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Abstract

The development of visual expertise is accompanied by enhanced visual object recognition
memory within an expert domain. We aimed to understand the relationship between expertise
and memory by modeling cognitive mechanisms. Participants with a measured range of birding
expertise were recruited and tested on memory for birds (expert domain) and cars (novice
domain). Participants performed an old-new continuous recognition memory task whereby on
each trial an image of a bird or car was presented that was either new or had been presented
earlier with lag j. The Linear Ballistic Accumulator model (LBA Brown & Heathcote, 2008) was
first used to decompose accuracy and response time into drift rate, response threshold, and non-
decision time, with the measured level of visual expertise as a potential covariate on each model
parameter. An expertise x category interaction was observed on drift rates such that expertise
was positively correlated with memory performance recognizing bird images but not car images
as old versus new. To then model the underlying processes responsible for variation in drift rate
with expertise, we used a model of drift rates building on the Exemplar-Based Random Walk
model (Nosofsky, Cox, Cao, & Shiffrin, 2014; Nosofsky & Palmeri, 1997), which revealed that
expertise was associated with increases in memory strength and increases in the distinctiveness
of stored exemplars. Taken together, we provide insight using formal cognitive modeling into
how improvements in recognition memory with expertise are driven by enhancements in the

representations of objects in an expert domain.
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Experts are found in a wide variety of domains, such as chess (Chase & Simon, 1973),
music (Wong & Gauthier, 2010), sports (Baker, Coté, & Abernehty, 2003), and physics (Chi,
Feltovich, & Glaser, 1981). Our focus is visual experts, particularly those who have a marked
ability to identify and categorize images of objects within their domain of expertise (Gauthier,
Tarr, & Bub, 2010; Palmeri, Wong, & Gauthier, 2004; Shen, Mack, & Palmeri, 2014), such as
dermatologists who categorize skin lesions as normal or cancerous, mycologists who categorize
similar mushrooms as poisonous or edible, or birders who categorize hundreds of different
species of birds. A key manifestation of visual expertise that we explore in the present work is its
facilitating effect on visual recognition memory for images within an expert domain. Visual
expertise is accompanied by increased visual short-term memory performance (Curby &
Gauthier, 2007; Curby, Glazek, & Gauthier, 2009; Lorenc, Pratte, Angeloni, & Tong, 2014); for
example, Curby et al. (2009) found that car expertise was significantly correlated with visual
short-term memory capacity for cars but not faces. Visual expertise is also accompanied by
increased visual long-term memory performance (Evans et al., 2011; Herzmann & Curran,
2011); for example, Evans et al. (2011) found that medical expertise led to significantly better
long-term visual recognition memory for images within their medical expert domain compared to

a novice domain.

The present work examines effects of visual expertise on both short-term and long-term
recognition memory simultaneously. In short-term recognition memory tasks, a short array or
sequence of study images are presented and then memory is tested soon after. In long-term
recognition memory tasks, a longer array of study images is used and memory is tested after
some delay. We combine these two types of memory tasks in an old-new continuous recognition

task (e.g., Craik & Kirsner, 1974; Palmeri, Goldinger, & Pisoni, 1993; Shepard & Teghtsoonian,
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1961). On each trial, an image is presented and the participant judges that image as old or new,
with old items having appeared previously with some lag j before the current trial. The inclusion
of both short and long lags allows us to study both short- and long-term memory performance in
the same task. To our knowledge, expert visual recognition memory has not been studied using a
continuous recognition memory paradigm. The inclusion of lag within a memory task also
provides additional constraints on our primary goal of modeling memory as a function of

expertise.

We adopted a two-step cognitive modeling approach to understanding mechanistically
how memory varies with visual expertise. This stepwise approach allowed us to first measure
how underlying memory processes vary with visual expertise, and then test why these variations
occur with expertise. Although past work has suggested that visual expertise might be driven by
changes to memory representations and processes for images within a domain of expertise
(Bukach, Gauthier, & Tarr, 2006; Palmeri et al., 2004), no formal cognitive model has been used

to relate visual expertise and visual recognition memory.

We first applied a variant of the well-known class of sequential sampling models
(Ratcliff & Smith, 2004). These models assume that evidence accumulates over time until a
decision threshold is reached, at which point the response associated with that accumulator
threshold is made. Variability in accumulation across trials allows these models to account
naturally for both correct and error responses and the distributions of response times associated
with those responses. Systematic modulation of the decision threshold, reflecting varying
degrees of response threshold, allow these models to account naturally for speed-accuracy
tradeoffs (e.g., Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998). While such sequential

sampling models are general models of decision making and can be applied to a wide range of
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perceptual and cognitive tasks, one of the best known early applications of these models was to
memory (Ratcliff, 1978). By fitting these models to observed recognition memory performance,
we can measure how model parameters associated with evidence, threshold, and non-decision
time (Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009) during short- and long-term

memory decisions vary with visual expertise.

The particular sequential sampling model we chose to use is the Linear Ballistic
Accumulator model (LBA; Brown & Heathcote, 2008). Like other models in its class, LBA
assumes that once a stimulus has been perceptually encoded, evidence accumulates over time
towards decision thresholds associated with alternative responses, which in the case of
recognition memory are old and new. The LBA assumes a simple linear accumulation to
threshold, with no within-trial variability in accumulation, but allows for between-trial variability
in accumulation drift rate and starting point of accumulation; this simplification significantly
speeds simulation of the model, which is especially important for the computationally-intensive

Bayesian approaches we outline later (Annis & Palmeri, 2018).

We then asked why these parameters varied with expertise. Armed with a finding from
the first modeling step that the rate of evidence accumulation — drift rate — driving memory
decisions varies with expertise, we then tested sequential sampling models embodying
alternative theories of drift rate in recognition memory that built on the exemplar-based random
walk model (Nosofsky & Palmeri, 1997, 2015; Palmeri, 1997). These EBRW-based model
variants (Nosofsky, Cao, Cox, & Shiffrin, 2014; Nosofsky, Cox, et al., 2014) make explicit
alternative hypotheses about memory representation and processing assumptions and how these
might vary with expertise. We chose EBRW among other theories of drift rates (Ashby, 2000;

Logan, 2002; Smith & Ratcliff, 2009) because of prior work that explicitly relates EBRW and
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LBA (Nosofsky, Cao, et al., 2014) and because EBRW has been shown to be able to account for
memory performance in Sternberg short-term memory tasks (Nosofsky, Cox, et al., 2014) and
long-term recognition memory tasks (e.g., Nosofsky & Palmeri, 2015; Nosofsky & Stanton,
2006). EBRW belongs to a class of similarity-based models. In the case of memory, old-new
continuous recognition memory performance can be hypothesized to be a joint function of a test
item’s similarity to stored exemplars in memory, the overall strength with which exemplars are
stored, and the modulation of model memory strength due to decay as a function of lag. EBRW
allows us to test alternative hypotheses regarding why drift rates vary with visual expertise,
specifically asking whether similarity, memory strength, or rate of decay vary with visual
expertise. This modeling framework allows us to test a rich set of alternative hypotheses
regarding the relationship between visual expertise and visual recognition memory in a formal

manncr.

Experiment

Many different types of visual experts have been studied. Here we focus on bird experts.

There are several reasons for this choice:

Birding has been one of the canonical domains for studying how visual expertise
modulates categorization (e.g., Tanaka & Taylor, 1991), memory (e.g., Herzmann & Curran,
2011), functional brain imaging (e.g., Gauthier, Skudlarski, Gore, & Anderson, 2000), and
electrophysiology (Tanaka & Curran, 2001). There are practical reasons why birding has been
such a popular choice (Shen et al., 2014). There are millions of people who birdwatch in the US

(La Rouche, 2006), making it far easier to recruit from a large and diverse population of bird
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experts than from highly specialized professional domains of visual expertise. Birders regularly
participate in citizen science efforts, such as formal and informal bird counts, and are often quite
willing to participate in experiments aimed at understanding their expertise. By contrast, for
certain domains of expertise, like radiology and dermatology, it can be practically difficult to
recruit large numbers of professionals to participate in experiments, and for other domains, like
latent fingerprint examination and baggage screening, it can be bureaucratically burdensome or
even illegal for those professionals to participate (e.g., Wolfe, Brunelli, Rubinstein, & Horowitz,
2013). In addition, compared to more esoteric or tightly controlled domains of expertise, there
are hundreds of thousands of bird images readily obtainable online for use in visual cognition

experiments.

