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Abstract 

The development of visual expertise is accompanied by enhanced visual object recognition 

memory within an expert domain. We aimed to understand the relationship between expertise 

and memory by modeling cognitive mechanisms. Participants with a measured range of birding 

expertise were recruited and tested on memory for birds (expert domain) and cars (novice 

domain). Participants performed an old-new continuous recognition memory task whereby on 

each trial an image of a bird or car was presented that was either new or had been presented 

earlier with lag j. The Linear Ballistic Accumulator model (LBA Brown & Heathcote, 2008) was 

first used to decompose accuracy and response time into drift rate, response threshold, and non-

decision time, with the measured level of visual expertise as a potential covariate on each model 

parameter. An expertise x category interaction was observed on drift rates such that expertise 

was positively correlated with memory performance recognizing bird images but not car images 

as old versus new. To then model the underlying processes responsible for variation in drift rate 

with expertise, we used a model of drift rates building on the Exemplar-Based Random Walk 

model (Nosofsky, Cox, Cao, & Shiffrin, 2014; Nosofsky & Palmeri, 1997), which revealed that 

expertise was associated with increases in memory strength and increases in the distinctiveness 

of stored exemplars. Taken together, we provide insight using formal cognitive modeling into 

how improvements in recognition memory with expertise are driven by enhancements in the 

representations of objects in an expert domain. 
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Experts are found in a wide variety of domains, such as chess (Chase & Simon, 1973), 

music (Wong & Gauthier, 2010), sports (Baker, Côté, & Abernehty, 2003), and physics (Chi, 

Feltovich, & Glaser, 1981). Our focus is visual experts, particularly those who have a marked 

ability to identify and categorize images of objects within their domain of expertise (Gauthier, 

Tarr, & Bub, 2010; Palmeri, Wong, & Gauthier, 2004; Shen, Mack, & Palmeri, 2014), such as 

dermatologists who categorize skin lesions as normal or cancerous, mycologists who categorize 

similar mushrooms as poisonous or edible, or birders who categorize hundreds of different 

species of birds. A key manifestation of visual expertise that we explore in the present work is its 

facilitating effect on visual recognition memory for images within an expert domain. Visual 

expertise is accompanied by increased visual short-term memory performance (Curby & 

Gauthier, 2007; Curby, Glazek, & Gauthier, 2009; Lorenc, Pratte, Angeloni, & Tong, 2014); for 

example, Curby et al. (2009) found that car expertise was significantly correlated with visual 

short-term memory capacity for cars but not faces. Visual expertise is also accompanied by 

increased visual long-term memory performance (Evans et al., 2011; Herzmann & Curran, 

2011); for example, Evans et al. (2011) found that medical expertise led to significantly better 

long-term visual recognition memory for images within their medical expert domain compared to 

a novice domain.  

The present work examines effects of visual expertise on both short-term and long-term 

recognition memory simultaneously. In short-term recognition memory tasks, a short array or 

sequence of study images are presented and then memory is tested soon after. In long-term 

recognition memory tasks, a longer array of study images is used and memory is tested after 

some delay. We combine these two types of memory tasks in an old-new continuous recognition 

task (e.g., Craik & Kirsner, 1974; Palmeri, Goldinger, & Pisoni, 1993; Shepard & Teghtsoonian, 



MODELING EXPERT MEMORY  4 
	

1961). On each trial, an image is presented and the participant judges that image as old or new, 

with old items having appeared previously with some lag j before the current trial. The inclusion 

of both short and long lags allows us to study both short- and long-term memory performance in 

the same task. To our knowledge, expert visual recognition memory has not been studied using a 

continuous recognition memory paradigm. The inclusion of lag within a memory task also 

provides additional constraints on our primary goal of modeling memory as a function of 

expertise. 

We adopted a two-step cognitive modeling approach to understanding mechanistically 

how memory varies with visual expertise. This stepwise approach allowed us to first measure 

how underlying memory processes vary with visual expertise, and then test why these variations 

occur with expertise. Although past work has suggested that visual expertise might be driven by 

changes to memory representations and processes for images within a domain of expertise 

(Bukach, Gauthier, & Tarr, 2006; Palmeri et al., 2004), no formal cognitive model has been used 

to relate visual expertise and visual recognition memory.  

We first applied a variant of the well-known class of sequential sampling models 

(Ratcliff & Smith, 2004). These models assume that evidence accumulates over time until a 

decision threshold is reached, at which point the response associated with that accumulator 

threshold is made. Variability in accumulation across trials allows these models to account 

naturally for both correct and error responses and the distributions of response times associated 

with those responses. Systematic modulation of the decision threshold, reflecting varying 

degrees of response threshold, allow these models to account naturally for speed-accuracy 

tradeoffs (e.g., Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998). While such sequential 

sampling models are general models of decision making and can be applied to a wide range of 
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perceptual and cognitive tasks, one of the best known early applications of these models was to 

memory (Ratcliff, 1978). By fitting these models to observed recognition memory performance, 

we can measure how model parameters associated with evidence, threshold, and non-decision 

time (Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009) during short- and long-term 

memory decisions vary with visual expertise. 

The particular sequential sampling model we chose to use is the Linear Ballistic 

Accumulator model (LBA; Brown & Heathcote, 2008). Like other models in its class, LBA 

assumes that once a stimulus has been perceptually encoded, evidence accumulates over time 

towards decision thresholds associated with alternative responses, which in the case of 

recognition memory are old and new. The LBA assumes a simple linear accumulation to 

threshold, with no within-trial variability in accumulation, but allows for between-trial variability 

in accumulation drift rate and starting point of accumulation; this simplification significantly 

speeds simulation of the model, which is especially important for the computationally-intensive 

Bayesian approaches we outline later (Annis & Palmeri, 2018).  

We then asked why these parameters varied with expertise. Armed with a finding from 

the first modeling step that the rate of evidence accumulation – drift rate – driving memory 

decisions varies with expertise, we then tested sequential sampling models embodying 

alternative theories of drift rate in recognition memory that built on the exemplar-based random 

walk model (Nosofsky & Palmeri, 1997, 2015; Palmeri, 1997). These EBRW-based model 

variants (Nosofsky, Cao, Cox, & Shiffrin, 2014; Nosofsky, Cox, et al., 2014) make explicit 

alternative hypotheses about memory representation and processing assumptions and how these 

might vary with expertise. We chose EBRW among other theories of drift rates (Ashby, 2000; 

Logan, 2002; Smith & Ratcliff, 2009) because of prior work that explicitly relates EBRW and 
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LBA (Nosofsky, Cao, et al., 2014) and because EBRW has been shown to be able to account for 

memory performance in Sternberg short-term memory tasks (Nosofsky, Cox, et al., 2014) and 

long-term recognition memory tasks (e.g., Nosofsky & Palmeri, 2015; Nosofsky & Stanton, 

2006). EBRW belongs to a class of similarity-based models. In the case of memory, old-new 

continuous recognition memory performance can be hypothesized to be a joint function of a test 

item’s similarity to stored exemplars in memory, the overall strength with which exemplars are 

stored, and the modulation of model memory strength due to decay as a function of lag. EBRW 

allows us to test alternative hypotheses regarding why drift rates vary with visual expertise, 

specifically asking whether similarity, memory strength, or rate of decay vary with visual 

expertise. This modeling framework allows us to test a rich set of alternative hypotheses 

regarding the relationship between visual expertise and visual recognition memory in a formal 

manner.  

 

Experiment 

Many different types of visual experts have been studied. Here we focus on bird experts. 

There are several reasons for this choice:  

Birding has been one of the canonical domains for studying how visual expertise 

modulates categorization (e.g., Tanaka & Taylor, 1991), memory (e.g., Herzmann & Curran, 

2011), functional brain imaging (e.g., Gauthier, Skudlarski, Gore, & Anderson, 2000), and 

electrophysiology (Tanaka & Curran, 2001). There are practical reasons why birding has been 

such a popular choice (Shen et al., 2014). There are millions of people who birdwatch in the US 

(La Rouche, 2006), making it far easier to recruit from a large and diverse population of bird 
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experts than from highly specialized professional domains of visual expertise. Birders regularly 

participate in citizen science efforts, such as formal and informal bird counts, and are often quite 

willing to participate in experiments aimed at understanding their expertise. By contrast, for 

certain domains of expertise, like radiology and dermatology, it can be practically difficult to 

recruit large numbers of professionals to participate in experiments, and for other domains, like 

latent fingerprint examination and baggage screening, it can be bureaucratically burdensome or 

even illegal for those professionals to participate (e.g., Wolfe, Brunelli, Rubinstein, & Horowitz, 

2013). In addition, compared to more esoteric or tightly controlled domains of expertise, there 

are hundreds of thousands of bird images readily obtainable online for use in visual cognition 

experiments.  

