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Abstract

We propose a deep learning-based approach to the problem of premise selection:
selecting mathematical statements relevant for proving a given conjecture. We
represent a higher-order logic formula as a graph that is invariant to variable
renaming but still fully preserves syntactic and semantic information. We then
embed the graph into a vector via a novel embedding method that preserves the
information of edge ordering. Our approach achieves state-of-the-art results on the
HolStep dataset, improving the classification accuracy from 83% to 90.3%.

1 Introduction

Automated reasoning over mathematical proofs is a core question of artificial intelligence that dates
back to the early days of computer science [1]. It not only constitutes a key aspect of general
intelligence, but also underpins a broad set of applications ranging from circuit design to compilers,
where it is critical to verify the correctness of a computer system [2, 3, 4].

A key challenge of theorem proving is premise selection [5]: selecting relevant statements that are
useful for proving a given conjecture. Theorem proving is essentially a search problem with the
goal of finding a sequence of deductions leading from presumed facts to the given conjecture. The
space of this search is combinatorial—with today’s large mathematical knowledge bases [6, 7], the
search can quickly explode beyond the capability of modern automated theorem provers, despite
the fact that often only a small fraction of facts in the knowledge base are relevant for proving a
given conjecture. Premise selection thus plays a critical role in narrowing down the search space and
making it tractable.

Premise selection has been mainly tackled as hand-designed heuristics based on comparing and
analyzing symbols [8]. Recently, some machine learning methods have emerged as a promising
alternative for premise selection, which can naturally be cast as a classification or ranking problem.
Alama et al. [9] trained a kernel-based classifier using essentially bag-of-words features, and demon-
strated large improvement over the state of the art system. Alemi et al. [5] were the first to apply
deep learning approaches to premise selection and demonstrated competitive results without manual
feature engineering. Kaliszyk et al. [10] introduced HolStep, a large dataset of higher-order logic
proofs, and provided baselines based on logistic regression and deep networks.

In this paper we propose a new deep learning approach to premise selection. The key idea of our
approach is to represent mathematical formulas as graphs and embed them into vector space. This
is different from prior work on premise selection that directly applies deep networks to sequences
of characters or tokens [5, 10]. Our approach is motivated by the observation that a mathematical
formula can be represented as a graph that encodes the syntactic and semantic structure of the formula.
For example, the formula ∀x∃y(P (x) ∧ Q(x, y)) can be expressed as the graph shown in Fig. 1,
where edges link terms to their constituents and connect quantifiers to their variables.
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Figure 1: The formula ∀x∃y(P (x) ∧Q(x, y)) can be represented as a graph.

Our hypothesis is that such graph representations are better than sequential forms because a graph
makes explicit key syntactic and semantic structures such as composition, variable binding, and
co-reference. Such an explicit representation helps the learning of invariant feature representations.
For example, P (x, T (f(z) + g(z), v)) ∧Q(y) and P (y) ∧Q(x) share the same top level structure
P ∧Q, but such similarity would be less apparent and harder to detect from a sequence of tokens
because syntactically close terms can be far apart in the sequence.

Another benefit of a graph representation is that we can make it invariant to variable renaming
while preserving the semantics. For example, the graph for ∀x∃y(P (x) ∧ Q(x, y) (Fig. 1) is the
same regardless of how the variables are named in the formula, but the semantics of quantifiers and
co-reference is completely preserved—the quantifier ∀ binds a variable that is the first argument of
both P and Q, and the quantifier ∃ binds a variable that is the second argument of Q.

It is worth noting that although a sequential form encodes the same information, and a neural network
may well be able to learn to convert a sequence of tokens into a graph, such a neural conversion
is unnecessary—unlike parsing natural language sentences, constructing a graph out of a formula
is straightforward and unambiguous. Thus there is no obvious benefit to be gained through an
end-to-end approach that starts from the textual representation of formulas.

To perform premise selection, we convert a formula into a graph, embed the graph into a vector,
and then classify the relevance of the formula. To embed a graph into a vector, we assign an initial
embedding vector for each node of the graph, and then iteratively update the embedding of each
node using the embeddings of its neighbors. We then pool the embeddings of all nodes to form
the embedding of the entire graph. The parameters of each update are learned end to end through
backpropagation. In other words, we learn a deep network that embeds a graph into a vector; the
topology of the unrolled network is determined by the input graph.

We perform experiments using the HolStep dataset [10], which consists of over two million conjecture-
statement pairs that can be used to evaluate premise selection. The results show that our graph-
embedding approach achieves large improvement over sequence-based models. In particular, our
approach improves the state-of-the-art accuracy on HolStep by 7.3%.

Our main contributions of this work are twofold. First, we propose a novel approach to premise
selection that represents formulas as graphs and embeds them into vectors. To the best our knowledge,
this is the first time premise selection is approached using deep graph embedding. Second, we
improve the state-of-the-art classification accuracy on the HolStep dataset from 83% to 90.3%.

