
a 250 ms inter-stimuli interval and then the stimuli (either words or numbers) presented
until a response was made. The Stroop task taps into individual’s selective attention and
cognitive flexibility. We calculated a Stroop interference index using the average
response time on all correct congruent trials minus that on all correct incongruent trials.

Number/Letter Shifting. We modified the shifting task from Friedman et al.
(2008). Here, we only used the number-letter shifting version of the task (adapted from
Rogers and Monsell, 1995). Participants first saw a square appearing above or below a
horizontal midline dividing the screen in half for 150 ms. Then a number-letter (5G) or
letter-number (A4) pair appeared within the square. When the pair was in the square
above the line, participants indicated whether the number was odd or even (2, 4, 6, and 8
for even; 3, 5, 7, and 9 for odd) and when the pair was in the square below the line,
participants indicated whether the letter was a consonant or a vowel (G, K, M, and R for
consonant; A, E, I, and U for vowel). Participants were instructed to be “as accurate and
fast as possible; accuracy is more important.” Two 24-trial practice blocks and 6 warm-
up trials at the beginning of each block were not analyzed. Trial order was randomized
but constrained such that no more than four switch trials could occur in a row
(randomization occurred once and then every subject completed trials in this same
randomized order). To prevent item-specific negative priming, trial order was also
constrained so that the stimulus on a switch trial was never the same as that on the
previous trial. To index shifting ability, we calculated the “switch-cost” (Friedman et al.,
2008), which is the difference between the mean reaction times on correct trials in which
no switch occurred and mean reaction times on correct trials in which a switch occurred.
Individual trials (3.4%) were excluded because reaction times were less than 200 ms or
more than 5000 ms.

Leuven Embedded Figures Test (L-EFT). In the L-EFT, participants have to find a
target shape embedded within a larger figure. Participants were shown the target shape
and three figures simultaneously and chose which of the three figures contained the target
shape. Participants could make a response via button press at any point, but after three
seconds, the target shape and three options disappeared. There were two practice trials
followed by 64 experimental trials. The L-EFT stimuli were developed specifically to
vary in perceptual grouping features like closure, symmetry and complexity so that trial
difficulties varied (de-Wit et al., 2017). The test is considered an index of perceptual style
(local information processing). We indexed performance using response times for correct
answers.

Fluid Intelligence (F1Q). Following several previous studies (e.g., Redick et al.,
2013; Hambrick et al., 2007; Hambrick et al., 2008. Van Gulick et al., 2016), we included
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three different tasks known to load highly on fluid intelligence (gF) and targeting the
ability to solve new problems (Engle, Tuholski, Laughlin & Conway, 1999). There were
specific time limits for each block, but no time limits for a response on each trial and
within each block, trials were ordered from easiest to most difficult with practice trials
preceding every block. In the first task, participants completed as many of 18 trials from
the Raven’s Advanced Progressive Matrices (RAPM; Raven, Raven, & Court, 1998) as
possible in ten minutes. In the RAPM, a 3 x 3 array of images is presented in which the
bottom-right image has been removed. Participants must choose with of eight options is
the removed piece based off of patterns within the matrix. This task was followed by a
block of Letter Sets (Ekstrom, French, Harman, & Dermen, 1976) in which participants
saw five sets of letter strings with all but one of the letter strings following a specific rule.
Participants had seven minutes to complete as many of the 30 trials as possible. The final
task was number series (Thurstone, 1938), in which each trial presented an array of 5-12
numbers forming some type of pattern. Participants had to choose which of 5 number
options would follow the presented array (e.g. if the array was 1 2 3 4 5, the correct
response was 6). Participants had five minutes to complete as many of the 15 trials as
possible. Fluid intelligence was indexed by the total number of correct responses made
for all three tasks given time constraints.

Visual Short-Term Memory Task. To index visual short-term memory capacity,
we used a change detection task in which participants reported if a change occurred
between two arrays of colored squares (Xu et al., 2017). Each trial began with a 1,000 ms
fixation, followed by an array of colored squared presented for 150 ms. After a 1,000 ms
delay period, a probe square appeared at one of the square locations and participants
responded if this square was the same or a different color from the original square
presented at that location in the array. Here, we only presented arrays of six squares and,
based on the results reported in Xu et al., (2017), we used three blocks of 50 trials each
with 30 seconds rest in between each block. Trials were randomized across participants.
Performance was scored as the total number of correct responses over the 150 trials.

International Personality Item Pool (IPIP). The IPIP (Goldberg, 1999) requires
participants to rate 50 items on a 5-point Likert scale from “Very accurate” to “Very
inaccurate.” Subjects completed a paper-version of the questionnaire and were not given
any time limit. An average score is computed for each Big-Five personality factors
(Extraversion, Agreeableness, Conscientiousness, Emotional Stability, Intellect).