Until recently, doing expertise research was somewhat challenging because expert 

participants would need to be recruited locally using advertisements posted in the neighboring 

community (e.g., Herzmann & Curran, 2011) or through peer recommendations by other 

identified experts (e.g., Tanaka & Taylor, 1991), thereby limiting the number of experts who 

could potentially be recruited. The advent of online web-based experiments has made expertise 

research far easier. In the case of birding, we have identified online hundreds of birding 

organizations across North America, many of which have granted us permission to advertise our 

experiments through their email list, newsletter, Facebook group, or website. These birding 

societies attract birders with a wide range of experience and expertise, from individuals with an 

interest in birds but little expertise, to those who make a living – or could – from their birding 

expertise. Our web-based experiments also capitalize on the growing literature that demonstrates 

the validity of online studies (Crump, McDonnell, & Gureckis, 2013; Germine et al., 2012; 

Gosling, Vazire, Srivastava, & John, 2004; Reimers & Maylor, 2005; Reimers & Stewart, 2007). 
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Variability in timing across different keyboards, browsers, and monitors has been shown to be 

relatively small in comparison to participant variability in response time (Crump et al., 2013) and 

several classic studies using response times have been replicated online (e.g., Crump et al., 

2013), including classic studies of visual expertise (e.g., Shen et al., 2014). 

To study visual expertise, it is important to estimate the location of experts along the 

expertise continuum. Self-report measures of expertise have been used in some past studies, 

especially where the goal is simply to establish a group of experts to compare to a group of 

novices (e.g. Evans et al., 2011). However, self-report alone is often an inadequate measure of 

expertise (Ericsson, 2006; McGugin, Richler, Herzmann, Speegle, & Gauthier, 2012). Therefore, 

we used an objective, quantitative measure of visual expertise. We chose to use one widely-used 

measure derived from a subordinate matching task (Gauthier, Curran, Curby, & Collins, 2003; 

Gauthier et al., 2000; Hagen, Vuong, Scott, Curran, & Tanaka, 2014; McGugin & Gauthier, 

2010), which has been shown to predict both behavioral and brain changes that accompany 

visual expertise (e.g., Gauthier et al., 2000). On each trial of subordinate matching, the 

participant is sequentially presented pairs of birds (or cars) that are either the same or different 

species (or model) and the participant must distinguish between same versus different pairs. The 

discriminability (d’) for expert images (birds) versus non-expert images (cars) is used as the 

measure of birding expertise. 

In the Method section below, we first describe the details regarding participant 

recruitment and the subordinate matching task of expertise. We then describe the details of the 

continuous recognition memory task. 
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Method 

Participants 

 Fifty-four participants with a wide range of birding experience and expertise were 

recruited. Given the online nature of our experiments, we invited participation from a larger 

group of prospective participants who had previously registered on our web server, had 

completed a demographic questionnaire, and may have participated in previous online 

experiments in our lab. These participants had initially received advertisements or emails that 

had been directed at North American birding organizations. Of those who chose to accept our 

invitation, 8 self-reported as “beginner,” 20 as “intermediate,” and 26 as “expert”. All were given 

an opportunity to enter drawings for a 1/25 chance to win a $100 Amazon gift card. Twenty-one 

participants were female and 33 were male. Participants were between 22 and 72 years of age (M 

= 44.85, SD = 14.1). Participants gave informed consent to participate by electronically signing 

an informed consent form. 

 

Subordinate Matching Task 

 The subordinate matching task was identical to that used in McGugin and Gauthier 

(2010). The stimulus set was composed of greyscale bird (passerines) and car (sedans) images. 

There were 112 images per category. Each image was 250 x 250 pixels. Participants completed 4 

blocks of the subordinate matching task. Two blocks contained images of birds and two blocks 

contained images of cars. The order of the blocks and the order of the trials were kept constant 

across participants.  
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Participants completed 4 practice trials containing bird images before the first block 

containing birds and 4 practice trials containing car images before the first block containing cars. 

On each trial, participants were presented with an image of a bird or a car for 1000 ms followed 

by a mask presented for 500 ms. Immediately following the mask, a new bird or car image was 

presented that was either the same as or different from the previously presented species of bird or 

model of car. The task of the participant was to press the “d” key if the two images contained 

different species or models and “k” if the two images contained the same species or model. No 

corrective feedback was provided. 

 

Continuous Recognition Memory Task 

Immediately following the subordinate matching task, participants were presented with 

the instructions for the continuous recognition task. One-hundred color bird images (passerines) 

and 100 color car images (sedans) were used as stimuli in the continuous recognition task. Each 

image was 250 x 250 pixels. The sedan images were selected from the pool of images used by 

Herzmann and Curran (2011). We selected passerine bird images from a large pool of bird 

images collected from the internet. All images were cropped and placed on a blank background. 

Participants completed 4 blocks of a continuous recognition task. Each block contained 

either images of birds or images of cars on a blank background. The category of the initial block 

was counterbalanced across participants. Each successive block contained a different category 

than the previous block. Each block contained 50 new images of which 40 were repeated. Five of 

the remaining 10 images that were not repeated were used as filler items to ease the 

computational burden of list creation and 5 images were used as load items presented on the first 
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5 trials of the block. Each successive presentation of an image was intervened by either 1 (lag 2) 

or 15 (lag 16) intervening images; within each block, 20 images were repeated at lags of 2 and 

20 images were repeated at lags of 16. The order of the lists was randomized and generated anew 

for each participant such that lag 2 and lag 16 images were distributed uniformly across the list. 

The same image set was used for each participant. In order to ensure that lag was not confounded 

with list position, the list was divided in half and the frequency of lag 2 and the frequency of lag 

16 images was computed for each half of the list. A chi-squared test for uniformity was 

performed on the resulting frequency tables. Lists that failed the test at the .05 significance level 

were rejected and a new list was created in its place. We used lags of 2 and 16 because we had a 

limited amount of time that participants would be willing to complete an online experiment.  

On each trial of continuous recognition, the task was to press the “d” key if the current 

image was previously studied (old) and to press the “k” key if this was the first time the image 

was presented (new). The task was self-paced. Participants were instructed to place one left 

finger on the “d” key and one right finger on the “k” key. Eight practice trials with feedback 

were presented before beginning the actual experiment. Following the practice trials, participants 

were presented with each block. No feedback was provided during actual experimental trials. 

Following each block, the overall accuracy for the most recent block was shown to the 

participant. 

 

Results and Discussion 

 We trimmed the data such that responses greater than 6 s or less than 150 ms (~ 0.03% of 

responses) were omitted from the analysis. The difference in d’ between the bird and car 
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categories in the Subordinate Matching task was used as a measure of expertise (Herzmann & 

Curran, 2011). We refer to this measure as the expertise index or Δ𝑑′ and use this as a covariate 

in all subsequent analyses. In order to control for any age effects, we also included age as a 

covariate. We found that, in our sample of participants, age was negatively correlated with 

expertise, r(52) = -.30, p < .05 and that RTs for hits and correct rejections increased with age, 

r(52) = .41, p < .05 and r(52) = .37, p < .05, respectively; however, we found that age did not 

interact with category (bird or car) for any dependent measure and, therefore, we do not 

explicitly report analyses regarding age, but still include it as a covariate in our analyses. A 

detailed statistical analysis can be found in the Appendix. We report the main findings below. 

The expertise index, Δ𝑑$, ranged from -1.19 to 3.42 (M = 1.53, SD = .93); two 

participants had Δ𝑑$ scores less than or equal to 0, indicating greater car than bird expertise, with 

the remaining having Δ𝑑$ scores greater than 0. A 2 (category: bird vs. car) x 2 (lag: 2 vs. 16) 

repeated-measures ANCOVA was conducted with the expertise index (Δ𝑑$) and participant age 

as covariates. The left panel of Figure 1 shows accuracy as measured by d’ was greater in the 

bird condition (M = 2.28, SD = .80) than in the car condition (M = 1.34, SD = .40), F(1,51) = 

107.04, p < .0001, and was greater for lags of 2 (M  = 1.82, SD = .51) than for lags of 16 (M = 

1.64, SD = .49), F(1,51) = 12.69, p < .001. The category x lag interaction was not significant, 

F(1,51) = 3.44, p = .069. The right panel of Figure 1 shows d’ plotted as a function of expertise 

and lag for each category. There was a significant main effect of expertise, F(1,51) = 4.18, p < 

.05, and a significant expertise x category interaction, F(1,51) = 6.92, p < .05. Simple linear 

regression revealed that expertise predicted d’ for bird images (β = .33, p < .01, adjusted R2
 = 

0.13), but not for car images, (β = .01, p = .926, adjusted R2 = 0.00). Consistent with Herzmann 

& Curran (2011), there was a facilitating effect of expertise on recognition accuracy as measured 
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by d’ for images within the expert-domain only. This facilitating effect was not observed to 

significantly vary as a function of lag. 

In summary, visual expertise for birds had a facilitating effect on continuous recognition 

performance for bird images, but not for car images. Specifically, we observed increased 

accuracy as measured by d’ for expert domain stimuli. We also conducted an analysis on 

response time (see appendix), but did not observe such an interaction in the response times. 