2 Related Work

Research on automated theorem proving has a long history [11]. Decades of research has resulted in a
variety of well-developed automated theorem provers such as Vampire [12] and E [13]. However, no
existing automated provers can scale to large mathematical libraries due to combinatorial explosion
of the search space. This limitation gave rise to the development of interactive theorem proving [11]
such as Coq [14] and Isabelle [15], which combines humans and machines in theorem proving and
has led to impressive achievements such as the proof of the Kepler conjecture [16] and the formal
proof of the Feit-Thompson problem [17].

Premise selection as a machine learning problem was introduced by Alama et al. [9], who constructed
a corpus of proofs to train a kernelized classifier using bag-of-word features that represent the
occurrences of terms in a vocabulary. Deep learning techniques were first applied to premise selection
in the DeepMath work by Alemi et al. [5], who applied recurrent networks and convolutional to
formulas represented as textual sequences, and showed that deep learning approaches can achieve
competitive results against baselines using hand-engineered features. Serving the needs for large
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datasets for training deep models, Kaliszyk et al. [10] introduced the HolStep dataset that consists of
2M statements and 10K conjectures, an order of magnitude larger than the DeepMath dataset [5].

A related task to premise selection is internal guidance of ATPs [18, 19, 20, 21, 22, 23, 24], the
selection of the next clause to process inside an automated theorem prover. Internal guidance differs
from premise selection in that internal guidance depends on the logical representation, inference
algorithm, and current state inside a theorem prover, whereas premise selection is only about picking
relevant statements as the initial input to a theorem prover that is treated as a black box. Because
internal guidance is tightly integrated with proof search and is invoked repeatedly, efficiency is as
important as accuracy, whereas for premise selection efficiency is not as critical.

Loos et al. [25] were the first to apply deep networks to internal guidance of ATPs. They experimented
with both sequential representations and tree representations (recursive neural networks [26, 27]).
Note that their tree representations are simply the parse trees, which, unlike our graphs, are not
invariant to variable renaming and do not capture how quantifiers bind variables. Whalen [23] uses
GRU networks to guide the exploration of partial proof trees, with formulas represented as sequences
of tokens.

In addition to premise selection and internal guidance, other aspects of theorem proving have also
benefited from machine learning. For example, Kühlwein & Urban [28] applied kernel methods to
strategy finding, the problem of searching for good parameter configurations for an automated prover.
Similarly, Bridge et al. [29] applied SVM and Gaussian Processes to select good heuristics, which
are collections of standard settings for parameters and other decisions.

Our graph embedding method is related to a large body of prior work on embeddings and graphs.
Deepwalk [30], LINE [31] and Node2Vec [32] focus on learning node embeddings. Similar to
Word2Vec [33, 34], they optimize the embedding of a node to predict nodes in a neighborhood.
Recursive neural networks [35, 27] and Tree LSTMs [36] consider embeddings of trees, a special
type of graphs. Misra & Artzi [37] embed tree representations of typed lambda calculus expressions
into vectors, with variable nodes labeled with only their types. This leads to invariance to variable
renaming, but is not entirely lossless in terms of semantics. If a formula contains multiple variables
of the same type but with different names, it is not possible to know which lambda abstraction binds
which variable.

Neural networks on general graphs were first introduced by Gori et al [38] and Scarselli et al [39].
Many follow-up works [40, 41, 42, 43, 44, 45] proposed specific architectures to handle graph-based
input by extending recurrent neural network to graph data [38, 41, 42] or making use of graph
convolutions based on spectral graph theories [40, 43, 44, 45, 46]. Our approach is most similar to
the work of [40], where they encode molecular fragments as neural fingerprints with graph-based
convolutions for chemical applications. But to the best of our knowledge, no previous deep learning
approaches on general graphs preserve the order of edges. In contrast, we propose a novel way of
graph embedding that can preserve the information of edge ordering, and demonstrate its effectiveness
for premise selection.

3 FormulaNet: Formulas to Graphs to Embeddings

3.1 Formulas to Graphs

We consider formulas in higher-order logic [47]. A higher-order formula can be defined recursively
based on a vocabulary of constants, variables, and quantifiers. A variable or a constant can act as a
value or a function. For example, ∀f∃x(f(x, c) ∧ P (f)) is a higher-order formula where ∀ and ∃ are
quantifiers, c is a constant value, P,∧ are constant functions, x is a variable value, and f is both a
variable function and a variable value.

To construct a graph from a formula, we first parse the formula into a tree, where each internal node
represents a constant function, a variable function, or a quantifier, and each leaf node represents a
variable value or a constant value. We then add edges that connect a quantifier node to all instances of
its quantified variables, after which we merge (leaf) nodes that represent the same constant or variable.
Finally, for each occurrence of a variable, we replace its original name with VAR, or VARFUNC if it
acts as a function. Fig. 2 illustrates these steps.

3



x

f

f P

x x fc VAR

f

f

P

c x

P

c

VARFUNC

(a) (b) (c) (d)

VAR

Figure 2: From a formula to a graph: (a) the input formula; (b) parsing the formula into a tree; (c)
merging leaves and connecting quantifiers to variables; (d) renaming variables.