Results

Means and reliability indices for each measure are found in Table 8. The shorter
versions of the MA and CO tasks provided measurements that were as reliable as in
Study 1. Reliability was above .8 in all cases except the Stroop cost (.50, difference
scores often have limited reliability and in the present case it is due to the high correlation
between congruent and incongruent RTs, r =.92), and the short versions of each FIQ task
(.72-.79), although their combined reliability is .87.
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Table 8. Mean and standard deviations, and reliability (Cronbach’s a for Cat 0 and
Cat 2 tasks, Fluid Intelligence and IPIP, average of 10 split-half estimates for other
measures).

N Mean (SD) Reliability

Category 0

Learning Exemplars (% correct) 54 66.40 (16.26) 0.87

Matching Task (d") 54 1.67 (.52) 0.88

Composite Task (d") 54 1.61 (.73) 0.91
Category 2

Learning Exemplars (% correct) 54 66.44 (17.17) 0.91

Matching Task (d") 54 1.57 (.67) 0.96

Composite Task (d') 54 1.59 (.86) 0.95
Stroop Cost (delta RT) 53 80.35 (46.79) 0.50
Shift Cost (delta RT) 54 371.29 (286.79) 091
L-EFT (RT) 54 1935.10 (267.45) 0.87
Fluid Intelligence

Ravens (no. correct) 51 11.78 (2.98) 0.72

Letter Sets (no. correct) 51 17.67 (3.72) 0.79

Number Scores (no. correct) 51 10.27 (2.56) 0.72
Visual STM (% correct) 53 68.62 (10.43) 0.88
[PIP

Conscientiousness 54 35.02 (8.28) 0.89

Extraversion 54 30.43 (8.41) 0.90

Emotional Stability 54 29.70 (8.16) 0.90

Agreeableness 54 41.13 (5.67) 0.87

Intellect 54 36.98 (6.29) 0.83

Correlations among Observed Measures

The first two columns of Table 9 present the zero-order Pearson correlations
between the cognitive and personality measures and performance on each of the two
categories. To form an overall category score for each participant we first standardized
each of the three category tasks (CO, MA, and LE) across participants and computed the
mean of the three standardized scores for each participant. As expected, the correlation
between the Cat0 and Cat2 aggregate scores was very high (r=.71, 95% CI = .54 to .82).

Similar to Study 1, normality assessments indicated that most of the measures had

at least some degree of non-normality. Deviations from univariate or bivariate normality
can yield confidence intervals for Pearson correlations with inaccurate coverage if
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conventional Z or ¢ tests are used (e.g., Beasley, DeShea, Toothaker, Mendoza, Bard, &
Rogers, 2007; Bishara & Hittner, 2017). For this reason, we computed confidence
intervals for correlations using bootstrapping. For each correlation of interest, we used
the observed-imposed (OI) univariate sampling bootstrap (e.g., Beasley et al., 2007; Lee
& Rodgers, 1988) to generate 1000 samples, after which we computed bias-corrected and
accelerated (BCA) confidence intervals (e.g., Efron, 1987; Efron & Tibshirani, 1993, pp.
184-188 and 326-328). Note that 95% confidence intervals that do not include 0 indicate
rejection of the two-tailed null hypothesis that the population correlation equals 0. Such
cases are indicated in bold in Table 9.

The highest and most consistently statistically significant correlations involved
the three FIQ measures (Ravens, Letter Sets, and Number Scores). All three were
positively correlated with category performance, with 5 of the 6 confidence intervals
having lower bounds greater than zero. The proportions of variance (i.e., r*) in the
category measures accounted for by the FIQ measures vary between 5.76% and 21%. The
other significant correlations were those between Category 0 and Category 2 scores and
the shift cost measure and between Category 2 scores and Visual STM performance.
Lower shift costs and better short-term memory performance predicted better category
performance, with proportions of variance in the 11-14% range.

Table 9 also presents four additional indices that address a different question: To
what degree is the correlation between Cat 0 and Cat 2 accounted for by their
associations with the other individual difference measures? First, we computed partial
correlations between Category 0 and Category 2 that adjusted for their common
association with each of the individual difference measures. These correlations assessed
the strength of the association between those components of variance in category
performance that were independent of the cognitive measures (i.e., they are identical to
zero-order correlations between the Cat0 and Cat2 residuals formed from the regression
of each on a given external measure). As the values and BCA confidence intervals
shown in Table 9 indicate, partial correlations were quite high (all are > .62), with the
great majority very close to the zero-order correlation (r = .71) between the two
categories.