Although we did not observe covariation in response time with expertise in memory, they 

nevertheless add important constraints for the model we develop in the next section in which we 

jointly model accuracy and response time in the LBA framework to investigate the relationship 

between visual expertise and continuous recognition memory performance.  

 

Modeling Methods 

 In this section, we measure how key psychological mechanisms vary with visual 

expertise using the LBA (Brown & Heathcote, 2008). An illustration of the LBA is shown in 

Figure 2. The LBA assumes that evidence for each response type, old and new, is accumulated 

over time in a linear fashion. A decision is made when the amount of evidence accumulated 

reaches a pre-determined threshold 𝑏. The rate at which evidence accumulates for each response 

type is given by the drift rates, 𝑑'() and 𝑑*+,. The drift rates are assumed to be drawn from 

normal distributions with mean 𝑣'() or 𝑣*+, and standard deviation s.  The difference in 𝑣'() 

given old vs. new stimuli we refer to as 𝑣′, where 𝑣′ = 𝑣'()|'() − 𝑣'()|*+,. Increases in v’ reflect 

increases in the ability to discriminate between old and new images, conceptually akin to d’ from 

signal detection theory.   
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The LBA also assumes that the starting point of evidence accumulation, a, varies 

between trials and is drawn from a uniform distribution between 0 and A. Between-trial 

variability allows the model to capture important differences between the correct and error 

response time distributions. The difference, k, between A and b, we refer to as the relative 

threshold. Differences in k reflect differences in response threshold, which is assumed to be at 

least partially under the control of the participant. As the participant decreases their response 

threshold, this increases the likelihood that an incorrect response will be made. Lastly, the time it 

takes to perceptually encode the stimulus and execute the motor response is given by the non-

decision-time parameter1, 𝜏.  

The relationship between visual expertise and three key components of the LBA model 

were examined: drift rate (v’), relative threshold (k), and non-decision time (𝜏). If visual 

expertise is associated with increases in the quality of evidence upon which recognition memory 

decisions are made, then v’ should increase with expertise in the bird condition compared to the 

car condition. If visual expertise is associated with increases in the efficiency of perceptual 

processing, then 𝜏 should decrease with expertise. If visual expertise is associated with 

differences in response threshold, then k should differ with expertise.  

We chose to implement our modeling in a Bayesian hierarchical framework (e.g., see 

Annis, Miller, & Palmeri, 2017; Annis & Palmeri, 2018; Kruschke, 2014; Lee & Wagenmakers, 

2014). Bayesian hierarchical models have been shown to increase the stability of the parameter 

estimates when there are low numbers of observed data points per participant and relatively high 

numbers of participants (Katahira, 2016; Kruschke & Vanpaemel, 2015). This is an important 

advantage given our online web-based experiments. One challenge of conducting web-based 

experiments is balancing the length of an experiment with the potential attrition rate. In an 
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uncontrolled web-based environment, it is not unlikely for a participant to simply quit an 

experiment with a click of a button, making them unlikely to participate in long or tedious 

experiments.  

This challenge can prove especially problematic when it comes to fitting models like 

LBA, which under conventional modeling methods require hundreds of trials per condition per 

participant to yield sufficient distributions of error and correct response needed to fit these 

models. In a sense, our modeling is a proof of concept that RT models like LBA can be fitted in a 

Bayesian hierarchical framework to data in online experiments with limited numbers of 

observations per participant and in our case that this modeling can reveal something about the 

mechanisms underlying memory in visual domain experts.  

All models were implemented using the Stan probabilistic programming language 

(Carpenter et al., 2016). We initially attempted to use the default MCMC algorithm in Stan, 

called NUTS, but found it required prohibitively long sampling times; we believe this was due to 

the high complexity of the LBA likelihood function and model structure. Therefore, we decided 

to use an alternative algorithm in Stan called automatic differentiation variational inference 

(ADVI; Kucukelbir, Tran, Ranganath, Gelman, & Blei, 2017), which was developed in order to 

scale Bayesian inference to big data and complex models. Variational inference minimizes the 

Kullback-Liebler divergence between the actual posterior and an approximation of the posterior 

by maximizing the evidence lower bound of the model (the expected joint density minus the 

entropy under the approximation) via stochastic gradient ascent. ADVI stops when the stochastic 

gradient ascent procedure can no longer improve the evidence lower bound according to a pre-

determined tolerance. Samples from the approximate posterior can then be drawn. Posterior 

estimates obtained with ADVI have been shown to accurately reflect those obtained with NUTS 



MODELING EXPERT MEMORY  16 
	

(Kucukelbir et al., 2017). For our model fits, we used the fullrank-ADVI algorithm and drew 

1000 samples following the completion of stochastic gradient descent. We set the relative 

tolerance to .003 (a value we found through pilot work that led to convergence of stable 

estimates) and used default parameters settings otherwise. 

 

Subordinate Matching Model 

First, the subordinate matching task was modeled using Bayesian Signal Detection 

Theory (Green & Swets, 1966; Lee, 2008b). For each participant i in condition j, the total 

number of hits (correct “same” responses) and false alarms (incorrect “same” responses) are 

assumed to follow a binomial distribution: 

where ℎ34 is the hit rate, 𝑓34 is the false alarm rate, and 𝑇 is the number of targets (same trials) 

and 𝐿 is the number of lures (different trials). The hit and false alarm rates are parameterized in 

terms of sensitivity, 𝑑34, and bias, 𝑐34: 

where Φ is the CDF of the standard normal distribution. Priors are placed on 𝑑34 and 𝑐34 

(following Lee, 2008a) such that 

 𝐻34 	~	Binomial ℎ34 , 𝑇 ,  

 𝐹34 	~	Binomial(𝑓34 , 𝐿),  

 ℎ34 = Φ
1

2
𝑑34 − 𝑐34 ,  

 𝑓34 = Φ −
1

2
𝑑34 − 𝑐34 ,  

 𝑑34 	~	Normal(𝜇4
) , 𝜎4

)),  
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The difference in sensitivity between the car category and bird category for each participant, ∆𝑑3, 

is used as an index of expertise (Herzmann & Curran, 2011). 

where 𝑑3
OPQ corresponds to the car category and 𝑑3

R3Q) corresponds to the bird category. We show 

below how Δ𝑑3 is used as a potential covariate within the LBA.  

The subordinate matching model and the LBA were fit simultaneously to the entirely of 

the observed data. Thus, the memory task informed parameter estimations in the subordinate 

matching task and vice versa. This is one advantage of using Bayesian hierarchical modeling 

methods. 

 

Linear Ballistic Accumulator 

For each participant i in category j given lag l, response time and response choice pairs, 

𝑹𝑻34(, are distributed according to the LBA:   

where A is fixed to 1 in order to make the model identifiable (Donkin, Brown, & Heathcote, 

2011) and 𝑠3 is the drift rate variability with the following priors:  

 𝑐34 	~	Normal 𝜇4
O , 𝜎4

O ,  

 𝜇) , 𝜇O 	~	Normal(0,2),  

 𝜎) , 𝜎O 	~	Gamma 1,1 .  

 Δ𝑑3 = 𝑑3
R3Q) − 𝑑3

OPQ ,  

 𝑹𝑻34( 	~	LBA(𝐴, 𝑠3 , 𝑣34(
$ , 𝑘34 , 𝜏34),  

 

𝑠3 	~	Normal 𝜇
], 𝜎] , 𝜇]	~	Normal 1,1 ,

 



MODELING EXPERT MEMORY  18 
	

All priors are roughly based on those that have been used in previous modeling work with the 

LBA (e.g., Turner, Sederberg, Brown, & Steyvers, 2013). We model 𝑣34(
$  directly and make 

𝑣34(
^()|^()

 a deterministic parameter: 

where  

[note: the notation, ∈ [0,∞), represents a truncated normal between 0 and infinity]. The 

remaining parameters are regressed on Δ𝑑3 (index of expertise for participant i): 

where 𝜇 is the grand mean, 𝜎 is the standard deviation, and 𝛽 is the regression coefficient. Priors 

on the grand means and standard deviations were mildly informative (Turner et al., 2013): 

𝜎]	~	Gamma 1,1 . 

 𝑣34(
^()|^()

=	𝑣34(
$ + 𝑣34(

^()|d+,
,  

 

𝑣34(
^()|d+,

	~	Normal 𝜇4(
efgh|ijk , σ4(

efgh|ijk , 

𝜇4(
efgh|ijk 	~	Normal 2, 2 ∈ 0,∞ , 

σ4(
efgh|ijk 	~	Gamma 1,1 . 