Until recently, doing expertise research was somewhat challenging because expert
participants would need to be recruited locally using advertisements posted in the neighboring
community (e.g., Herzmann & Curran, 2011) or through peer recommendations by other
identified experts (e.g., Tanaka & Taylor, 1991), thereby limiting the number of experts who
could potentially be recruited. The advent of online web-based experiments has made expertise
research far easier. In the case of birding, we have identified online hundreds of birding
organizations across North America, many of which have granted us permission to advertise our
experiments through their email list, newsletter, Facebook group, or website. These birding
societies attract birders with a wide range of experience and expertise, from individuals with an
interest in birds but little expertise, to those who make a living — or could — from their birding
expertise. Our web-based experiments also capitalize on the growing literature that demonstrates
the validity of online studies (Crump, McDonnell, & Gureckis, 2013; Germine et al., 2012;

Gosling, Vazire, Srivastava, & John, 2004; Reimers & Maylor, 2005; Reimers & Stewart, 2007).
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Variability in timing across different keyboards, browsers, and monitors has been shown to be
relatively small in comparison to participant variability in response time (Crump et al., 2013) and
several classic studies using response times have been replicated online (e.g., Crump et al.,

2013), including classic studies of visual expertise (e.g., Shen et al., 2014).

To study visual expertise, it is important to estimate the location of experts along the
expertise continuum. Self-report measures of expertise have been used in some past studies,
especially where the goal is simply to establish a group of experts to compare to a group of
novices (e.g. Evans et al., 2011). However, self-report alone is often an inadequate measure of
expertise (Ericsson, 2006; McGugin, Richler, Herzmann, Speegle, & Gauthier, 2012). Therefore,
we used an objective, quantitative measure of visual expertise. We chose to use one widely-used
measure derived from a subordinate matching task (Gauthier, Curran, Curby, & Collins, 2003;
Gauthier et al., 2000; Hagen, Vuong, Scott, Curran, & Tanaka, 2014; McGugin & Gauthier,
2010), which has been shown to predict both behavioral and brain changes that accompany
visual expertise (e.g., Gauthier et al., 2000). On each trial of subordinate matching, the
participant is sequentially presented pairs of birds (or cars) that are either the same or different
species (or model) and the participant must distinguish between same versus different pairs. The
discriminability (d’) for expert images (birds) versus non-expert images (cars) is used as the

measure of birding expertise.

In the Method section below, we first describe the details regarding participant
recruitment and the subordinate matching task of expertise. We then describe the details of the

continuous recognition memory task.
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Method

Participants

Fifty-four participants with a wide range of birding experience and expertise were
recruited. Given the online nature of our experiments, we invited participation from a larger
group of prospective participants who had previously registered on our web server, had
completed a demographic questionnaire, and may have participated in previous online
experiments in our lab. These participants had initially received advertisements or emails that
had been directed at North American birding organizations. Of those who chose to accept our
invitation, 8 self-reported as “beginner,” 20 as “intermediate,” and 26 as “expert”. All were given
an opportunity to enter drawings for a 1/25 chance to win a $100 Amazon gift card. Twenty-one
participants were female and 33 were male. Participants were between 22 and 72 years of age (M
=44.85, SD = 14.1). Participants gave informed consent to participate by electronically signing

an informed consent form.

Subordinate Matching Task

The subordinate matching task was identical to that used in McGugin and Gauthier
(2010). The stimulus set was composed of greyscale bird (passerines) and car (sedans) images.
There were 112 images per category. Each image was 250 x 250 pixels. Participants completed 4
blocks of the subordinate matching task. Two blocks contained images of birds and two blocks
contained images of cars. The order of the blocks and the order of the trials were kept constant

across participants.
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Participants completed 4 practice trials containing bird images before the first block
containing birds and 4 practice trials containing car images before the first block containing cars.
On each trial, participants were presented with an image of a bird or a car for 1000 ms followed
by a mask presented for 500 ms. Immediately following the mask, a new bird or car image was
presented that was either the same as or different from the previously presented species of bird or
model of car. The task of the participant was to press the “d” key if the two images contained
different species or models and “k” if the two images contained the same species or model. No

corrective feedback was provided.

Continuous Recognition Memory Task

Immediately following the subordinate matching task, participants were presented with
the instructions for the continuous recognition task. One-hundred color bird images (passerines)
and 100 color car images (sedans) were used as stimuli in the continuous recognition task. Each
image was 250 x 250 pixels. The sedan images were selected from the pool of images used by
Herzmann and Curran (2011). We selected passerine bird images from a large pool of bird

images collected from the internet. All images were cropped and placed on a blank background.

Participants completed 4 blocks of a continuous recognition task. Each block contained
either images of birds or images of cars on a blank background. The category of the initial block
was counterbalanced across participants. Each successive block contained a different category
than the previous block. Each block contained 50 new images of which 40 were repeated. Five of
the remaining 10 images that were not repeated were used as filler items to ease the

computational burden of list creation and 5 images were used as load items presented on the first
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5 trials of the block. Each successive presentation of an image was intervened by either 1 (lag 2)
or 15 (lag 16) intervening images; within each block, 20 images were repeated at lags of 2 and
20 images were repeated at lags of 16. The order of the lists was randomized and generated anew
for each participant such that lag 2 and lag 16 images were distributed uniformly across the list.
The same image set was used for each participant. In order to ensure that lag was not confounded
with list position, the list was divided in half and the frequency of lag 2 and the frequency of lag
16 images was computed for each half of the list. A chi-squared test for uniformity was
performed on the resulting frequency tables. Lists that failed the test at the .05 significance level
were rejected and a new list was created in its place. We used lags of 2 and 16 because we had a

limited amount of time that participants would be willing to complete an online experiment.

On each trial of continuous recognition, the task was to press the “d” key if the current
image was previously studied (old) and to press the “k” key if this was the first time the image
was presented (new). The task was self-paced. Participants were instructed to place one left
finger on the “d” key and one right finger on the “k” key. Eight practice trials with feedback
were presented before beginning the actual experiment. Following the practice trials, participants
were presented with each block. No feedback was provided during actual experimental trials.
Following each block, the overall accuracy for the most recent block was shown to the

participant.

Results and Discussion

We trimmed the data such that responses greater than 6 s or less than 150 ms (~ 0.03% of

responses) were omitted from the analysis. The difference in d’ between the bird and car
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categories in the Subordinate Matching task was used as a measure of expertise (Herzmann &
Curran, 2011). We refer to this measure as the expertise index or Ad' and use this as a covariate
in all subsequent analyses. In order to control for any age effects, we also included age as a
covariate. We found that, in our sample of participants, age was negatively correlated with
expertise, 7(52) = -.30, p < .05 and that RTs for hits and correct rejections increased with age,
r(52) = .41, p <.05 and r(52) = .37, p < .05, respectively; however, we found that age did not
interact with category (bird or car) for any dependent measure and, therefore, we do not
explicitly report analyses regarding age, but still include it as a covariate in our analyses. A

detailed statistical analysis can be found in the Appendix. We report the main findings below.

The expertise index, Ad’, ranged from -1.19 to 3.42 (M = 1.53, SD = .93); two
participants had Ad’ scores less than or equal to 0, indicating greater car than bird expertise, with
the remaining having Ad’ scores greater than 0. A 2 (category: bird vs. car) x 2 (lag: 2 vs. 16)
repeated-measures ANCOVA was conducted with the expertise index (Ad") and participant age
as covariates. The left panel of Figure 1 shows accuracy as measured by d’ was greater in the
bird condition (M = 2.28, SD = .80) than in the car condition (M = 1.34, SD = .40), F(1,51) =
107.04, p <.0001, and was greater for lags of 2 (M = 1.82, SD = .51) than for lags of 16 (M =
1.64, SD = .49), F(1,51) = 12.69, p < .001. The category x lag interaction was not significant,
F(1,51)=3.44, p = .069. The right panel of Figure 1 shows d’ plotted as a function of expertise
and lag for each category. There was a significant main effect of expertise, /(1,51) =4.18, p <
.05, and a significant expertise x category interaction, F(1,51) = 6.92, p <.05. Simple linear
regression revealed that expertise predicted d for bird images (B = .33, p <.01, adjusted R’ =
0.13), but not for car images, (B = .01, p = .926, adjusted R’ = 0.00). Consistent with Herzmann

& Curran (2011), there was a facilitating effect of expertise on recognition accuracy as measured
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by d’ for images within the expert-domain only. This facilitating effect was not observed to

significantly vary as a function of lag.