We also decomposed the overall correlation between Cat 0 and Cat 2 into two
constituent components: The component that can be accounted for by the associations of
the two categories with a given individual difference measure and the component that is
independent of (i.e., orthogonal to) that measure. The top panel of Figure 7 graphically
portrays the logic of the procedure, with Ravens used as the exemplar external measure.
The directed arrows from Ravens to the two categories denote the effect of this
component of fluid intelligence on individual differences in category performance. The
‘a’ coefficient denotes the effects of Ravens on Cat 0 and the ‘b’ coefficient denotes its
effects on Cat 2. It can be easily shown that for a path model of this sort a and b are
simply the B coefficients that would be yielded by two simple linear regression analyses
regressing Cat 0 on Ravens and Cat 2 on Ravens. DO and D2 depict the residuals from
these two regressions and the double-headed arrow connecting them indicates the
covariance between these residuals (analogous to the partial correlations discussed
above). Using the tracing rule (Kenny, 1979), it can be shown that the overall covariance
between Cat0 and Cat2 can be decomposed into the path through Ravens and the path
through the residual terms. For the model depicted,
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2
OCatO,Cat2 = (a)(b)ORaverls + OdOdZ (1)

The first term to the right of the equal sign in formula 1 is the component of the
covariance between Cat0 and Cat 2 that is contributed by the Ravens path and the second
term is the component of the covariance that is independent of the Ravens path and due to
other sources. If all three variables are standardized, then it can be shown that the
correlation between Cat 0 and Cat 2 can be analogously decomposed as:

2 2
rCatO,CatZ - (rRavens,CuIO )(rRavens,CaIZ ) + rCatO,CatZ.ravens \/1 - rRavens,CatO \/1 - rRavens,CatZ ’ (2)

Where 7,0 cunravens den0tes the partial correlation between Cat0 and Cat2 adjusting for

Ravens. The first term to the right of the equal sign in formula 2 denotes the correlation
component through Ravens and the second denotes the component through the residuals.
Because correlations are more readily interpretable than covariances, in Table 9 we
present the decomposition of the overall correlation between Cat0 and Cat2 (r =.71) into
its two constituent components across each of the external individual difference
measures. In addition, we present the proportion of the correlation between these two
measures that is due to the residual component. These proportions can be greater than 1 if
the pathway through a given individual difference measure produces a predicted negative
correlation. Also included are percentile bootstrap confidence intervals for these
indices.*’

As shown by Table 9, for each variable the component of the correlation through
the residual path (column 6) was notably greater than the component of the correlation
through the individual difference measure path (column 5). Only three measures of the
individual difference component had confidence intervals that did not encompass 0, while
the lower bound for all residual-path measures was notably greater than 0. The lowest
proportions of the total correlation through the residual path (column 7) were .72 (number
scores) and .82 (shift cost), with the rest of the proportions greater than or equal to .86.
As a whole, the results summarized in Table 9 strongly indicate that, considered in

8 We used percentile confidence intervals because in a couple of cases where correlations
between the Category measures and an individual measure were very low (e.g.,
Extraversion and Emotional Stability) the BCA intervals appeared unduly narrow relative
to confidence intervals generated by simulated data specifying low population
correlations. With the exception of these few cases, confidence intervals were very
similar whatever the bootstrapping approach used.

9 Consistent with formula 2, it should be emphasized that the amount or proportion of the
overall correlation between the two categories that is attributable to the residual pathway
is not the same as the partial correlation between the two categories. The former
quantities are also dependent on the variances of the residual terms. For example, even if
the correlation between two residual terms is very high (i.e., the partial r is high), the
amount or proportion of the total correlation due to the residual pathway could be much
lower if residual variances are only very small proportions of the total variance of the
category factors.
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isolation, the individual difference measures account for only a small proportion of the
association between the categories.

We also conducted a multiple regression analysis that predicted Cat0O and Cat2
from the three FIQ measures, Visual STM, and Shift Cost. We selected these variables
because they were significantly correlated with at least one of the two categories (see
Table 9). Using MPLUS software (Muthén, L.K. and Muthén, 1998-2017), we estimated
a multiple-predictor version of the observed-variable model shown in Table 9 and, in
addition, estimated the covariance between the Cat0 and Cat2 residual terms. The
proportions of the variance of the category variables accounted for by the set of four
predictors were 35% and 31 % respectively. If we apply standard adjusted R square
formulae from ordinary least squares regression, these values drop to 28% and 23%,
respectively. In addition, the partial correlation between Cat0 and Cat2 was .60 (p <.001)
and the set of predictors accounted for 43% of the total correlation between Cat0 and
Cat2 with the remaining 57% running through the residual paths. Although these analyses
are informative, we should caution that: (1) With six predictors and a sample size = 51
(due to 3 participants with missing observations), there is some potential for bias and
overfitting (i.e., reproducibility of the results is an issue); and, (2) These variables were
selected post-hoc based on the results of prior analyses of individual external variables.
Similar to the issues that arise with stepwise regression, this latter factor might well
produce inflated estimates of the effects of the predictors and under-estimate the strength
of the alternative, residual path.