 

 

𝑣′34( 	~	Normal 𝜇4(
em + 𝛽4(

emΔ𝑑3 , 𝜎4(
em ,	

𝑘34 	~	Normal 𝜇4
n + 𝛽4

nΔ𝑑3 , 𝜎4
n 	 ∈ (0,∞),	

𝜏34 	~	Normal 𝜇4
o + 𝛽4

oΔ𝑑3 , 𝜎4
o 	 ∈ (0,∞), 

 

 

𝜇4(
em 	~	Normal 0,1  

𝜇4
n 	~	Normal 1,2 ∈ [0,∞) 

𝜇4
o	~	Normal . 5,1 ∈ [0,∞) 

 

 𝜎4(
em , 𝜎4

n , 𝜎4
o~	Gamma 1,1 .  
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The difference in the regression coefficients between category conditions is modeled directly as 

Δ𝛽	and the regression coefficient for the bird image condition becomes a deterministic 

parameter. For each regression weight, we have: 

A Savage-Dickey ratio test (Dickey, 1971; Wetzels, Grasman, & Wagenmakers, 2010) was 

performed on each Δ𝛽 in order to derive the Bayes factor for the expertise x category interaction. 

Priors on the regression coefficients follow standard normal distributions (Rouder, Morey, 

Verhagen, Swagman, & Wagenmakers, 2017; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 

2010).  

 

Modeling Results 

Before analyzing the relationship between visual expertise and the model parameters, we 

first determined whether the model was able to provide a reasonable account of the data. Our 

primary goal was to determine whether parameters varied with visual expertise, not to fit the data 

perfectly. Although we had quite low numbers of observations per participant compared to 

traditional fits of RT models, we found that the LBA model accounted for most of the data quite 

well with most correlations between predicted and observed well above .90. The model only had 

trouble on a subset of the data, the missed targets, which was probably because of the relatively 

 

𝛽R3Q),(
em = Δ𝛽(

em + 𝛽OPQ,(
em , 

𝛽R3Q)
n = Δ𝛽n 	+ 𝛽OPQ

n , 

𝛽R3Q)
o = Δ𝛽o 	+ 𝛽OPQ

o . 

 

 Δ𝛽(
qe , Δ𝛽n , Δ𝛽o, 𝛽OPQ,(

em , 𝛽OPQ
n , 𝛽OPQ

o ~	Normal 0,1 .  
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low number of observed misses (correlations between predicted and observed ranged from .56 to 

.81). 

Given that the model adequately accounted for the data, we then tested whether certain 

parameters varied with visual expertise. Specifically, we tested whether expertise interacted with 

category for each parameter using the Bayesian framework. The null hypothesis, ℋs, states that 

𝛽OPQ − 𝛽R3Q) = 0, and the alternative hypothesis, ℋt, states that 𝛽OPQ − 𝛽R3Q) ≠ 0. The Bayes 

factor indicates how much more likely the data are under the null hypothesis than the alternative 

hypothesis. When the Bayes factor is greater than 3 (Kass & Raftery, 1995), this is 

conventionally interpreted as positive support for the null hypothesis (in our case, no effect of 

expertise), and when the Bayes factor is less than 1/3, this indicates positive support for the 

alternative (in our case, an effect of expertise). We present a detailed discussion of the model fits 

followed by inferences on parameters. 

 

Model Fits  

Panel A of Figure 3 shows that the model was able to capture the increased hit rates in 

memory for bird images (expert) compared to the car images (novice). The model was also able 

to capture the steeper decline in hit rates as a function of lag for cars compared to birds. Panel B 

of Figure 3 shows the individual-level observed and predicted hit rates as a function of image 

category and lag. For recognition of birds, most participants had a high degree of accuracy and 

are clustered in the top right corners for lags of 2 and 16, which the model was able to capture (r 

= .96 and r = .98, respectively). Panel C of Figure 3 shows the model successfully captured the 

decrease in false alarm rates for birds compared to the cars at the group-level. Panel D of Figure 
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3 shows observed and predicted false-alarm rates for each category at the individual-level. The 

model was able to capture the overall increase in false alarm rates for cars (r = .96) while also 

accounting for more variation across participants for birds (r = .98). 

Panel A of Figure 4 shows the model was able to successfully capture the group-level 

response time quantiles for hits. Quantiles were computed by taking the response time for which 

10%, 50%, and 90% of the response times fell below. Note that the group-level data for misses, 

especially for birds, were quite noisy due to the relatively low number of observed misses, and 

the model fits slightly suffer because of this. Panel B of Figure 4, shows the 10%, 50%, and 90% 

individual-level predicted and observed response time quantiles for old items plotted as a 

function of category, response type, and lag. As was the case for the group-level response time 

data for misses, the low number of missed trials limits the ability of the model to produce perfect 

predictions. This is especially the case for birds, where the number of misses is very low (r = .61 

for lags of 2 and r = .56 for lags of 16). For cars, this is less of an issue because of the lower 

accuracy and hence higher number of misses (r = .81 for lags of 2 and r = .56 for lags of 16). 

However, for both the bird and car category, the model accurately predicts response times for 

hits for lags of 2 (r = .97 and r = .96, respectively) and 16 (r = .94 and r = .92, respectively). 

Panel C of Figure 4 shows the observed and predicted response time quantiles for new items for 

each category and response type. The model captures the overall response times for correct 

rejections and false alarms reasonably well. Panel D of Figure 4 shows the model was able to 

accurately predict participant-level response time quantiles of correct rejections and false alarms 

for both birds (r = .97 and r = .88, respectively) and cars (r = .96 and r = .92, respectively).  

 Overall, the model predictions were qualitatively satisfactory and captured all the major 

trends at both the group level and individual level. Quantitatively, the correlations between 
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predicted and observed hits and false alarm rates were very high, > .95. Correlations between 

predicted and observed response times were also high, >.87, except for response times for 

misses, where we observed moderate correlations, > .55.  

 

What LBA Model Parameters Covary with Expertise? 

Having adequately accounted for continuous recognition memory performance overall, 

we now move on to our main goal, to determine the relationship between visual expertise and 

model parameters. Figure 5 shows each LBA model parameter’s predicted value as a function of 

the expertise index (Δ𝑑′) and category (bird vs. car). Predictions were generated by obtaining the 

mean of 500 samples drawn from the distributions in Eq. 1, 2, and 3 for each posterior sample. 

We then obtained the grand mean over these means (solid line) and the 95% highest density 

interval (HDI; dotted line). This procedure was done over a fine-grained sequence of Δ𝑑′ values. 

For each parameter, we tested whether expertise differentially covaried with category. Bayes 

factors greater than 3 indicate positive support for the null hypothesis of no modulation of a 

model parameter with expertise for bird images (i.e., a null expertise x category interaction). 

Bayes factors less than 1/3 indicate positive support for the alternative hypothesis of significant 

modulation of a model parameter with expertise for bird images (i.e., a significant expertise x 

category interaction). Bayes factors falling between 1/3 and 3 are conventionally interpreted as 

not indicating positive support for either hypothesis. Bayes factors are denoted as BF throughout. 

We acknowledge that Bayes factors rely on the careful specification of priors that take 

into account, for example, the expected scale of the parameters. Given that our extension and 

application of the LBA is fairly novel, the grounds by which we specified priors were limited. 
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Therefore, in addition to reporting the Bayes factors, we also report the 95% HDI for each of the 

Δ𝛽 parameters the Bayes factor is based on, which is much less sensitive to the priors. We found 

agreement between the Bayes factors and HDIs on parameter estimates: When the Bayes factor 

indicated a null effect, the 95% HDI for Δ𝛽 included zero, and when the Bayes factor indicated a 

non-null effect, the HDI did not include zero. 

The top panel shows the predicted response threshold, k, as a function of the expertise 

index, Δ𝑑′, for both categories. The data provided strong evidence for a null expertise x category 

interaction, BF = 21.29, Δ𝛽n HDI [-.06, .09]; the posterior distributions of the regression 

coefficients on the expertise index for the car category, 𝛽OPQ
n , and bird category, 𝛽R3Q)

n , both had 

95% HDIs close to zero, [-.12, .04] and [-.11, -.01], respectively. Non-decision time, 𝜏, also did 

not show an interaction between category and expertise, BF = 115.64, Δ𝛽o HDI [-.02, .02]; the 

posterior distributions of the regression coefficients on the expertise index for the car category, 

𝛽OPQ
o , and bird category, 𝛽R3Q)

o , had 95% HDIs centered around or close to zero, [-.03, -.005] and 

[-.01, .03], respectively. Neither response threshold nor non-decision time varied with expertise 

for expert-domain images (birds). 

𝑣v
$  is plotted as a function of expertise and category; recall that 𝑣v′ is the difference in 

accumulation rates towards the old response between old stimuli at lags of 2 and new stimuli. 

Thus, 𝑣v′ can be conceptualized as a discriminability measure much like d’. The data provided 

strong evidence for a category x expertise interaction, BF = 1/333, Δ𝛽v
em HDI [.14, .32]. The 

posterior distributions of the regression coefficients on the expertise index in the car category, 

𝛽OPQ
ew
m

, and bird category, 𝛽R3Q)
ew
m

, had 95% HDIs that fell above zero, [.02, .11] and [.21, .41], 

respectively. Thus, 𝑣v
$  increased with expertise more so for bird images than for car images. 𝑣tx

$  
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also showed an interaction between category and expertise, BF = 1/10718, Δ𝛽tx
em HDI [.20, .35]. 