In summary, visual expertise for birds had a facilitating effect on continuous recognition
performance for bird images, but not for car images. Specifically, we observed increased
accuracy as measured by d’ for expert domain stimuli. We also conducted an analysis on
response time (see appendix), but did not observe such an interaction in the response times.
Although we did not observe covariation in response time with expertise in memory, they
nevertheless add important constraints for the model we develop in the next section in which we
jointly model accuracy and response time in the LBA framework to investigate the relationship

between visual expertise and continuous recognition memory performance.

Modeling Methods

In this section, we measure how key psychological mechanisms vary with visual
expertise using the LBA (Brown & Heathcote, 2008). An illustration of the LBA is shown in
Figure 2. The LBA assumes that evidence for each response type, old and new, is accumulated
over time in a linear fashion. A decision is made when the amount of evidence accumulated
reaches a pre-determined threshold b. The rate at which evidence accumulates for each response
type is given by the drift rates, d ;4 and d,,.,,. The drift rates are assumed to be drawn from
normal distributions with mean v,,;4 or v,,,, and standard deviation s. The difference in v,;4
given old vs. new stimuli we refer to as v', where v’ = V(01 — Voiajnew- Increases in v’ reflect
increases in the ability to discriminate between old and new images, conceptually akin to d’ from

signal detection theory.
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The LBA also assumes that the starting point of evidence accumulation, a, varies
between trials and is drawn from a uniform distribution between 0 and 4. Between-trial
variability allows the model to capture important differences between the correct and error
response time distributions. The difference, k, between 4 and b, we refer to as the relative
threshold. Differences in k reflect differences in response threshold, which is assumed to be at
least partially under the control of the participant. As the participant decreases their response
threshold, this increases the likelihood that an incorrect response will be made. Lastly, the time it
takes to perceptually encode the stimulus and execute the motor response is given by the non-
decision-time parameter', T.

The relationship between visual expertise and three key components of the LBA model
were examined: drift rate (v’), relative threshold (k), and non-decision time (7). If visual
expertise is associated with increases in the quality of evidence upon which recognition memory
decisions are made, then v’ should increase with expertise in the bird condition compared to the
car condition. If visual expertise is associated with increases in the efficiency of perceptual
processing, then t should decrease with expertise. If visual expertise is associated with
differences in response threshold, then & should differ with expertise.

We chose to implement our modeling in a Bayesian hierarchical framework (e.g., see
Annis, Miller, & Palmeri, 2017; Annis & Palmeri, 2018; Kruschke, 2014; Lee & Wagenmakers,
2014). Bayesian hierarchical models have been shown to increase the stability of the parameter
estimates when there are low numbers of observed data points per participant and relatively high
numbers of participants (Katahira, 2016; Kruschke & Vanpaemel, 2015). This is an important
advantage given our online web-based experiments. One challenge of conducting web-based

experiments is balancing the length of an experiment with the potential attrition rate. In an
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uncontrolled web-based environment, it is not unlikely for a participant to simply quit an
experiment with a click of a button, making them unlikely to participate in long or tedious

experiments.

This challenge can prove especially problematic when it comes to fitting models like
LBA, which under conventional modeling methods require hundreds of trials per condition per
participant to yield sufficient distributions of error and correct response needed to fit these
models. In a sense, our modeling is a proof of concept that RT models like LBA can be fitted in a
Bayesian hierarchical framework to data in online experiments with limited numbers of
observations per participant and in our case that this modeling can reveal something about the

mechanisms underlying memory in visual domain experts.

All models were implemented using the Stan probabilistic programming language
(Carpenter et al., 2016). We initially attempted to use the default MCMC algorithm in Stan,
called NUTS, but found it required prohibitively long sampling times; we believe this was due to
the high complexity of the LBA likelihood function and model structure. Therefore, we decided
to use an alternative algorithm in Stan called automatic differentiation variational inference
(ADVI; Kucukelbir, Tran, Ranganath, Gelman, & Blei, 2017), which was developed in order to
scale Bayesian inference to big data and complex models. Variational inference minimizes the
Kullback-Liebler divergence between the actual posterior and an approximation of the posterior
by maximizing the evidence lower bound of the model (the expected joint density minus the
entropy under the approximation) via stochastic gradient ascent. ADVI stops when the stochastic
gradient ascent procedure can no longer improve the evidence lower bound according to a pre-
determined tolerance. Samples from the approximate posterior can then be drawn. Posterior

estimates obtained with ADVI have been shown to accurately reflect those obtained with NUTS
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(Kucukelbir et al., 2017). For our model fits, we used the fullrank-ADVT algorithm and drew
1000 samples following the completion of stochastic gradient descent. We set the relative
tolerance to .003 (a value we found through pilot work that led to convergence of stable

estimates) and used default parameters settings otherwise.

Subordinate Matching Model
First, the subordinate matching task was modeled using Bayesian Signal Detection
Theory (Green & Swets, 1966; Lee, 2008b). For each participant i in condition j, the total
number of hits (correct “same” responses) and false alarms (incorrect “same” responses) are
assumed to follow a binomial distribution:
H;; ~ Binomial(h;;, T),

F;j ~ Binomial(f;;, L),

where h;; is the hit rate, f;; is the false alarm rate, and T is the number of targets (same trials)
and L is the number of lures (different trials). The hit and false alarm rates are parameterized in

and bias, c;;:

terms of sensitivity, d i

ijs

1

h’ij = cD(EdU - Cij)'
1

fij = q’(‘gdij —Ctj);

where @ is the CDF of the standard normal distribution. Priors are placed on d;; and ¢;;
(following Lee, 2008a) such that

d;;j ~ Normal(uf, o),
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Cij ~ Normal(uf-, ajc),
u?, u¢ ~ Normal(0,2),

d%,0¢ ~ Gamma(1,1).

The difference in sensitivity between the car category and bird category for each participant, Ad;,
is used as an index of expertise (Herzmann & Curran, 2011).

Adi — dlpird _ dicar'

where df%" corresponds to the car category and d?"® corresponds to the bird category. We show
below how Ad; is used as a potential covariate within the LBA.

The subordinate matching model and the LBA were fit simultaneously to the entirely of
the observed data. Thus, the memory task informed parameter estimations in the subordinate
matching task and vice versa. This is one advantage of using Bayesian hierarchical modeling

methods.

Linear Ballistic Accumulator
For each participant i in category j given lag /, response time and response choice pairs,

RT,j;, are distributed according to the LBA:

RTj, ~ LBA(A, sy, vijy, kij, Tij),

where A is fixed to 1 in order to make the model identifiable (Donkin, Brown, & Heathcote,

2011) and s; is the drift rate variability with the following priors:

s =< Ngmal(10?),
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0% ~ Gamma(1,1).

All priors are roughly based on those that have been used in previous modeling work with the

!