Latent Variable Analyses

The correlational results among the observed measures indicate relations between
the individual difference measures category performance that, at best (e.g., [Q measures),
would be described as medium in strength, with generally small associations evident on
the other measures. As noted above, however, measurement error attenuates correlations.
Components of variance that are reliable but construct-irrelevant can also attenuate
correlations. These points suggest the advantages of including SEM analyses in Study 2.
Unfortunately, CFA and SEM are based on large-sample theory and the available
evidence indicates that N=54 is too small, particularly when data are not multivariate
normal (e.g., Bentler & Chou, 1987; Boomsma, 1982; Boomsma & Hoogland, 2001).
The most common problems are convergence failures (the iterative algorithm does not
reach an optimal, final set of parameter estimates) and improper solutions (models with
parameter estimates that are outside a permissible range, e.g., negative values of
variances, Gagné & Hancock, 2006). Somewhat surprisingly, however, we found that
when we ran SEM models that corresponded to the analyses presented in Table 9 but
included latent variables for each construct, there were no convergence failures and
solutions were proper. Likely, these results are due to the generally high construct
reliability (i.e,. quality of measurement) in the models that we specified (e.g., Gagné &
Hancock, 2006; Hancock & Mueller, 2001).
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Table 9: Zero-order, Partial, and Decomposed Correlations for Observed Data

Component of

Component of

Proportion:

Individual Cat0/Cat2 r Cat0/Cat2 r Residual C
Difference Cat 0 Cat2 Cat0/Cat2 | ThroughInd. | Through Residual esidual Component
Measure Pearsonr | Pearsonr | Partialr Dif. Path Path Cat0/Cat2 r (=.71)
41 24 .68 .10 .60 .86
Ravens (14,62) | (-03,48) | (47,81) (-.02,30) (.38,.76) (.59,1.02)
32 31 .67 10 .60 .86
Letter Sets (.04,55) (02,51) | (44,82) (.01,.26) (.38,.76) (.62,.99)
46 42 .63 19 S1 72
Number Scores (21,.64) (17.62) | (41,78) (.04,.39) (.30,.67) (.46,.94)
-.16 -.19 .69 .03 .67 96
Stroop Cost (-42,.11) | (-45.10) | (.50,.83) (-.00,.12) (.46,.81) (.82,1.00)
=37 -33 .67 A2 58 .82
Shift Cost (-.61-13) | (-56-.06) | (44,81) (.01,.29) (37,.75) (.61,.98)
.05 -.00 1 -.00 J1 1.00
L-EFT (-23,31) | (-28,26) | (.52,.84) (-.01,.05) (.51,.83) (.93,1.01)
23 .37 .69 .09 .63 .88
Visual STM (-.04,49) | (12,57) (.49.83) (-.00,.24) (.43,.76) (.68,1.00)
-26 -17 70 .04 .67 94
Conscientiousness | (-.47,.02) | (-.40,10) | (.51,.83) (-.01,21) (.46,.80) (.71,1.01)
-.00 -.04 71 .00 J1 1.00
Extraversion (-27,26) | (-3021) | (.52,.84) (-.01,.06) (.52,.83) (.92,1.01)
-.03 .05 1 -.00 J1 1.00
Emotional Stability | (-31,25) | (-24,30) | (.52,.84) (-.02,.06) (.51,.83) (.91,1.02)
-12 -.09 1 .01 70 98
Agreeableness (-34,.16) | (-34.19) | (.51,84) (-.00,12) (.50,.82) (.84,1.01)
-.02 13 T2 -.00 J1 1.00
Intellect (-28,.26) | (-.13,39) | (.52,.84) (-.03,.08) (.52,.83) (.89,1.05)

Note. Zero-order correlation between Cat0 and Cat2 = .71. Partial correlations between Cat0 and Cat2 adjust for individual difference
measures. Component indices decompose the zero-order correlation between Cat0 and Cat2 into components through the individual

difference measure and the residual paths. Bias-corrected and adjusted (BCA) bootstrap confidence intervals are shown in parentheses

for zero-order and partial correlations and percentile bootstrap confidence intervals are shown for other indices. Univariate
bootstrapping was used to generate samples for zero-order correlations while bivariate bootstrapping was used for other indices.

Estimates are bolded when confidence intervals do not include 0. Upper bounds for proportions can exceed 1 due to negative values for

the component of the correlation through the individual difference path.