The posterior distribution for the regression coefficient on the expertise index for the car 

category, 𝛽OPQ
eyz
m

, had a 95% HDI that included zero [-.01, .06], while the coefficient for the bird 

category, 𝛽R3Q)
eyz
m

, had a 95% HDI that fell below zero, [.19, .37]. Thus, 𝑣tx
$  increased with 

increases in expertise in the bird category, but the data provide little to no evidence for this in the 

car category. Increases in visual expertise were accompanied by changes in 𝑣v
$  and 𝑣tx

$  for 

images in the domain of expertise, indicating an increase in the quality of evidence entering into 

the decision process with an increase in visual expertise.  

In addition, response threshold was shown to decrease with increases in visual expertise 

for both categories with no interaction. Recall from the statistical analyses, visual expertise was 

found to be negatively correlated with age, and age was found to be positively correlated with 

increased RTs. Therefore, the increases in response threshold with decreases in expertise might 

be due to age-related slowing. However, we merely speculate that this is the case because we did 

not include age as an explicit covariate in the model in order to reduce model complexity. More 

importantly, this result indicates that simple changes in threshold are not driving the increases in 

performance observed with increased visual expertise.  

Taken together, our results suggest that greater drift rates in memory decisions may 

accompany greater visual expertise for images in an expert domain. It is also important to note 

that the absence of an effect of expertise on non-decision time (𝜏) does not imply an absence of 

an effect of expertise on perceptual encoding mechanisms and perceptual representations. To the 

contrary, changes in drift rate likely reflect such changes (e.g., Palmeri & Cottrell, 2009; Palmeri 

& Tarr, 2008; Palmeri et al., 2004) because the quality of visual memory representations that 
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drive recognition memory decisions depend on the quality of perceptual representations. To 

further investigate the underlying memory processes that may be driving these differences in 

drift rates with expertise, we tested alternative hypotheses regarding visual expertise by 

modeling drift rates in an exemplar-based framework.  

 

Modeling Drift Rates 

So far, we showed that drift rate (and not threshold or non-decision time) in the LBA for 

memory decisions about expert-domain images increases with increases in visual expertise. 

Here, we test alternative hypotheses for how a model-based decomposition of drift rate into 

theoretical subcomponents might vary with visual expertise to more deeply understand the nature 

of expertise-driven changes in memory mechanisms. We extend a model developed by 

Nosofsky, Cox, et al. (2014) based on the Exemplar-Based Random Walk model (EBRW; 

Nosofsky & Palmeri, 1997, 2015; Palmeri, 1997). Nosofsky, Cox, et al. developed this model to 

account for short-term and long-term recognition memory in a Sternberg task, making it 

straightforward to extend as model of continuous recognition memory.  

The model assumes that on each trial of a continuous recognition memory task, a 

corresponding memory trace, an exemplar, is stored in memory. Illustrated in Figure 6 are three 

such exemplars currently stored in memory, 𝑒t, 𝑒v, and 𝑒|; this makes the current trial 4. The 

model assumes that memory decisions are based on the activation produced from a match 

between the test cue, the item currently being judged as old or new, and the exemplars stored in 

memory. The activation value for each stored exemplar is depicted as 𝜔t, 𝜔v, and 𝜔| in the 

figure. The familiarity of the test cue is a monotonically increasing joint function of the memory 
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strength (𝛼) associated with each exemplar and the similarity (𝜂) between the test cue and the 

activated set of exemplars. Memory strength is assumed to asymptotically decay (𝛾) as a 

function of lag. The summed activation of exemplars in turn drives an accumulation process in 

the LBA in which the drift rate corresponding to the old response, 𝑣'(), is proportional to this 

summed activation and 𝑣*+, is constrained to be equal to 1-𝑣'() (Nosofsky, Cox, et al., 2014). 

Of course, LBA is not a random walk model, and we are not using the random walk component 

of the EBRW. We are simply taking the front-end, the “theory of drift rates”, from EBRW and 

marrying it with the LBA – creating, in a sense, an EB-LBA.  

The model provides three key parameters to relate changes in visual expertise to changes 

in recognition memory performance: those associated with memory decay, overall memory 

strength, and similarity. If visual expertise is associated with changes in memory decay, then 

memory decay should decrease with expertise for the bird category and not the car category. If 

visual expertise is associated with increases in overall memory strength, then memory strength 

should increase with expertise. Lastly, if visual expertise is associated with changes in the 

distinctiveness of stored exemplars, then the similarity parameter should decrease with expertise. 

 

Exemplar-Based Random Walk Model 

Here we explicate details of the model outlined above. The model assumes that for 

participant i in category j, response time and choice pairs, 𝑹𝑻34(, are distributed according to the 

LBA using the drift rates, 𝑣34(
^(), defined by EBRW: 

 𝑹𝑻34( 	~	LBA(𝑣34(
^() , 1 − 𝑣34(

^() , 𝐴, 𝑠3 , 𝑘34 , 𝜏34),  
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Following Nosofsky, Cox, et al. (2014), drift rates are driven by the summed activation of 

a cue item to exemplars stored in memory:  

where 𝑟3 is the activation of background elements used as a criterion to compare the activation 

produced by the match between the cue and the exemplars stored in memory, and Ω34( is the total 

activation of all exemplars entered into the memory match process. We note that the connection 

between the rate of accumulation in the LBA and rate equations derived for EBRW (Nosofsky & 

Palmeri, 1997) is one by analogy only (Nosofsky, Cao, et al., 2014) and do not make a claim 

regarding the formal mathematical relationship between the two. The total activation is assumed 

to include the exemplars from the previous test position to the maximum lag in the design, G (the 

lag between the current position and the first position in the list): 

where 𝜔34� is the activation of a stored exemplar at lag g, 𝑒�. This activation is assumed to be the 

result of a matching process between the current test cue, t, and the stored exemplar 𝑒�. The 

activation is governed by the memory strength 𝑚34� of the stored exemplar scaled by the 

similarity	Φ(𝜂34) between the current test cue and the exemplar. When the current test cue is the 

same as the stored exemplar 𝑒�, similarity is set to 1. When the current test cue is not the same as 

the stored exemplar, then similarity is modeled as a real number, 𝜂, transformed by the CDF of 

 

𝑣34(
^() =

Ω34(

Ω34( + 𝑟3
	 , 

𝑣34(
d+, = 1 − 𝑣34(

^() , 

 

 Ω34( = 𝜔34�

�

��t

	,  
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standard normal distribution2, Φ, such that 0 < Φ 𝜂 < 1. Thus, the activation of a stored 

exemplar is given by: 

Memory strength, 𝑚34�, is assumed to be a decaying function of lag, 𝑔: 

where 𝛼34 is the memory strength asymptote, 𝜆34 is a scaling parameter, and 𝛾34 models memory 

decay. We regress the following EBRW parameters on Δ𝑑3:  

We used priors on the means based on best-fitting parameter values from Nosofsky, Cox, et al. 

(2014): 

Priors on standard deviations were weakly informative: 

𝜎4
�
, 𝜎4

� , 𝜎4
�
~	Gamma 1, .5 . 

We model the difference between the regression coefficients in the bird and car conditions as: 

 𝜔34� =
𝑚34�													, 𝑒� = 𝑡

Φ(𝜂34)𝑚34�, 𝑒� ≠ 𝑡,
  

 𝑚34� = 𝛼34 + 𝜆34𝑔
���� .  

 

𝛼34 	~	Normal 𝜇4
� + 𝛽4

�Δ𝑑3 , 𝜎4
� , 

𝜂34 	~	Normal 𝜇4
�
+ 𝛽4

�
Δ𝑑3 , 𝜎4

�
, 

𝛾34 	~	Normal 𝜇4
�
+ 𝛽4

�
Δ𝑑3 , 𝜎4

�
. 

 

𝜇4
�
, 𝜇4

�~	Normal 1,2 ∈ 0,∞ , 

𝜇4
�
	~	Normal −1.5,0.5 . 

 

𝛽R3Q)
�

= 	Δ𝛽� + 𝛽OPQ
�
, 

𝛽R3Q)
� = 	Δ𝛽� + 𝛽OPQ

� , 
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Priors on the regression coefficients follow standard normal distributions (Rouder et al., 2017).  

The remaining parameters of the EBRW not entered into the regression have the following priors 

based on values from Nosofsky, Cox, et al. (2014): 

Priors on standard deviations were weakly informative: 

𝜎Q~	Gamma 1,0.5 , 

𝜎4
�~	Gamma 1,1 . 