LBA (e.g., Turner, Sederberg, Brown, & Steyvers, 2013). We model v;j; directly and make

old|oid S )
il a deterministic parameter:

Old|New
ijl ’

oldlold _ 4

where

Old|New

vOld|New 17Old|New
ijl ’

~ Normal (,ujl ,0j;

vOld|New

T ~ Normal(2,2) € (0, ),

Old|New
v
O'jl

~ Gamma(1,1).
[note: the notation, € [0, ), represents a truncated normal between 0 and infinity]. The
remaining parameters are regressed on Ad; (index of expertise for participant ):

Vi~ Normal(,u}’,' + ﬁ}’l’Adi, aj’{’),

ki; ~ Normal(uf + BfAd;, o) € (0,),

Ty ~ Normal(y} + B;Ad;, ajf) € (0, 0),

where p is the grand mean, o is the standard deviation, and £ is the regression coefficient. Priors
on the grand means and standard deviations were mildly informative (Turner et al., 2013):

,u}’l' ~ Normal(0,1)

u ~ Normal(1,2) € [0, )

pu; ~ Normal(.5,1) € [0, )

!

v k T
aj; , 05,07 ~ Gamma(1,1).
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The difference in the regression coefficients between category conditions is modeled directly as
Ap and the regression coefficient for the bird image condition becomes a deterministic

parameter. For each regression weight, we have:
v’ — v’ v’
ﬁbird,l - Aﬁl + ﬁcar,l'
kK — Apk k
ﬁbird - AB + ﬁcar'

ﬂgird = ABT + IBCTar-

A Savage-Dickey ratio test (Dickey, 1971; Wetzels, Grasman, & Wagenmakers, 2010) was
performed on each A in order to derive the Bayes factor for the expertise x category interaction.
Priors on the regression coefficients follow standard normal distributions (Rouder, Morey,
Verhagen, Swagman, & Wagenmakers, 2017; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,

2010).

ABEY, AB*, ABT, B, 1, By, By~ Normal(0,1).

Modeling Results
Before analyzing the relationship between visual expertise and the model parameters, we
first determined whether the model was able to provide a reasonable account of the data. Our
primary goal was to determine whether parameters varied with visual expertise, not to fit the data
perfectly. Although we had quite low numbers of observations per participant compared to
traditional fits of RT models, we found that the LBA model accounted for most of the data quite
well with most correlations between predicted and observed well above .90. The model only had

trouble on a subset of the data, the missed targets, which was probably because of the relatively
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low number of observed misses (correlations between predicted and observed ranged from .56 to

81).

Given that the model adequately accounted for the data, we then tested whether certain
parameters varied with visual expertise. Specifically, we tested whether expertise interacted with
category for each parameter using the Bayesian framework. The null hypothesis, H,, states that
Bear — Bpira = 0, and the alternative hypothesis, H;, states that S.q, — Bpira # 0. The Bayes
factor indicates how much more likely the data are under the null hypothesis than the alternative
hypothesis. When the Bayes factor is greater than 3 (Kass & Raftery, 1995), this is
conventionally interpreted as positive support for the null hypothesis (in our case, no effect of
expertise), and when the Bayes factor is less than 1/3, this indicates positive support for the
alternative (in our case, an effect of expertise). We present a detailed discussion of the model fits

followed by inferences on parameters.

Model Fits

Panel A of Figure 3 shows that the model was able to capture the increased hit rates in
memory for bird images (expert) compared to the car images (novice). The model was also able
to capture the steeper decline in hit rates as a function of lag for cars compared to birds. Panel B
of Figure 3 shows the individual-level observed and predicted hit rates as a function of image
category and lag. For recognition of birds, most participants had a high degree of accuracy and
are clustered in the top right corners for lags of 2 and 16, which the model was able to capture (r
=.96 and r = .98, respectively). Panel C of Figure 3 shows the model successfully captured the

decrease in false alarm rates for birds compared to the cars at the group-level. Panel D of Figure
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3 shows observed and predicted false-alarm rates for each category at the individual-level. The
model was able to capture the overall increase in false alarm rates for cars ( = .96) while also

accounting for more variation across participants for birds (» = .98).

Panel A of Figure 4 shows the model was able to successfully capture the group-level
response time quantiles for hits. Quantiles were computed by taking the response time for which
10%, 50%, and 90% of the response times fell below. Note that the group-level data for misses,
especially for birds, were quite noisy due to the relatively low number of observed misses, and
the model fits slightly suffer because of this. Panel B of Figure 4, shows the 10%, 50%, and 90%
individual-level predicted and observed response time quantiles for old items plotted as a
function of category, response type, and lag. As was the case for the group-level response time
data for misses, the low number of missed trials limits the ability of the model to produce perfect
predictions. This is especially the case for birds, where the number of misses is very low (r = .61
for lags of 2 and » = .56 for lags of 16). For cars, this is less of an issue because of the lower
accuracy and hence higher number of misses (» = .81 for lags of 2 and » = .56 for lags of 16).
However, for both the bird and car category, the model accurately predicts response times for
hits for lags of 2 (» = .97 and r = .96, respectively) and 16 (r = .94 and r = .92, respectively).
Panel C of Figure 4 shows the observed and predicted response time quantiles for new items for
each category and response type. The model captures the overall response times for correct
rejections and false alarms reasonably well. Panel D of Figure 4 shows the model was able to
accurately predict participant-level response time quantiles of correct rejections and false alarms

for both birds (» = .97 and » = .88, respectively) and cars (» = .96 and r = .92, respectively).

Overall, the model predictions were qualitatively satisfactory and captured all the major

trends at both the group level and individual level. Quantitatively, the correlations between



MODELING EXPERT MEMORY 22

predicted and observed hits and false alarm rates were very high, > .95. Correlations between
predicted and observed response times were also high, >.87, except for response times for

misses, where we observed moderate correlations, > .55.

What LBA Model Parameters Covary with Expertise?

Having adequately accounted for continuous recognition memory performance overall,
we now move on to our main goal, to determine the relationship between visual expertise and
model parameters. Figure 5 shows each LBA model parameter’s predicted value as a function of
the expertise index (Ad") and category (bird vs. car). Predictions were generated by obtaining the
mean of 500 samples drawn from the distributions in Eq. 1, 2, and 3 for each posterior sample.
We then obtained the grand mean over these means (solid line) and the 95% highest density
interval (HDI; dotted line). This procedure was done over a fine-grained sequence of Ad’ values.
For each parameter, we tested whether expertise differentially covaried with category. Bayes
factors greater than 3 indicate positive support for the null hypothesis of no modulation of a
model parameter with expertise for bird images (i.e., a null expertise x category interaction).
Bayes factors less than 1/3 indicate positive support for the alternative hypothesis of significant
modulation of a model parameter with expertise for bird images (i.e., a significant expertise x
category interaction). Bayes factors falling between 1/3 and 3 are conventionally interpreted as

not indicating positive support for either hypothesis. Bayes factors are denoted as BF throughout.

We acknowledge that Bayes factors rely on the careful specification of priors that take
into account, for example, the expected scale of the parameters. Given that our extension and

application of the LBA is fairly novel, the grounds by which we specified priors were limited.
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Therefore, in addition to reporting the Bayes factors, we also report the 95% HDI for each of the
Ap parameters the Bayes factor is based on, which is much less sensitive to the priors. We found
agreement between the Bayes factors and HDIs on parameter estimates: When the Bayes factor

indicated a null effect, the 95% HDI for Af included zero, and when the Bayes factor indicated a

non-null effect, the HDI did not include zero.

The top panel shows the predicted response threshold, £, as a function of the expertise
index, Ad’, for both categories. The data provided strong evidence for a null expertise x category
interaction, BF = 21.29, AB¥ HDI [-.06, .09]; the posterior distributions of the regression
coefficients on the expertise index for the car category, BX,,., and bird category, S, both had
95% HDIs close to zero, [-.12, .04] and [-.11, -.01], respectively. Non-decision time, 7, also did
not show an interaction between category and expertise, BF = 115.64, AB* HDI [-.02, .02]; the
posterior distributions of the regression coefficients on the expertise index for the car category,
Biar» and bird category, 5,4, had 95% HDIs centered around or close to zero, [-.03, -.005] and
[-.01, .03], respectively. Neither response threshold nor non-decision time varied with expertise

for expert-domain images (birds).

v, is plotted as a function of expertise and category; recall that v,’ is the difference in
accumulation rates towards the old response between old stimuli at lags of 2 and new stimuli.

Thus, v,’ can be conceptualized as a discriminability measure much like d’. The data provided
strong evidence for a category x expertise interaction, BF = 1/333, ABY "HDI [.14, .32]. The
posterior distributions of the regression coefficients on the expertise index in the car category,
ﬂ:ér, and bird category, ﬁgiém, had 95% HDIs that fell above zero, [.02, .11] and [.21, .41],

respectively. Thus, v; increased with expertise more so for bird images than for car images. vy,
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also showed an interaction between category and expertise, BF = 1/10718, A,Bfﬁl HDI [.20, .35].