Although the results of latent variable SEM analyses should be viewed with
caution in the present study, for several reasons we think that it is informative to present
two models that focus on the relation between Fluid IQ and category performance: (1)
We included three distinct measures of Fluid 1Q (Ravens, Letter Sets, and Number
Scores) and thus the analyses presented in Table 9 leave particularly unclear the strength
of the association between a Fluid 1Q latent variable and latent variables that mark the
two categories; (2) The Fluid IQ measures had the highest correlations with the category
measures when analyses were conducted on observed variables and yet their reliabilities
were in the .72 to .79 range. Given that analyses of observed measures alone can
attenuate correlations due to measurement error, we used the SEM approach to explore
the magnitude of the association between constructs assessed as latent variables; (3) As
reported below, the models that we ran assessing relations between FIQ and category
performance had good fit; and, (4) Our primary focus was on parameter estimates and
small ns tend to have smaller effects on estimation bias than on measures of fit or the
magnitude of standard errors (e.g., for a review, see e.g. ,Boomsma & Hoogland, 2001).

Two SEM models were run to generate indices that paralleled those shown in
Table 9 for observed variables. The first was a CFA model that simply specified three
latent variables (FIQ, Cat0, Cat2, each with three indicators) that were freely correlated
with one another. We used the MLR estimator in MPLUS (Muthén, L.K. and Muthén,
1998-2017)'"'" and formed bias-corrected bootstrap intervals around parameter estimates

(Williams & MacKinnon, 2008). This model fit very well ( ;{jf:z , test of exact fit = 25.56,

p=.25, RMSEA = .03, CFI=.994, SRMR =.059). Consistent with the results of Study 1,
the correlation between the Cat0 and Cat2 factors was .89 (95% bias-corrected bootstrap
CI=.70 to 1.00). Both Category factors were significantly correlated with the FIQ factor,
(Cat0r=.57,95% CI=.23t0.77; Cat2 r =46, 95% CI=.10 to .67), which accounted
for 32% and 21% of the variance of Cat0 and Cat2, respectively.

The second model is shown in the bottom panel of Figure 7. It is analogous to the
model shown in the top panel and was designed to decompose the covariance between
Cat0 and Cat 2 into paths through FIQ and through the residual terms. It can be shown
that this model is an equivalent model (e.g., Tomarken & Waller, 2003) to the factor-
analytic FIQ model: Although the specified parameters differ, the overall fit of the two
models is identical because they impose the same restrictions on the data. Similar to the
computations used for the observed data, we used this model to compute partial
correlations between Cat0 and Cat2 and to decompose the correlation between Cat0O and

1 We felt comfortable using this alternative to the EQS TS estimator because of the very
small percentage of missing data for this analysis (1.8% of all possible observations) and
the ease with which bootstrap confidence intervals for derived estimates (those that are
linear or nonlinear combinations of other estimates) can be computed in MPLUS.
Identical conclusions were reached when the EQS TS estimator employed in Study 1 was
used to analyze these data.

"' Somewhat surprisingly we found that the inclusion of correlated errors across the two

category factors for CO, MA, and LE failed to improve model fit, S-B difference X3f=3 =
5.19, p > .16. For this reason and because we wanted to limit the number of parameters

estimated due to the sample size, we omitted such correlated errors in the SEM analyses
for Study 2.



Cat2 into the components due to and independent of FIQ.'? Despite the non-trivial zero-
order correlations between FIQ and the two Category latent factors, the partial correlation
between Cat0 and Cat2 was a robust .86 (95% CI = .62 to 1.00). The component of the
correlation between Cat0 and Cat2 (1=.89) through the FIQ path was .26 (95% CI =.05 to
.54), while the component through the residual was .63 (95% CI = .38 to .85). Thus the
overall proportion of the total correlation between Cat0 and Cat2 that was independent of
linkages to FIQ was 71% (95% CI = .42 to .94). All told, these results indicate a very
strong relation between those components of Cat0 and Cat2 that are independent of FIQ.

12 Similar to the procedure used for the observed data, we generated 1,000 bootstrap
samples and computed bias-corrected confidence bootstrap confidence intervals
(Williams & MacKinnon, 2008) for the partial correlations and percentile confidence
intervals for the other measures. Given the sample size, we regard the Cls reported for the
FIQ models as approximate (e.g., Nevitt & Hancock, 2001).
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Figure 7. Top panel: Observed variable model for effects of Ravens on category
performance. Bottom panel: Latent variable model assessing the effects of fluid
intelligence on category performance.
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We also conducted two-stage least squares estimation (TSLS, Bollen, 1996)
because it has been suggested that this limited information estimator might perform better
with small sample sizes (although the evidence in support of this point is rather
equivocal, e.g., Bollen, Kirby, Curran, Paxton, & Chen, 2007). The results were very
similar. For example, while the residual path accounted for 71% of the total correlation
between Cat0 and Cat2 when robust ML was used, this path accounted for 72.6% of the
correlation when TSLS was used.

The online supplemental material contain additional results for latent variable
assessments of the relation between the external individual difference measures and
performance on the two categories.