For the LBA, we regress threshold and perceptual encoding parameters on the expertise score 

Δ𝑑3: 

Priors for the LBA were chosen based on previous hierarchical modeling work with the LBA 

(e.g., Turner et al., 2013) and are the same as those we used in the previous LBA model: 

𝛽R3Q)
�

= 	Δ𝛽� + 𝛽OPQ
�

 

 Δ𝛽� , Δ𝛽� , Δ𝛽� , 𝛽OPQ
�
, 𝛽OPQ

� , 𝛽OPQ
�
~	Normal 0,1 .  

 

𝑟3 	~	Normal 𝜇
Q , 𝜎Q , 

𝜇Q~	Normal 1,2 , 

𝜆34 	~	Normal 𝜇4
�, 𝜎4

� , 

𝜇4
�~	Normal 1,1 . 

 

 

𝑘34 	~	Normal 𝜇4
n + 𝛽4

nΔ𝑑3 , 𝜎4
n 	 ∈ [0,∞),	

𝜏34 	~	Normal 𝜇4
o + 𝛽4

oΔ𝑑3 , 𝜎4
o 	 ∈ [0,∞), 

 

 

𝜇4
n 	~	Normal 1,2 ∈ 0,∞  

𝜇4
o	~	Normal . 5,1 ∈ 0,∞  

𝜎4
n , 𝜎4

o~	Gamma 1,1 . 
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The difference in the regression coefficients between category conditions is modeled directly as 

Δ𝛽: 

The priors are standard normal distributions (Rouder et al., 2017): 

The priors on the remaining parameters of the LBA are given by: 

The model was programmed in Stan (Carpenter et al., 2016). We drew 1000 samples from the 

approximate posterior after convergence of the ADVI procedure (Kucukelbir et al., 2017). 

Algorithm parameters were the same as those used in the previous fitting procedure. 

 

Modeling Results 

 We present the model predictions of the EBRW at the group and individual level. It is 

important to note that the EBRW is more constrained than the LBA. In the LBA, there is a 

separate accumulator for “old” and “new” responses for each lag for each condition giving it a 

total of 12 drift rates. By contrast, the EBRW constrains the sum of the drift rates to be one. In 

addition, these drift rates are not free parameters in the LBA but are constrained by a power law 

that decays as a function of lag.  

 

𝛽R3Q)
n = Δ𝛽n 	+ 𝛽OPQ

n , 

𝛽R3Q)
o = Δ𝛽o 	+ 𝛽OPQ

o . 
 

 Δ𝛽n , Δ𝛽o, 𝛽OPQ
n , 𝛽OPQ

o ~	Normal 0,1 .  

 

𝑠3~	Normal 𝜇
], 𝜎] , 

𝐴3~	Normal 𝜇
�, 𝜎� , 

𝜇], 𝜇�~	Normal 1,1 , 

𝜎], 𝜎�~	Gamma 1,1 . 
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Despite these constraints, we show that the EBRW predictions are similar to those of the 

more general LBA, where the only obvious shortcoming lies in the tails of the RT distributions at 

lags of 2. This slight cost is at the benefit of the theoretical drift rate decomposition, which 

further constrains the model and allowed us to investigate changes in underlying cognitive 

mechanisms that accompany visual expertise. This was our primary focus rather than achieving 

the best fit possible. To preview, we show that visual expertise is accompanied by increases in 

memory asymptote, governed by the 𝛼 parameter, and increases in the distinctiveness of 

exemplars, governed by the 𝜂 parameter. 

 

Model Predictions 

Panel A of Figure 7 shows the observed and predicted group-level accuracy as function 

of category and lag. While the model slightly overestimates the overall accuracy, it successfully 

captures the decrease in hit rates with increases in lag observed in the car condition as well as the 

similar hit rates across lags in the bird condition. Panel B of Figure 7 shows the predicted 

individual-level hit rates as a function of the observed hit rates for each lag and category (all r > 

.90). When compared to the individual-level fit of the baseline LBA in the previous section, the 

model appears to perform similarly. Panels C and D show that the model is able to accurately 

capture false alarm rates at both the group and individual level (r = .97 for birds and r = .96 for 

cars). 

Panel A of Figure 8 shows the observed and predicted response time quantiles for targets 

as a function of category, response type, and lag. The most obvious failure of the model is in the 

upper tails of the response time distributions for targets at lags of 2. Otherwise, the model 

captures the overall pattern of the response time distributions for hits. Panel B shows the 
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predictions for individual-level response time quantiles for misses in the bird condition are noisy 

due to the low number of observations (r = .59 at lags of 2 and r = .60 at lags of 16), especially at 

larger quantiles. For the car category, fits to response times for misses are slightly better due to 

the higher number of observations (r = .78 for lags of 2 and r  = .82 for lags of 16). Predictions 

for response times for hits for both the bird (r = .93 for lags of 2 and r = .92 for lags of 16) and 

car category (r = .94 for lags of 2 and r = .88 for lags of 16) are much better and the model only 

slightly overestimates the upper quantiles as was shown in the group-level fits. Panel C shows 

that the model captures the group-level response time data for foils. Panel D of Figure 8 shows 

that the model was able to successfully capture individual-level response times for false alarms 

and correct rejections in both the bird (r = .85 and r = .95, respectively) and car (r = .90 and r = 

.93, respectively) categories.  

Qualitatively, the overall fits for the EBRW model were satisfactory, but not quite as 

good as those obtained for the more general LBA model in which drift rate was simply a free 

parameter in every condition; the significant constraints that the EBRW places on the model 

resulted in a fit that was slightly worse. Quantitatively, correlations between predicted and 

observed hits and false alarm rates were high, r > .90. We also observed high correlations 

between predicted and observed response times except for misses, as was the case for the 

baseline LBA model. Given that the model captures most of the key trends in the data at the 

group and individual-level, we traded a slightly worse fit for improved theoretical insight into 

underlying memory processes.  
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What Causes Drift to Vary with Expertise? 

Figure 9 show the predicted parameter estimates as a function of the estimated expertise 

index. The top row shows the predicted memory asymptote parameter, 𝛼, as a function the 

expertise index, Δ𝑑′. The data provided strong evidence in favor of a category x expertise 

interaction, BF = 2.93 x 10-7, Δ𝛽� 95% HDI [1.37, 2.50]; the posterior distribution of the 

regression coefficient on the expertise index for the car category, 𝛽OPQ
� , had a 95% HDI that fell 

below zero, [-.31, -.17], where the 95% HDI for the bird category, 𝛽R3Q)
� , fell well above zero, 

[1.14, 2.29]. Thus, memory asymptote increased as visual expertise increased for the bird 

category but not for the car category. 

The memory decay parameter, 𝛾, did not show a category x expertise interaction, BF = 

4.59, Δ𝛽� 95% HDI [-.35, .47]; the 95% HDI of the regression coefficients on the expertise 

index for the car category, 𝛽OPQ
�

, and bird category, 𝛽R3Q)
�

, contained zero, [-.02, .20] and [-.26, 

.56], respectively. Thus, changes in visual expertise were not accompanied by changes in the rate 

of decay of exemplar activations. 

The similarity between exemplars showed an interaction between category and expertise, 

BF = 4.69 x 10-5, Δ𝛽� 95% HDI [-.37, -.22]; the posterior distribution of the regression weight 

on the expertise index for the car category, 𝛽OPQ
�

, had a 95% HDI that included zero, [-.07, .004], 

but the 95% HDI for the bird category, 𝛽R3Q)
�

, fell below zero [-.41, -.23]. Thus, the 

distinctiveness of exemplars increased as visual expertise increased for the bird category but not 

for the car category.  

There was no category x expertise interaction for response threshold, BF = 125.83, Δ𝛽n 

95% HDI [-.01, .02]. The posterior distributions of the regression coefficients on the expertise 
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index for the car category, 𝛽OPQ
n , and bird category, 𝛽R3Q)

n , had 95% HDI that fell below but close 

to zero, [-.04, -.01] and [-.04, -.02], respectively. Non-decision time also did not show a category 

x expertise interaction, BF = 27.91, Δ𝛽o 95% HDI [-.002, .03]. The posterior distributions of the 

regression coefficients on the expertise index for the car category, 𝛽OPQ
o , and bird category, 𝛽R3Q)

o , 

had 95% HDIs that included zero, [-.01, .03] and [-.02, .003], respectively. Thus, non-decision 

time did not vary with expertise. 

 

General Discussion 

Visual expertise is accompanied by better short-term and long-term recognition memory 

for images within an expert domain. While these empirical findings replicate past findings of the 

impact of expertise on short-term (e.g., Curby et al., 2009) and long-term memory (e.g., 

Herzmann & Curran, 2011), here we examined both within a continuous recognition memory 

task. We also went beyond past empirical work by comparing cognitive models that instantiated 

alternative hypotheses about the impact of expertise on memory processes.  

We first analyzed continuous recognition memory performance, including both accuracy 

and response times, using the Linear Ballistic Accumulator model (LBA; Brown & Heathcote, 

2008). LBA allowed us to decompose memory performance into three psychological components 

– perceptual encoding time, response threshold, and drift rate – and measure how these 

components varied with visual expertise.  