The posterior distribution for the regression coefficient on the expertise index for the car
category, ,8:;, had a 95% HDI that included zero [-.01, .06], while the coefficient for the bird

category, ;]ilfd, had a 95% HDI that fell below zero, [.19, .37]. Thus, v;, increased with
increases in expertise in the bird category, but the data provide little to no evidence for this in the
car category. Increases in visual expertise were accompanied by changes in v; and vy for

images in the domain of expertise, indicating an increase in the quality of evidence entering into

the decision process with an increase in visual expertise.

In addition, response threshold was shown to decrease with increases in visual expertise
for both categories with no interaction. Recall from the statistical analyses, visual expertise was
found to be negatively correlated with age, and age was found to be positively correlated with
increased RTs. Therefore, the increases in response threshold with decreases in expertise might
be due to age-related slowing. However, we merely speculate that this is the case because we did
not include age as an explicit covariate in the model in order to reduce model complexity. More
importantly, this result indicates that simple changes in threshold are not driving the increases in

performance observed with increased visual expertise.

Taken together, our results suggest that greater drift rates in memory decisions may
accompany greater visual expertise for images in an expert domain. It is also important to note
that the absence of an effect of expertise on non-decision time (7) does not imply an absence of
an effect of expertise on perceptual encoding mechanisms and perceptual representations. To the
contrary, changes in drift rate likely reflect such changes (e.g., Palmeri & Cottrell, 2009; Palmeri

& Tarr, 2008; Palmeri et al., 2004) because the quality of visual memory representations that
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drive recognition memory decisions depend on the quality of perceptual representations. To
further investigate the underlying memory processes that may be driving these differences in
drift rates with expertise, we tested alternative hypotheses regarding visual expertise by

modeling drift rates in an exemplar-based framework.

Modeling Drift Rates

So far, we showed that drift rate (and not threshold or non-decision time) in the LBA for
memory decisions about expert-domain images increases with increases in visual expertise.
Here, we test alternative hypotheses for how a model-based decomposition of drift rate into
theoretical subcomponents might vary with visual expertise to more deeply understand the nature
of expertise-driven changes in memory mechanisms. We extend a model developed by
Nosofsky, Cox, et al. (2014) based on the Exemplar-Based Random Walk model (EBRW;
Nosofsky & Palmeri, 1997, 2015; Palmeri, 1997). Nosofsky, Cox, et al. developed this model to
account for short-term and long-term recognition memory in a Sternberg task, making it

straightforward to extend as model of continuous recognition memory.

The model assumes that on each trial of a continuous recognition memory task, a
corresponding memory trace, an exemplar, is stored in memory. Illustrated in Figure 6 are three
such exemplars currently stored in memory, e;, e,, and es; this makes the current trial 4. The
model assumes that memory decisions are based on the activation produced from a match
between the test cue, the item currently being judged as old or new, and the exemplars stored in
memory. The activation value for each stored exemplar is depicted as w;, w,, and w3 in the

figure. The familiarity of the test cue is a monotonically increasing joint function of the memory
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strength () associated with each exemplar and the similarity () between the test cue and the
activated set of exemplars. Memory strength is assumed to asymptotically decay (y) as a
function of lag. The summed activation of exemplars in turn drives an accumulation process in
the LBA in which the drift rate corresponding to the old response, v,,,4, is proportional to this
summed activation and v,,,, is constrained to be equal to 1-v,;; (Nosofsky, Cox, et al., 2014).
Of course, LBA is not a random walk model, and we are not using the random walk component
of the EBRW. We are simply taking the front-end, the “theory of drift rates”, from EBRW and

marrying it with the LBA — creating, in a sense, an EB-LBA.

The model provides three key parameters to relate changes in visual expertise to changes
in recognition memory performance: those associated with memory decay, overall memory
strength, and similarity. If visual expertise is associated with changes in memory decay, then
memory decay should decrease with expertise for the bird category and not the car category. If
visual expertise is associated with increases in overall memory strength, then memory strength
should increase with expertise. Lastly, if visual expertise is associated with changes in the

distinctiveness of stored exemplars, then the similarity parameter should decrease with expertise.

Exemplar-Based Random Walk Model

Here we explicate details of the model outlined above. The model assumes that for

participant i in category j, response time and choice pairs, RTj;, are distributed according to the

LBA using the drift rates, vl-ojﬁd, defined by EBRW:

old old
RTijl ~ LBA(vijl , 1-— vl-jl 'A’Si'ki]"Tij)'
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Following Nosofsky, Cox, et al. (2014), drift rates are driven by the summed activation of

a cue item to exemplars stored in memory:

poia — it
bl = :

Qyji +1;

vNew =1— vOld

ijl ijl

where 7; is the activation of background elements used as a criterion to compare the activation
produced by the match between the cue and the exemplars stored in memory, and Q;; is the total

activation of all exemplars entered into the memory match process. We note that the connection
between the rate of accumulation in the LBA and rate equations derived for EBRW (Nosofsky &
Palmeri, 1997) is one by analogy only (Nosofsky, Cao, et al., 2014) and do not make a claim
regarding the formal mathematical relationship between the two. The total activation is assumed
to include the exemplars from the previous test position to the maximum lag in the design, G (the

lag between the current position and the first position in the list):
G
Qiji = z Wijg
g=1

where w;j4 is the activation of a stored exemplar at lag g, e, . This activation is assumed to be the
result of a matching process between the current test cue, ¢, and the stored exemplar e;. The
activation is governed by the memory strength m; ;, of the stored exemplar scaled by the
similarity ®(n;;) between the current test cue and the exemplar. When the current test cue is the

same as the stored exemplar e, similarity is set to 1. When the current test cue is not the same as

the stored exemplar, then similarity is modeled as a real number, 7, transformed by the CDF of
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standard normal distribution2, ®, such that 0 < ®(n) < 1. Thus, the activation of a stored
exemplar is given by:

Wi = {mifg , eg =t
g CD(T]ij)mijg, eg *t,

Memory strength, m;;,, is assumed to be a decaying function of lag, g:

jg»

— ~Yij
mijg—aij+lijg U,

where @;; is the memory strength asymptote, 4;; is a scaling parameter, and y;; models memory
decay. We regress the following EBRW parameters on Ad;:

aj ~ Normal(,u]”-‘ + B Ad;, aj“),

Nij ~ Normal(uy + ,8}7Adi, aj"),

vij ~ Normal(u} + B} Ad;, a)").

We used priors on the means based on best-fitting parameter values from Nosofsky, Cox, et al.
(2014):

W, 1§~ Normal(1,2) € (0, ),

,u;.’ ~ Normal(—1.5,0.5).

Priors on standard deviations were weakly informative:

o’ ¢

!, 0f, 0~ Gamma(l, .5).

We model the difference between the regression coefficients in the bird and car conditions as:
Y 14
leird - Aﬁy + Bcar'

Blgxird = A:Ba + :Bgaw
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ﬁgird = Aﬁn + :Bgar

Priors on the regression coefficients follow standard normal distributions (Rouder et al., 2017).

ABY, AB%, AB", By, By, Blly~ Normal(0,1).
The remaining parameters of the EBRW not entered into the regression have the following priors
based on values from Nosofsky, Cox, et al. (2014):
r; ~ Normal(u",a"),
u"~ Normal(1,2),
Aij ~ Normal(u}, aj’l),

,ujl~ Normal(1,1).