General Discussion

Study 1 offered strong support for the hypothesis that individual differences in
object recognition ability can be identified that are consistent across different categories
of objects. The intraclass correlation coefficients conducted on a task-per-task basis
indicated that performance across categories was rather stable. When consistency was
assessed, the ICC; values indicated that the correlations in performance between any pair
of categories ranged from about .50 to .60 depending on the task. When category was
treated as a random effect and agreement was assessed, ICC,’s were lower but still
indicated a notable effect of individual differences. Given the well-known importance of
aggregation for accurate assessment of individual differences, the ICCs values are more
critical because they estimate the correlation between the average performance of a given
participant across the five categories and a hypothetically equivalent average. Across the
two specifications for category (fixed vs. random effects), the ICCs values ranged from
.69 to .89. Thus, between approximately 70% and 90% of the variance in performance
averaged across categories reflects individual differences that are stable across categories.
Conversely, only a relatively small proportion of the variance of aggregate scores would
be deemed due to random error. Using familiar terms derived from the analysis of
variance, our findings indicate a strong main effect for persons and a relatively weak
person X category interaction.

The confirmatory factor analyses (CFAs) extended the ICC results in several
important respects. First, by combining performance across tasks, CFAs allowed for more
general conclusions than analyses conducted on a task-by-task basis. In addition, they
allowed us to estimate effects due to individual differences in object recognition (i.e.,
category performance) with the effects of random measurement error and construct-
irrelevant variance removed and task-specific components of variance accounted for.
Finally, the CFA approach allowed us to assess the overall proportion of variance in
lower-order category factors due to the hypothesized object recognition ability o.

The sequence of CFA models offered strong support for our hypotheses. First, as
long as task-specific method factors were accounted for, a model (Model 2) that specified
correlated category factors fit well according to conventional criteria. A subsequent
model (Model 3) that constrained factor loadings to be equal across categories for each

task fit adequately — although the value of the nested y” test indicated some, though non-

significant, detriment in fit. This result indicates reasonable consistency of the factor
structure of individual differences across categories. This model also indicated very high
correlations among category factors, with s ranging from .82 to .96.
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Perhaps most importantly, we found that a model (Model 4) specifying a higher-
order object recognition ability (o) fit (see Table 5), with o accounting for a substantial
proportion of the variance (on average 89%) of the lower-order factors. Subsequent
correlational analyses indicated that o is significantly correlated with individual measures
of expertise in the domains of face processing and non-face objects. This result indicates
convergent validity.

We found that o correlated more strongly with birds, butterflies, planes and
houses than with faces and cars. The first four categories are likely representative of most
categories of familiar objects, as previous work with several categories has consistently
found faces and cars to be outlier categories (McGugin et al., 2012; Van Gulick et al.,
2015, Richler et al., 2017, Cepuli¢ et al., 2018). Several factors may dampen the
correlation between o and performance with familiar objects in this work. First, while we
reliability-corrected the expertise measures, we used only a single task for each category.
A point that we have emphasized throughout is the importance of aggregation across
multiple measures to provide measures that are optimal from a psychometric perspective
and thus have a higher ceiling for observable correlations. Second, both variability in
experience (Gauthier et al., 2014) and amount of experience (Sunday et al., in press)
likely contribute to variability in performance for familiar objects.

At the other end of the spectrum of experience, we assessed whether a small
amount of exposure influenced the correlation with 0. We used novel objects so that we
could eliminate confounds from variability in experience, and we provided all subjects
with the same amount (about 90 min) of exposure to objects from each of four of the
novel categories, testing them with the fifth category without any prior exposure.
Importantly, we found evidence that while short, this exposure was sufficient to increase
holistic processing -- a behavioral marker of face perception (see Richler & Gauthier,
2014 for a review) -- for the pre-exposed categories (see also Chua et al., 2015; Wong et
al., 2009). However, despite the evidence that on average, experience led performance
with novel objects to become more “face-like”, our findings do not indicate that
performance with trained objects recruit a different ability. On observed measures,
performance on all tasks was equally correlated between the trained and untrained
categories. A variant of Model 2 that specified equality constraints indicated that the
average correlation involving the untrained category failed to differ from the average
correlations among the trained categories. These results converge with a number of
studies that suggest holistic processing and part-based processing may be quantitatively,
but not qualitatively, different (Sekuler, Gaspar, Gold & Bennett, 2004; Richler, Mack,
Palmeri & Gauthier, 2010; Chua et al., 2015) — such that object recognition may rely on o
regardless of the processing strategy. In addition, it is worth pointing out that the increase
in holistic processing is based on a different dependent variable (the congruency effect)
then the average score in the Composite task used in individual differences models. As
such they may reflect entirely different mechanisms. Congruency effects in the standard
composite task are typically not sufficiently reliable for individual differences analyses
(Ross et al., 2015) and while one test of holistic processing for faces was developed for
this purpose (Richler et al., 2014), similar tasks do not yet exist for objects.