 The perceptual encoding time parameter is theoretically related to the efficiency of 

perceptual processing and comparing perceptual representations with memory representations. 

While there is good reason to think that the development of visual expertise may impact the 

efficiency of these initial stages of processing during memory tasks (e.g. Curby & Gauthier, 
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2007; Curby et al., 2009; Gauthier et al., 2000), we did not observe significant variation in 

perceptual encoding time with expertise. This is certainly not to say that perceptual encoding 

mechanisms do not change with visual expertise. In fact, it is quite likely that they do (e.g., 

Palmeri & Cottrell, 2009; Palmeri et al., 2004). While the time it takes for perceptual processing 

may not decrease with expertise (Mack & Palmeri, 2011), at least in the context of recognition 

memory, the quality of perceptual and memory representations may well increase with expertise, 

as reflected in the drift rate changes we observed with expertise. The null effect of expertise on 

non-decision time does not indicate a null effect of expertise on quality of perceptual and 

memory representations. In fact, our model provides direct evidence for this when we model drift 

rates directly.  

 Differences in LBA response threshold reflect differences in response threshold, which 

affect speed-accuracy tradeoffs. We observed an overall decrease in response threshold with 

visual expertise, but this was observed for both expert domain and non-expert domain images. 

Since these differences were not specific to an expert domain, we can only speculate as to what 

might drive this effect as we did not develop and test a formal model, but individual differences 

in confidence, motivational factors, or age might be possibilities. For example, expertise might 

increase confidence in the ability to remember domain-specific information and this confidence 

might leak over to blocks in the memory experiment containing non-expert domain stimuli, 

similarly affecting the decreased level of response threshold for non-expert images even at the 

cost of poorer memory performance. We did find that age was negatively correlated with 

expertise and was positively correlated with RTs. Therefore, the general threshold increases with 

expertise may reflect age-related slowing. Prior studies investigating the effects of aging on 

memory performance have also found increases in threshold with age. Older subjects aged 60-75 
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have been shown to have more conservative response thresholds compared to college-age 

subjects for recognition memory (Ratcliff, Thapar, & McKoon, 2004, 2011) and associative 

memory (Ratcliff et al., 2011). 

Drift rate reflects the quality of the evidence upon which a recognition memory decision 

is based. As previous studies have suggested (Herzmann & Curran, 2011; Lorenc et al., 2014), 

increases in visual expertise could well increase the quality of memory representations for 

images within a domain of expertise, which is consistent with our finding greater differences in 

drift rates for expert-domain versus non-expert-domain images with increases in visual expertise.  

 To probe further theoretically how visual memory processes might vary with visual 

expertise, we decomposed drift rate into potential theoretical subcomponents by applying an 

extension of the EBRW model (Nosofsky, Cox, et al., 2014). This model assumes that when an 

item is studied, its representation is encoded in long-term memory as an exemplar, and when an 

item is tested, its representation is matched with stored exemplars. This memory matching results 

in an activation for each stored exemplar and the summed activation across exemplars provides 

the drift rate for the LBA. We specifically assumed that memory activation is a joint function of 

the strength with which each exemplar is stored, its similarity to the test item, and the amount of 

decay that has occurred since the exemplar was first stored in memory. Thus, the EBRW 

provides three potential theoretical subcomponents – similarity, memory strength, and decay –

that could each vary with visual expertise. We observed significant variation in similarity and 

memory strength with visual expertise. 

 Increases in visual expertise were accompanied by decreases in the similarity of the 

stored exemplars for images in the expert domain. Decreases in similarity with increases in 

visual expertise could in turn be a result of better memory sensitivity, enhanced exemplar 
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representations, or more optimal selective attention to relevant dimensions. This increase in 

distinctiveness may be the result of increases in memory sensitivity, or the quality of the 

exemplar representations. This is consistent with prior findings for both short- and long-term 

recognition. In a visual short-term recognition task, Lorenc et al. (2014) found expertise for 

upright faces increased the quality of short-term memory representations. And in a visual long-

term recognition memory task, Herzmann and Curran (2011) found changes in car expertise to 

be correlated with changes in a parietal event-related potential associated with recollective 

processes, which depends on robust encoding of distinctive features. In the EBRW and other 

exemplar-based models, exemplars are represented as vectors of feature values. It may be the 

case that increases in visual expertise are the result of increases in the probability that features 

are correctly stored, thereby decreasing the overall amount of memory noise in the system 

(Nosofsky & Alfonso-Reese, 1999; Shiffrin & Steyvers, 1997), or that these representations 

become increasingly distant from one another in psychological space as visual expertise 

increases. Further work is needed to explore the representations in ways we did not do here. 

 Increases in visual expertise were also accompanied by an increase in memory strength. 

According to our EBRW-based modeling, memory traces were more strongly encoded for 

images within the expert domain. When the memory trace is viewed as a vector of feature values, 

stronger encoding might be realized by increasing the number of dimensions of the memory 

trace, thereby allowing for the possibility additional features to be stored. For example, birders 

use beak shape, eye shape, color, size, pattern, etc. to identify the particular species, each of 

which can be thought of as a dimension in the memory trace vector. As expertise increases, the 

number of dimensions that a birder can use might also increase. Storing additional features 
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should, in general, lead to increases in overall memory strength because the summed activation 

between the cue and the memory trace involves a larger number of summands.  

Beyond the specific findings of our modeling work, we demonstrate how the EBRW 

model can be applied to continuous recognition memory, a task it was not originally designed to 

do. Nosofsky, Cox, et al. (2014) presented participants with study lists varying in length from 1 

to 16 items and showed that both long-term and short-term recognition could be explained via a 

single exemplar-based model. Extending the Nosofsky, Cox, et al.’s exemplar-based framework 

as a front-end to the LBA, we found that the model also predicted performance across both long-

term and short-term lags, but now in a continuous recognition task. One implication of this 

successful application is that similar memory processes apply to both standard recognition and 

continuous recognition. Further research regarding the connection between the two tasks is 

needed. 

More importantly, we demonstrate how the combination of elements from EBRW and 

LBA can be applied theoretically to online experiments with real-world stimuli testing real-world 

experts, which often entails fitting models to heterogeneous individual participant data with 

relatively low numbers of observations per condition. By implementing the models in a Bayesian 

hierarchical framework, we were able to successfully fit the models to data with far lower 

numbers observations than is usually available. In hierarchical models, increases in participant 

sample size not only provide better group-level estimates, but also improved participant-level 

estimates (Kruschke, 2014). Traditional model fitting often obtains large numbers of 

observations per condition, either by testing a small number of individual participants for many 

sessions, or by aggregating over large numbers of participants. Because we neither had large 

numbers of observations per participant nor aggregated over participants, our model fits are 
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perhaps quite a bit noisier than what might be expected for cognitive modeling. To be clear, our 

primary focus was on evaluating theoretical questions concerning how model parameters varied 

with visual expertise, testing by means of the magnitudes of Bayes Factors, not aiming for 

observed vs. predicted plots with maximally significant correlations. 

 

Conclusion 

 Visual expertise has a facilitating effect on visual object recognition memory for expert-

domain objects and has been found for both short- and long-term recognition memory 

performance. Although prior work suggests changes to underlying representations for expert-

domain stimuli drives changes in performance, a formal account of this relationship did not exist. 

In the present work, we used a formal cognitive modeling approach that relates visual expertise 

and visual recognition memory performance via cognitive processes. Our approach was a two-

step process where we first measured how these cognitive processes changed with visual 

expertise followed by testing why they changed. We recruited participants with varying levels of 

visual expertise and presented a continuous recognition task designed to measure both short- and 

long-term recognition memory within a single experiment. We found, for the first time within a 

cognitive modeling framework, visual expertise to be accompanied by changes in the underlying 

representations of expert-domain stimuli. In addition, we also demonstrate the capabilities and 

advantages of the Bayesian hierarchical framework in the context of online experiments with low 

numbers of trials. 
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Notes 

1
	In this article, we have chosen to focus our discussion on interpreting differences in the non-

decision time parameter with expertise as due to differences in perceptual processing time 
(perceptual efficiency); even though we focus on “perceptual” differences, we acknowledge an 
important caveat that perceptual and motor times are simply additive and differences in the 
parameter could reflect differences in motor execution time. 
	