Priors on standard deviations were weakly informative:
0"~ Gamma(1,0.5),
aj’1~ Gamma(1,1).
For the LBA, we regress threshold and perceptual encoding parameters on the expertise score
Ad;:
ki; ~ Normal(uf + BfAd;, o) € [0, 0),

Tjj ~ Normal(,ujf- + B;Ad;, ajf) € [0, ),

Priors for the LBA were chosen based on previous hierarchical modeling work with the LBA
(e.g., Turner et al., 2013) and are the same as those we used in the previous LBA model:

uj-‘ ~ Normal(1,2) € (0, )

u; ~ Normal(.5,1) € (0, )

ok

i, 07 ~ Gamma(1,1).
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The difference in the regression coefficients between category conditions is modeled directly as
AB:
ﬂl’;ird = Aﬁk + Bc"(ar'

ﬂgird = ABT + ﬁgar-

The priors are standard normal distributions (Rouder et al., 2017):
AB¥, ABT, Blar, Béar~ Normal(0,1).
The priors on the remaining parameters of the LBA are given by:
s;~ Normal(u*, o%),
A;~ Normal(u4, a4),
us, u4~ Normal(1,1),

05,04~ Gamma(1,1).

The model was programmed in Stan (Carpenter et al., 2016). We drew 1000 samples from the
approximate posterior after convergence of the ADVI procedure (Kucukelbir et al., 2017).

Algorithm parameters were the same as those used in the previous fitting procedure.

Modeling Results
We present the model predictions of the EBRW at the group and individual level. It is
important to note that the EBRW is more constrained than the LBA. In the LBA, there is a
separate accumulator for “old” and “new” responses for each lag for each condition giving it a
total of 12 drift rates. By contrast, the EBRW constrains the sum of the drift rates to be one. In
addition, these drift rates are not free parameters in the LBA but are constrained by a power law

that decays as a function of lag.
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Despite these constraints, we show that the EBRW predictions are similar to those of the
more general LBA, where the only obvious shortcoming lies in the tails of the RT distributions at
lags of 2. This slight cost is at the benefit of the theoretical drift rate decomposition, which
further constrains the model and allowed us to investigate changes in underlying cognitive
mechanisms that accompany visual expertise. This was our primary focus rather than achieving
the best fit possible. To preview, we show that visual expertise is accompanied by increases in
memory asymptote, governed by the a parameter, and increases in the distinctiveness of

exemplars, governed by the 1 parameter.

Model Predictions

Panel A of Figure 7 shows the observed and predicted group-level accuracy as function
of category and lag. While the model slightly overestimates the overall accuracy, it successfully
captures the decrease in hit rates with increases in lag observed in the car condition as well as the
similar hit rates across lags in the bird condition. Panel B of Figure 7 shows the predicted
individual-level hit rates as a function of the observed hit rates for each lag and category (all » >
.90). When compared to the individual-level fit of the baseline LBA in the previous section, the
model appears to perform similarly. Panels C and D show that the model is able to accurately
capture false alarm rates at both the group and individual level (» = .97 for birds and » = .96 for
cars).

Panel A of Figure 8 shows the observed and predicted response time quantiles for targets
as a function of category, response type, and lag. The most obvious failure of the model is in the
upper tails of the response time distributions for targets at lags of 2. Otherwise, the model

captures the overall pattern of the response time distributions for hits. Panel B shows the
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predictions for individual-level response time quantiles for misses in the bird condition are noisy
due to the low number of observations (r = .59 at lags of 2 and » = .60 at lags of 16), especially at
larger quantiles. For the car category, fits to response times for misses are slightly better due to
the higher number of observations (r = .78 for lags of 2 and » = .82 for lags of 16). Predictions
for response times for hits for both the bird (» = .93 for lags of 2 and » = .92 for lags of 16) and
car category (r = .94 for lags of 2 and » = .88 for lags of 16) are much better and the model only
slightly overestimates the upper quantiles as was shown in the group-level fits. Panel C shows
that the model captures the group-level response time data for foils. Panel D of Figure 8 shows
that the model was able to successfully capture individual-level response times for false alarms
and correct rejections in both the bird (» = .85 and » = .95, respectively) and car (» = .90 and r =
.93, respectively) categories.

Qualitatively, the overall fits for the EBRW model were satisfactory, but not quite as
good as those obtained for the more general LBA model in which drift rate was simply a free
parameter in every condition; the significant constraints that the EBRW places on the model
resulted in a fit that was slightly worse. Quantitatively, correlations between predicted and
observed hits and false alarm rates were high, » > .90. We also observed high correlations
between predicted and observed response times except for misses, as was the case for the
baseline LBA model. Given that the model captures most of the key trends in the data at the
group and individual-level, we traded a slightly worse fit for improved theoretical insight into

underlying memory processes.
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What Causes Drift to Vary with Expertise?

Figure 9 show the predicted parameter estimates as a function of the estimated expertise
index. The top row shows the predicted memory asymptote parameter, @, as a function the
expertise index, Ad'. The data provided strong evidence in favor of a category x expertise
interaction, BF = 2.93 x 10”7, AB% 95% HDI [1.37, 2.50]; the posterior distribution of the
regression coefficient on the expertise index for the car category, fo,., had a 95% HDI that fell
below zero, [-.31, -.17], where the 95% HDI for the bird category, S7;,4, fell well above zero,
[1.14, 2.29]. Thus, memory asymptote increased as visual expertise increased for the bird

category but not for the car category.

The memory decay parameter, y, did not show a category x expertise interaction, BF =
4.59, ABY 95% HDI [-.35, .47]; the 95% HDI of the regression coefficients on the expertise
index for the car category, &, and bird category, S}, ;, contained zero, [-.02, .20] and [-.26,
.56], respectively. Thus, changes in visual expertise were not accompanied by changes in the rate

of decay of exemplar activations.

The similarity between exemplars showed an interaction between category and expertise,
BF =4.69 x 10”, AB" 95% HDI [-.37, -.22]; the posterior distribution of the regression weight
on the expertise index for the car category, ..., had a 95% HDI that included zero, [-.07, .004],
but the 95% HDI for the bird category, ﬂgir - fell below zero [-.41, -.23]. Thus, the
distinctiveness of exemplars increased as visual expertise increased for the bird category but not

for the car category.

There was no category X expertise interaction for response threshold, BF = 125.83, AS¥

95% HDI [-.01, .02]. The posterior distributions of the regression coefficients on the expertise
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index for the car category, B%,,, and bird category, B, 4, had 95% HDI that fell below but close
to zero, [-.04, -.01] and [-.04, -.02], respectively. Non-decision time also did not show a category
X expertise interaction, BF =27.91, AB* 95% HDI [-.002, .03]. The posterior distributions of the
regression coefficients on the expertise index for the car category, B¢,,, and bird category, Bpirq»
had 95% HDIs that included zero, [-.01, .03] and [-.02, .003], respectively. Thus, non-decision

time did not vary with expertise.

General Discussion

Visual expertise is accompanied by better short-term and long-term recognition memory
for images within an expert domain. While these empirical findings replicate past findings of the
impact of expertise on short-term (e.g., Curby et al., 2009) and long-term memory (e.g.,
Herzmann & Curran, 2011), here we examined both within a continuous recognition memory
task. We also went beyond past empirical work by comparing cognitive models that instantiated
alternative hypotheses about the impact of expertise on memory processes.

We first analyzed continuous recognition memory performance, including both accuracy
and response times, using the Linear Ballistic Accumulator model (LBA; Brown & Heathcote,
2008). LBA allowed us to decompose memory performance into three psychological components
— perceptual encoding time, response threshold, and drift rate — and measure how these
components varied with visual expertise.

The perceptual encoding time parameter is theoretically related to the efficiency of
perceptual processing and comparing perceptual representations with memory representations.
While there is good reason to think that the development of visual expertise may impact the

efficiency of these initial stages of processing during memory tasks (e.g. Curby & Gauthier,
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2007; Curby et al., 2009; Gauthier et al., 2000), we did not observe significant variation in
perceptual encoding time with expertise. This is certainly not to say that perceptual encoding
mechanisms do not change with visual expertise. In fact, it is quite likely that they do (e.g.,
Palmeri & Cottrell, 2009; Palmeri et al., 2004). While the time it takes for perceptual processing
may not decrease with expertise (Mack & Palmeri, 2011), at least in the context of recognition
memory, the quality of perceptual and memory representations may well increase with expertise,
as reflected in the drift rate changes we observed with expertise. The null effect of expertise on
non-decision time does not indicate a null effect of expertise on quality of perceptual and
memory representations. In fact, our model provides direct evidence for this when we model drift
rates directly.