Taking what we learned from manipulating experience with novel objects and
predicting the recognition of familiar categories, our results certainly suggest that
experience influences object recognition, but also that o appears relevant to the prediction
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of performance across a range of objects, novel and familiar, and may help in predicting
who can achieve high levels of performance in object recognition when provided with
experience.

In Study 2, we found evidence for the specificity of o relative to a variety of
constructs. Overall, FIQ measures displayed the strongest correlations with category
performance. In the SEM analyses the FIQ latent variable accounted for between 21%
and 32% of the variance in the category factors and in the observed-variable analyses, the
proportions of variance for individual FIQ measures ranged from .06 to .21. Although
these associations are by no means trivial, it is also the case that the clear majority (70 to
80%) of the variance in category performance was independent of FI. Similarly, in the
latent-variable analyses, while approximately 30% of the covariance between the two
Category factors was due to their common association with FIQ, 70% was independent of
FIQ. Further, the Cat0 and Cat2 residual components that were independent of FIQ were
very highly correlated. This overall pattern suggests that while individual differences
in o are, perhaps not surprisingly, associated with FIQ, the magnitude of the relation is
not sufficient to support the argument that FIQ acts as a potent third variable that
accounts for the covariation in performance on different categorization tasks. The results
of Study 2 also indicate that other individual difference measures assessing a variety of
cognitive, perceptual, and personality-motivational constructs tend to have only weak
associations with o, with the possible exception of shifting and visual short-term memory,
the associations for which are probably best described as moderate. Further, a regression
analysis combining all predictors that yielded at least one significant effect in the
univariate analyses revealed that approximately 60-70% of the variance of and
covariance between the category factors was independent of these predictors. Therefore,
while we acknowledge that individual differences in o share some components of
variance with these other measures, it is clear there must be other processes and factors
implicated in object recognition ability. Put another way, we believe that the results of
Study 2 indicate the discriminant validity of the o construct.

We believe that the present work has several strengths. One was the selection of
five novel object categories that varied on dimensions (e.g., animate/inanimate
appearance, symmetry, and curvature) shown in previous work to engage different neural
substrates. We also deliberately had pairs of categories (the two Greeble categories and
the two Ziggerin categories) that could have been expected to cluster if visual similarity
contributed to individual difference effects. Yet models imposing equality constraints
indicated that the within-Greeble and within-Ziggerin correlations were no greater than
the across-type correlations. While it is still possible that o is not equally relevant to all
kinds of object geometries, we made reasonable efforts to allow evidence for differences
due to geometry to emerge and found none. The finding that o also correlates with
performance with familiar objects also speaks to its generality over object category.
Cautions and Limitations

Although our findings offered strong support for hypotheses, several cautions and
limitations should be noted. First, 36 of the original 285 participants withdrew from
Study 1 after the pre-test session. It is conceivable that those who dropped out differed
meaningfully from those who stayed in the study, a factor that would somewhat constrain
the generalizability of our conclusions. We did find that individuals who withdrew after
the introductory session had lower VET accuracy. Although this factor suggests that the
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sample may have been skewed slightly toward those with better object recognition
ability, we were still able to detect strong individual differences in o. People with higher
motivation to perform in the first visit may also be more likely to continue or complete
the long protocol for reasons unrelated to o (e.g., conscientiousness).

Relatedly, 15% of the possible data points among those continuing in the study
beyond the pre-test were missing. Given the time demands on participants, this figure is
probably not surprising. We used data-analytic approaches that can incorporate
participants with incomplete data and that provide valid inference as long as missing data
meet the assumptions of missing completely at random (MCAR) or missing at random
(MAR). In future studies — particularly those with similar time demands — it is important
to assess as well as possible the reasons for incomplete data and to assess auxiliary
variables that predict missingness and can be included in statistical models (e.g.,Yuan &
Lu, 2008). That being said, it is important to note that across both the ICC and CFA
analyses we found strong effects of individual differences. On that basis, we believe that
we would find highly similar effects had there been no missing data.

While our sample size (N = 246) in Study 1 was substantially larger than the
typical N’s used in studies in the area of perception, it is on the small side for a typical
CFA or SEM study. Although prior simulation studies with conditions that map onto
those operative in the present study indicate the likely validity of our results (e.g., Savalei
and Falk, 2014), there is still a need for additional research to clarify the precise
boundary conditions linked to factors like non-normality, missing data, and sample size
and to comparatively evaluate the full range of robust SEM estimators that could
potentially be used in such circumstances.

In addition, while our effects were strong (e.g., proportion of variance in lower-
order factors accounted for by 0) and our final models fit well, there is still clearly room
for improvement (e.g., ideally one might like to see RMSEA’s in the .01-.03 range and
stronger evidence of factorial invariance than we found). One potential way to optimize
fit may be to match psychometrically categories on task difficulty and related factors.
This is clearly a goal for future studies.