2
	Similarity is often derived from a multidimensional scaling solution based on similarity ratings 

between all stimulus pairs. Because of the large number of stimuli required for the continuous 
recognition memory task, obtaining pairwise similarity ratings was not feasible. We note there 
has been some advancements towards this end recently (e.g., Nosofsky, Sanders, Meagher, & 
Douglas, 2017), but these techniques are beyond the scope of the present work.  
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Appendix 

Panel A of Figure A1 shows hit rates plotted as a function of lag for each category. A 

two-way repeated measures ANCOVA with expertise and age as covariates revealed hit rates 

were significantly greater in the bird condition (M = .89, SD = .14) than in the car category (M = 

.79, SD = .12), F(1,51) = 40.95, p < .0001, and were significantly greater for lags of 2 (M = .86, 

SD = .09) than for lags of 16 (M = .82, SD = .11), F(1,51) = 18.65, p < .0001. The main effects 

are qualified by a significant category x lag interaction, F(1,51) = 8.63, p < .01. A simple effects 

analysis revealed hit rates for the bird category did not significantly differ between lags of 2 (M 

= .90, SD = .10) and lags of 16 (M = .88, SD = .13), t(53) = 1.64, p = .108, but for the car 

category, hit rates were significantly greater for lags of 2 (M = .82, SD = .11) than for lags of 16 

(M = .75, SD = .14), t(53) = 4.59, p < .001. Panel B of Figure A1 shows the hit rates plotted as a 

function of expertise and lag for each category. The main effect of expertise on hit rates was not 

significant, F(1,51) = .04, p = .84. There was a significant expertise x category interaction, 

F(1,51) = 7.44, p < .01. However, expertise did not predict hit rates for birds (β = .03, p = .09, 

adjusted R2 = .04) or cars (β = -.03, p = .054, adjusted R2 = .05). Therefore, the influence of 

visual expertise on hit rates varied between the bird and car categories, but expertise was not 

predictive of hit rates in either category. 

Panel C of Figure A1 show the false alarm rates for each category. A one-way (category: 

birds vs. cars; covariates: expertise, age) repeated measures ANCOVA revealed false alarm rates 

for the bird category (M = .20, SD = .15) were significantly lower than for car images (M = .32, 

SD = .12), F(1,51)  = 51.79, p < .0001. Panel D of Figure A1 shows there was a significant main 

effect of expertise on false alarms, F(1,52) = 4.45, p < .05, such that false alarms decreased with 

increases in expertise, (β = -.04, p < .05, adjusted R2 = .07). The expertise x category interaction 
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for false alarm rates was not significant, F(1,52) = .07, p = .792. Thus, expertise was 

accompanied by a decrease in false alarms, but this decrease did not significantly differ between 

the bird and car categories. 

Response time (RT). A two-way ANCOVA with expertise and age as covariates was 

conducted on median RTs for hits. Panel A of Figure A2 shows median RTs for hits were 

significantly faster for lags of 2 (M = 864.92, SD = 125.96) than for lags of 16 (M = 965.93, SD 

= 134.66), F(1,51) = 84.57, p < .0001, but did not significantly differ between category, F(1,52) 

= .24, p = .628. The category x lag interaction was not significant, F(1,52) = 1.20, p =.28. Panel 

B of Figure A2 shows there was no significant main effect of expertise on median RTs for hits, 

F(1,52) = 1.81, p = .04 and no expertise x category interaction, F(1,52) = .00, p = .963, or lag, 

F(1,52) = .19, p = .662. Thus, expertise was not accompanied by changes in response time for 

hits.  

A two-way ANCOVA with expertise and age as covariates was conducted on median 

RTs for misses with six participants removed from the analysis due to not having missed any 

targets in at least one condition. Panel A of Figure A2 shows there was no significant main effect 

of category, F(1,45) = .05, p = .824, or lag on median RTs for misses, F(1,45) = 1.39, p = .244. 

The category x lag interaction was not significant, F(1,45) = 1.07, p = .306. Panel B of Figure 

A2 shows there was no significant main effect of expertise, F(1,45) =  .21, p = .650, no 

significant expertise x category interaction, F(1,45) = 1.83, p = .2183, and no significant 

expertise x lag interaction, F(1,45) = .54, p = .467. Thus, changes in visual expertise were not 

accompanied by changes in response times for misses. 

A one-way (category: bird vs. car) ANCOVA with expertise and age as covariates was 

conducted on median RTs for false alarms. Panel C of Figure A2 shows median RTs for false 
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alarms were significantly slower in the bird condition (M = 1081.62, SD = 191.77) than in the car 

condition (M = 1049.08, SD = 223.23), F(1,51) = 14.53, p < .001. Panel D of Figure A2 shows 

there was no significant main effect of expertise, F(1,52) = 1.23, p = .273, and no significant 

expertise x category interaction, F(1,52) = .07, p = .800. Thus, there were group-level effects in 

which RTs for false alarms were slower in the bird condition, but at the individual-level, 

expertise was not associated with changes in RTs for false alarms. 

Panel C of Figure A2 shows median RTs for correct rejections did not significantly differ 

between conditions, F(1,51) = 2.09, p = .154. Panel D shows there was a main effect of 

expertise, F(1,51) = 5.83, p < .05, but no interaction, F(1,51) = .41, p = .52. A multiple 

regression analysis with age and expertise as predictors revealed that median correct rejection 

RTs decreased with increased expertise, (β = -64.23, p < .05) and RTs increased with increased 

age (β = 3.68, p < .05). Because visual expertise was negatively correlated with age, r(51) = -.30, 

p < .05, decreases in correct rejection RTs may be due to age-related slowing.  
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Figure 1. The left panel plots d’ as a function of lag and category. The right panel shows d’ for 

each participant as a function of expertise index and lag for each category.   
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Figure 2. The Linear Ballistic Accumulator model. After stimulus presentation, the stimulus is 

perceptually encoded with time 𝜏, and evidence begins to accumulate towards either the old or new 

response. The rate at which evidence accumulates for each response type is given by the drift rates, 𝑑'() 

and 𝑑*+,. The drift rates are assumed to be drawn from corresponding normal distribution with mean 

𝑣'() or 𝑣*+, and standard deviation s. The LBA assumes that the starting point of each accumulator 

varies from trial to trial, where the starting point is drawn from a uniform distribution from 0 to A. The 

response threshold is given by A + k, where k is referred to as the relative threshold. When an 

accumulation process reaches its threshold, the corresponding old or new response is made. 
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Figure 3. Panel A shows group-level fits of the LBA to the hit rates as a function of lag. Panel B shows 

predicted hit rates plotted as a function observed hit rates for each participant. Panel C shows fits of the 

model to false alarm rates for each category. Panel D shows the predicted false alarm rates as a function 

of the observed false alarm rates for each participant. 
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Figure 4. Panel A shows group-level fits of the LBA to the hit rates as a function of lag. Panel B shows 

predicted hit rates plotted as a function observed hit rates for each participant. Panel C shows fits of the 

model to false alarm rates for each category. Panel D shows the predicted false alarm rates as a function 

of the observed false alarm rates for each participant. 
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Figure 6. A graphical representation of the EBRW model for continuous recognition. The cue is matched 

in parallel to the activated set of stored exemplars, shown here as 𝑒t, 𝑒v, and 𝑒|. The matching process 

results in an activation value for each exemplar, shown here as 𝜔t, 𝜔v and 𝜔|. These activations are a 

joint function of the overall memory strength of the stored exemplar, 𝛼, the similarity between the cue 

and exemplar, s, and the amount of memory decay that has occurred since storage, 𝛾. These activations 

are then summed and normalized, which is then used as the mean drift rate in the accumulator for the 

“old” response. The mean of the new drifts rate is computed by subtracting the sum of the activations 

from 1.  
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Figure 7. Panel A shows group-level fits of the EBRW to the hit rates as a function of lag. Panel B shows 

predicted hit rates plotted as a function observed hit rates for each participant. Panel C shows fits of the 

model to false alarm rates for each category. Panel D shows the predicted false alarm rates as a function 

of the observed false alarm rates for each participant. 
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Figure 8. Panel A shows group-level fits of the EBRW to hit and miss RT quantiles (10%, 50%, 90%) as 

a function of lag. Quantiles Panel B shows predicted hit and miss RTs plotted as a function observed hit 

rates for each participant. Panel C shows fits of the model to false alarm and correct rejection RT 

quantiles for each category. Panel D shows the predicted individual-level RT quantiles as a function of 

the observed quantile for each participant.  
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Figure 9. Solid lines show the mean posterior predicted value for each key parameter of the EBRW as a 

function of the expertise index for each category. Dotted lines show the 95% highest density interval. 

Parameter meanings: 𝛼: overall memory strength; 𝛾: memory decay; 𝜂: similarity, k: response threshold; 

𝜏: non-decision time. 
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Figure A1. Panel A shows the hit rate as a function of lag and category. Panel B shows the individual-

level hit rates as a function of expertise index and lag for each category with simple linear regression 

lines. Panel C shows the false alarm rates as a function category and Panel D shows the false alarm rates 

as a function of expertise index and category with regression lines. 
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Figure A2. Panel A shows the median hit and miss RTs as a function lag and category. Panel B shows the 

participant-level median hit and miss RTs as function of their expertise index for each category and lag. 

Lines represent simple linear regression lines. Panel C shows the median false alarm and correct rejection 

RTs as a function of category. Panel D shows the participant-level false alarm and correct rejections as a 

function of their expertise index for each category. 

 

 