Differences in LBA response threshold reflect differences in response threshold, which
affect speed-accuracy tradeoffs. We observed an overall decrease in response threshold with
visual expertise, but this was observed for both expert domain and non-expert domain images.
Since these differences were not specific to an expert domain, we can only speculate as to what
might drive this effect as we did not develop and test a formal model, but individual differences
in confidence, motivational factors, or age might be possibilities. For example, expertise might
increase confidence in the ability to remember domain-specific information and this confidence
might leak over to blocks in the memory experiment containing non-expert domain stimuli,
similarly affecting the decreased level of response threshold for non-expert images even at the
cost of poorer memory performance. We did find that age was negatively correlated with
expertise and was positively correlated with RTs. Therefore, the general threshold increases with
expertise may reflect age-related slowing. Prior studies investigating the effects of aging on

memory performance have also found increases in threshold with age. Older subjects aged 60-75
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have been shown to have more conservative response thresholds compared to college-age
subjects for recognition memory (Ratcliff, Thapar, & McKoon, 2004, 2011) and associative
memory (Ratcliff et al., 2011).

Drift rate reflects the quality of the evidence upon which a recognition memory decision
is based. As previous studies have suggested (Herzmann & Curran, 2011; Lorenc et al., 2014),
increases in visual expertise could well increase the quality of memory representations for
images within a domain of expertise, which is consistent with our finding greater differences in
drift rates for expert-domain versus non-expert-domain images with increases in visual expertise.

To probe further theoretically how visual memory processes might vary with visual
expertise, we decomposed drift rate into potential theoretical subcomponents by applying an
extension of the EBRW model (Nosofsky, Cox, et al., 2014). This model assumes that when an
item is studied, its representation is encoded in long-term memory as an exemplar, and when an
item is tested, its representation is matched with stored exemplars. This memory matching results
in an activation for each stored exemplar and the summed activation across exemplars provides
the drift rate for the LBA. We specifically assumed that memory activation is a joint function of
the strength with which each exemplar is stored, its similarity to the test item, and the amount of
decay that has occurred since the exemplar was first stored in memory. Thus, the EBRW
provides three potential theoretical subcomponents — similarity, memory strength, and decay —
that could each vary with visual expertise. We observed significant variation in similarity and
memory strength with visual expertise.

Increases in visual expertise were accompanied by decreases in the similarity of the
stored exemplars for images in the expert domain. Decreases in similarity with increases in

visual expertise could in turn be a result of better memory sensitivity, enhanced exemplar
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representations, or more optimal selective attention to relevant dimensions. This increase in
distinctiveness may be the result of increases in memory sensitivity, or the quality of the
exemplar representations. This is consistent with prior findings for both short- and long-term
recognition. In a visual short-term recognition task, Lorenc et al. (2014) found expertise for
upright faces increased the quality of short-term memory representations. And in a visual long-
term recognition memory task, Herzmann and Curran (2011) found changes in car expertise to
be correlated with changes in a parietal event-related potential associated with recollective
processes, which depends on robust encoding of distinctive features. In the EBRW and other
exemplar-based models, exemplars are represented as vectors of feature values. It may be the
case that increases in visual expertise are the result of increases in the probability that features
are correctly stored, thereby decreasing the overall amount of memory noise in the system
(Nosofsky & Alfonso-Reese, 1999; Shiffrin & Steyvers, 1997), or that these representations
become increasingly distant from one another in psychological space as visual expertise
increases. Further work is needed to explore the representations in ways we did not do here.
Increases in visual expertise were also accompanied by an increase in memory strength.
According to our EBRW-based modeling, memory traces were more strongly encoded for
images within the expert domain. When the memory trace is viewed as a vector of feature values,
stronger encoding might be realized by increasing the number of dimensions of the memory
trace, thereby allowing for the possibility additional features to be stored. For example, birders
use beak shape, eye shape, color, size, pattern, etc. to identify the particular species, each of
which can be thought of as a dimension in the memory trace vector. As expertise increases, the

number of dimensions that a birder can use might also increase. Storing additional features
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should, in general, lead to increases in overall memory strength because the summed activation
between the cue and the memory trace involves a larger number of summands.

Beyond the specific findings of our modeling work, we demonstrate how the EBRW
model can be applied to continuous recognition memory, a task it was not originally designed to
do. Nosofsky, Cox, et al. (2014) presented participants with study lists varying in length from 1
to 16 items and showed that both long-term and short-term recognition could be explained via a
single exemplar-based model. Extending the Nosofsky, Cox, et al.’s exemplar-based framework
as a front-end to the LBA, we found that the model also predicted performance across both long-
term and short-term lags, but now in a continuous recognition task. One implication of this
successful application is that similar memory processes apply to both standard recognition and
continuous recognition. Further research regarding the connection between the two tasks is
needed.

More importantly, we demonstrate how the combination of elements from EBRW and
LBA can be applied theoretically to online experiments with real-world stimuli testing real-world
experts, which often entails fitting models to heterogeneous individual participant data with
relatively low numbers of observations per condition. By implementing the models in a Bayesian
hierarchical framework, we were able to successfully fit the models to data with far lower
numbers observations than is usually available. In hierarchical models, increases in participant
sample size not only provide better group-level estimates, but also improved participant-level
estimates (Kruschke, 2014). Traditional model fitting often obtains large numbers of
observations per condition, either by testing a small number of individual participants for many
sessions, or by aggregating over large numbers of participants. Because we neither had large

numbers of observations per participant nor aggregated over participants, our model fits are
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perhaps quite a bit noisier than what might be expected for cognitive modeling. To be clear, our
primary focus was on evaluating theoretical questions concerning how model parameters varied
with visual expertise, testing by means of the magnitudes of Bayes Factors, not aiming for

observed vs. predicted plots with maximally significant correlations.

Conclusion

Visual expertise has a facilitating effect on visual object recognition memory for expert-
domain objects and has been found for both short- and long-term recognition memory
performance. Although prior work suggests changes to underlying representations for expert-
domain stimuli drives changes in performance, a formal account of this relationship did not exist.
In the present work, we used a formal cognitive modeling approach that relates visual expertise
and visual recognition memory performance via cognitive processes. Our approach was a two-
step process where we first measured how these cognitive processes changed with visual
expertise followed by testing why they changed. We recruited participants with varying levels of
visual expertise and presented a continuous recognition task designed to measure both short- and
long-term recognition memory within a single experiment. We found, for the first time within a
cognitive modeling framework, visual expertise to be accompanied by changes in the underlying
representations of expert-domain stimuli. In addition, we also demonstrate the capabilities and
advantages of the Bayesian hierarchical framework in the context of online experiments with low

numbers of trials.
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Notes

*In this article, we have chosen to focus our discussion on interpreting differences in the non-
decision time parameter with expertise as due to differences in perceptual processing time
(perceptual efficiency); even though we focus on “perceptual” differences, we acknowledge an
important caveat that perceptual and motor times are simply additive and differences in the
parameter could reflect differences in motor execution time.

? Similarity is often derived from a multidimensional scaling solution based on similarity ratings
between all stimulus pairs. Because of the large number of stimuli required for the continuous
recognition memory task, obtaining pairwise similarity ratings was not feasible. We note there
has been some advancements towards this end recently (e.g., Nosofsky, Sanders, Meagher, &
Douglas, 2017), but these techniques are beyond the scope of the present work.
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Appendix

Panel A of Figure A1 shows hit rates plotted as a function of lag for each category. A
two-way repeated measures ANCOVA with expertise and age as covariates revealed hit rates
were significantly greater in the bird condition (M = .89, SD = .14) than in the car category (M =
.79, SD = .12), F(1,51) =40.95, p <.0001, and were significantly greater for lags of 2 (M = .86,
SD = .09) than for lags of 16 (M = .82, SD = .11), F(1,51) = 18.65, p <.0001. The main effects
are qualified by a significant category x lag interaction, F(1,51) = 8.63, p <.01. A simple effects
analysis revealed hit rates for the bird category did not significantly differ between lags of 2 (M
=.90, SD = .10) and lags of 16 (M = .88, SD = .13), #(53) = 1.64, p = .108, but for the car
category, hit rates were significantly greater for lags of 2 (M = .82, SD = .11) than for lags of 16
(M =.75,8D = .14), t(53) = 4.59, p < .001. Panel B of Figure A1 shows the hit rates plotted as a
function of expertise and lag for each category. The main effect of expertise on hit rates was not
significant, F(1,51) = .04, p = .84. There was a significant expertise x category interaction,
F(1,51)=7.44, p < .01. However, expertise did not predict hit rates for birds (§ = .03, p = .09,
adjusted R’ = .04) or cars (B = -.03, p = .054, adjusted R’ = .05). Therefore, the influence of
visual expertise on hit rates varied between the bird and car categories, but expertise was not

predictive of hit rates in either category.