It is also important to note that the assessment of model fit is a complex task in
the context of confirmatory factor analyses or other types of structural equation models
(e.g., Tomarken & Waller, 2003). Indeed, it is paradoxically the case that models with
better measurement quality (i.e. high proportions of variance of lower-order indicators
accounted for by factors) can demonstrate worse fit on some indices than models with
poor measurement quality (Hancock & Mueller, 2011; Heene, Hilbert, Draxler et al.,
2011). As noted above (see Study 1 Results), the measurement quality in the present
study was generally high. Given this consideration, the fact our final models consistently
met conventional cutoffs indicates that they strongly fit the observed data.

In addition, the results of any CFA analyses are dependent on the specific array of
measures used to assess constructs of interest. The LE, CO, and MA tasks have good
reliability, have been used successfully by our laboratory in prior studies, and their
correlations with each other suggest that they are valid measures of object recognition.
That being said, is important to assess whether our conclusions are generalizable across
other potential measures of 0. We note that the observed measures of Learning Exemplars
had a smaller proportion of variance accounted for by the Category factors (and
ultimately o) than the Composite and Matching tasks. This difference may be at least
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partially due to the fact that the Composite and Matching performance measures were d'
while the Learning Exemplars task used percent correct. Perhaps most important is that
the Composite and Matching tasks are more similar to each other by requiring perceptual
matching across short delays within a trial, whereas Learning Exemplars requires
memory for multiple learned objects across trials. The category factors might have
accounted for more variance in Learning Exemplars if we had included another task that
was more similar to it. These considerations support the importance of: 1) Accounting for
task-specific effects by correlated error terms (as we did) or by other means; and, 2)
Creating a wider range of psychometrically adequate tasks to explore object recognition
abilities in future studies. Increasing the number of observed measures beyond three per
category would have the added benefit of providing a more precise measure of the latent
constructs of interest (e.g., Hancock & Mueller, 2001) and more rigorous tests of model
fit (Tomarken & Waller, 2003).

Given the markedly high correlations among the category factors, it is reasonable
to ask whether they are at least somewhat inflated by shared method variance (i.e., the
fact that each of the same three tasks was used across all factors). We addressed this issue
by specifying correlated errors among all the indicators of a given task. These terms
allowed for an additional pathway by which within-task correlations could be manifest.
While this correlated uniqueness approach is the one most commonly used to model
method variance in CFA studies, one limitation is that it is not able to model correlated
method effects that might occur when two tasks share several features. As noted above,
CO and MA share several features that discriminate them from the LE task. As discussed
in footnote 3, there is, however, an alternative approach for modeling method effects
known as CT-C(M-1) (Eid, 2000; Eid et al., 2003) that involves specification of one less
method factor than the total number of possible methods. When we specified a CT-C(M-
1) model that included method factors for CO and MA that were allowed to be freely
correlated, the loadings of the CO and MA indicators tended to be evenly split between
the category and task factors. Even so, the correlations among the category factors were
essentially the same as those yielded by the CU approach (mean r for CT-C(M-1) = .882,
mean r for CU =.895). Similarly the loadings on o were very comparable across the two
approaches. This finding indicates that the high correlations among the category factors
that we observed were not inflated by task-specific components of variance.'?

Our efforts in establishing the discriminant validity of o were limited to cognitive
skills, some aspects of visual perception and personality. Future work could explore
whether o is related to individual differences in lower level visual abilities that feed all
the higher-level functions that are relied upon for object recognition. Although there is
agreement that the range of individual differences in such low level visual abilities is
larger than was once assumed, there are only a few studies testing large number of
participants with a range of basic visual tasks. Some conclude there may be a single
visual ability (Halpern et al., 1999) whereas other work suggests at least two factors
corresponding to processing of low vs. high spatial frequencies (a magno/parvo

13 On the whole we prefer the CU approach for interpretive reasons. Because only two
method factors could be specified in the present study using the CT-C(M-1) approach, the
category factors become, in effect, imbalanced in favor of the task that does not have a
method factor.
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distinction, see Ward et al., 2017). In addition, it is important for future studies to use
larger sample sizes. |
Summary

In summary, we applied approaches rooted in the rich history of measuring
individual differences in areas like personality and intelligence to the study of individual
differences in visual abilities. Using confirmatory factor analysis, we showed that a
substantial amount of shared variance in performance across five novel object categories
could be accounted for by a single higher-order factor. This higher-order factor also
predicted performance with several familiar object categories. This is the first
demonstration that visual object recognition performance can be accounted for by a
domain-general Object Recognition Ability, o. Future research should investigate its
relation to various cognitive skills and lower-level abilities, as well as its real-world
relevance.
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