Panel C of Figure A1 show the false alarm rates for each category. A one-way (category:
birds vs. cars; covariates: expertise, age) repeated measures ANCOVA revealed false alarm rates
for the bird category (M = .20, SD = .15) were significantly lower than for car images (M = .32,
SD = .12), F(1,51) =51.79, p <.0001. Panel D of Figure A1 shows there was a significant main
effect of expertise on false alarms, F(1,52) = 4.45, p < .05, such that false alarms decreased with

increases in expertise, (B = -.04, p < .05, adjusted R’ = .07). The expertise x category interaction
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for false alarm rates was not significant, F(1,52) = .07, p =.792. Thus, expertise was
accompanied by a decrease in false alarms, but this decrease did not significantly differ between

the bird and car categories.

Response time (RT). A two-way ANCOVA with expertise and age as covariates was
conducted on median RTs for hits. Panel A of Figure A2 shows median RTs for hits were
significantly faster for lags of 2 (M = 864.92, SD = 125.96) than for lags of 16 (M = 965.93, SD
= 134.66), F(1,51) = 84.57, p <.0001, but did not significantly differ between category, F(1,52)
= .24, p = .628. The category x lag interaction was not significant, /(1,52) = 1.20, p =.28. Panel
B of Figure A2 shows there was no significant main effect of expertise on median RTs for hits,
F(1,52) = 1.81, p = .04 and no expertise x category interaction, F(1,52) = .00, p = .963, or lag,
F(1,52) = .19, p = .662. Thus, expertise was not accompanied by changes in response time for

hits.

A two-way ANCOVA with expertise and age as covariates was conducted on median
RTs for misses with six participants removed from the analysis due to not having missed any
targets in at least one condition. Panel A of Figure A2 shows there was no significant main effect
of category, F(1,45) = .05, p = .824, or lag on median RTs for misses, F(1,45) = 1.39, p = .244.
The category x lag interaction was not significant, F(1,45) = 1.07, p = .306. Panel B of Figure
A2 shows there was no significant main effect of expertise, F(1,45)= .21, p =.650, no
significant expertise x category interaction, F(1,45) = 1.83, p =.2183, and no significant
expertise x lag interaction, F(1,45) = .54, p = .467. Thus, changes in visual expertise were not

accompanied by changes in response times for misses.

A one-way (category: bird vs. car) ANCOVA with expertise and age as covariates was

conducted on median RTs for false alarms. Panel C of Figure A2 shows median RTs for false
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alarms were significantly slower in the bird condition (M = 1081.62, SD = 191.77) than in the car
condition (M = 1049.08, SD = 223.23), F(1,51) = 14.53, p <.001. Panel D of Figure A2 shows
there was no significant main effect of expertise, F(1,52) = 1.23, p = .273, and no significant
expertise x category interaction, F(1,52) = .07, p = .800. Thus, there were group-level effects in
which RTs for false alarms were slower in the bird condition, but at the individual-level,

expertise was not associated with changes in RTs for false alarms.

Panel C of Figure A2 shows median RTs for correct rejections did not significantly differ
between conditions, F(1,51) =2.09, p =.154. Panel D shows there was a main effect of
expertise, F(1,51) = 5.83, p < .05, but no interaction, F(1,51) = .41, p =.52. A multiple
regression analysis with age and expertise as predictors revealed that median correct rejection
RTs decreased with increased expertise, (3 =-64.23, p <.05) and RTs increased with increased
age (B =3.68, p <.05). Because visual expertise was negatively correlated with age, 7(51) =-.30,

p < .05, decreases in correct rejection RTs may be due to age-related slowing.
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Figure 2. The Linear Ballistic Accumulator model. After stimulus presentation, the stimulus is
perceptually encoded with time 7, and evidence begins to accumulate towards either the old or new
response. The rate at which evidence accumulates for each response type is given by the drift rates, d ;4
and d,,,,,. The drift rates are assumed to be drawn from corresponding normal distribution with mean
Vo1d O Vpey and standard deviation s. The LBA assumes that the starting point of each accumulator
varies from trial to trial, where the starting point is drawn from a uniform distribution from 0 to A. The
response threshold is given by 4 + &, where £ is referred to as the relative threshold. When an
accumulation process reaches its threshold, the corresponding old or new response is made.
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Figure 3. Panel A shows group-level fits of the LBA to the hit rates as a function of lag. Panel B shows
predicted hit rates plotted as a function observed hit rates for each participant. Panel C shows fits of the
model to false alarm rates for each category. Panel D shows the predicted false alarm rates as a function

of the observed false alarm rates for each participant.
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Figure 4. Panel A shows group-level fits of the LBA to the hit rates as a function of lag. Panel B shows
predicted hit rates plotted as a function observed hit rates for each participant. Panel C shows fits of the
model to false alarm rates for each category. Panel D shows the predicted false alarm rates as a function

of the observed false alarm rates for each participant.
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Figure 5. Solid lines show the mean posterior predicted value for each key parameter of the LBA as a
function of the expertise index for each category. Dotted lines show the 95% highest density interval.
Parameter meanings: k: response threshold; T: non-decision time; vy : difference in drift rate between new

items and old items at lags of 2; v;,: difference in drift rate between new items and old items at lags of
16.
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Figure 6. A graphical representation of the EBRW model for continuous recognition. The cue is matched
in parallel to the activated set of stored exemplars, shown here as e, e5, and e;. The matching process
results in an activation value for each exemplar, shown here as w4, w, and w3. These activations are a
joint function of the overall memory strength of the stored exemplar, a, the similarity between the cue
and exemplar, s, and the amount of memory decay that has occurred since storage, y. These activations
are then summed and normalized, which is then used as the mean drift rate in the accumulator for the
“old” response. The mean of the new drifts rate is computed by subtracting the sum of the activations
from 1.
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Figure 7. Panel A shows group-level fits of the EBRW to the hit rates as a function of lag. Panel B shows
predicted hit rates plotted as a function observed hit rates for each participant. Panel C shows fits of the
model to false alarm rates for each category. Panel D shows the predicted false alarm rates as a function

of the observed false alarm rates for each participant.
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Figure 8. Panel A shows group-level fits of the EBRW to hit and miss RT quantiles (10%, 50%, 90%) as
a function of lag. Quantiles Panel B shows predicted hit and miss RTs plotted as a function observed hit
rates for each participant. Panel C shows fits of the model to false alarm and correct rejection RT
quantiles for each category. Panel D shows the predicted individual-level RT quantiles as a function of
the observed quantile for each participant.
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Figure 9. Solid lines show the mean posterior predicted value for each key parameter of the EBRW as a
function of the expertise index for each category. Dotted lines show the 95% highest density interval.
Parameter meanings: a: overall memory strength; y: memory decay; n: similarity, k: response threshold;
7: non-decision time.
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Figure Al. Panel A shows the hit rate as a function of lag and category. Panel B shows the individual-
level hit rates as a function of expertise index and lag for each category with simple linear regression
lines. Panel C shows the false alarm rates as a function category and Panel D shows the false alarm rates
as a function of expertise index and category with regression lines.
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Figure A2. Panel A shows the median hit and miss RTs as a function lag and category. Panel B shows the
participant-level median hit and miss RTs as function of their expertise index for each category and lag.
Lines represent simple linear regression lines. Panel C shows the median false alarm and correct rejection

RTs as a function of category. Panel D shows the participant-level false alarm and correct rejections as a
function of their expertise index for each category.