Formally, let S be the set of all formulas, Cv be the set of constant values, Cf the set of constant
functions, Vv the set of variable values, Vf the set of variable functions, and Q the set of quantifiers.
Let s be a higher-order logic formula with no free variables—any free variables can be bounded
by adding quantifiers ∀ to the front of the formula. The graph Gs = (Vs, Es) of formula s can be
recursively constructed as follows:

• if s = α, where α ∈ Cv ∪ Vv , then Gs ← ({α}, ∅), i.e. the graph contains a single node α.

• if s = f(s1, s2, . . . , sn), where f ∈ Cf ∪ Vf and s1, . . . , sn ∈ S, then we perform
G′

s ← (
⋃n

i Vsi ∪ {f},
⋃n

i Esi ∪ {(f, ν(si))}i) followed by Gs ← MERGE_C(G′

s), where
ν(si) is the “head node” of si and MERGE_C is an operation that merges the same constant
(leaf) nodes in the graph.

• if s = φxt, where φ ∈ Q, t ∈ S, x ∈ Vv ∪ Vf , then we perform G′′

s ←
(

Vt ∪ {f}, Et ∪ {(φ, ν(t))
⋃

v∈Vt[x]
{(φ, v)}

)

, followed by G′

s ← MERGEx(G
′′

s ) if x ∈

Vv ∪ Vf and Gs ← RENAMEx(G
′

s), where Vt[x] is the nodes that represent the variable x in
the graph of t, MERGEx is an operation that merges all nodes representing the variable x into
a single node, and RENAMEx is an operation that renames x to VAR (or VARFUNC if x acts as
a function).

By construction, our graph is invariant to variable renaming, yet no syntactic or semantic information
is lost. This is because for a variable node (either as a function or value), its original name in the
formula is irrelevant in the graph—the graph structure already encodes where it is syntactically and
which quantifier binds it.

3.2 Graphs to Embeddings

To embed a graph to a vector, we take an approach similar to performing convolution or message
passing on graphs [40]. The overall idea is to associate each node with an initial embedding and
iteratively update them. As shown in Fig. 3, suppose v and each node around v has an initial
embedding. We update the embedding of v by the node embeddings in its neighborhood. After
multi-step updates, the embedding of v will contain information from its local strcuture. Then we
max-pool the node embeddings across all of nodes in the graph to form an embedding for the graph.

To initialize the embedding for each node, we use the one-hot vector that represents the name of the
node. Note that in our graph all variables have the same name VAR (or VARFUNC if the variable acts
as a function), so their initial embeddings are the same. All other nodes (constants and quantifiers)
each have their names and thus their own one-hot vectors.

We then repeatedly update the embedding of each node using the embeddings of its neighbors. Given
a graph G = (V,E), at step t+ 1 we update the embedding xt+1

v of node v as follows:

xt+1
v = F t

P

(

xt
v +

1

dv

[

∑

(u,v)∈E

F t
I (x

t
u, x

t
v) +

∑

(v,u)∈E

F t
O(x

t
v, x

t
u)
])

, (1)

where dv is the degree of node v, F t
I and F t

O are update functions using incoming edges and outgoing
edges, and F t

P is an update function to conbine the old embeddings with the new update from neighbor
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Table 1: Classification accuracy on the test set of our approach versus baseline methods on HolStep
in the unconditional setting (conjecture unknown) and the conditional setting (conjecture given).

CNN [10] CNN-LSTM [10] FormulaNet-basic FormulaNet
Unconditional 83 83 89.0 90.0
Conditional 82 83 89.1 90.3

function (FP , FI , FO, FL, FH , FR in Eqn. 2) is applied to all nodes in parallel. This is the same as
training each update function as a standalone network with a batch of input examples. Thus regular
batch normalization can be directly applied to the inputs of each update function within a single
graph, as shown in Fig. 4(a)(b).

Furthermore, this batch normalization within a graph can be run in the training mode even when we
are only performing inference to embed a graph, because there are multiple input examples to each
update function within a graph. Another level of batching is the regular batching of multiple graphs
in training, as is necessary for training the classifier. As usual, batch normalization across graphs is
done in the evaluation mode in test time.

We also apply intermediate supervision after each step of embedding update using a separate classifier.
For training, our loss function is the sum of cross-entropy losses for each step. We use the prediction
from the last step as our final predictions.

4.4 Main Results

Table 1 compares the accuracy of our approach versus the best existing results [10]. Our approach
improves the best existing result by a large margin from 83% to 90.3% in the conditional setting
and from 83% to 90.0% in the unconditional setting. We also see that FormulaNet gives a 1% im-
provement over the FormulaNet-basic, validating our hypothesis that the order of function arguments
provides useful cues.

Consistent with prior work [10], conditional and unconditional selection have similar performances.
This is likely due to the data distribution in HolStep. In the training set, only 0.8% of the statements
appear in both a positive statement-conjecture pair and a negative statement-conjecture pair, and the
upper performance bound of unconditional selection is 97%. In addition, HolStep contains 9,999
unique conjectures but 1,304,888 unique statements for training, so it is likely easier for the network
to learn useful patterns from statements than from conjectures.

We also apply Deepwalk [30], an unsupervised approach for generating node embeddings that is
purely based on graph topology without considering the token associated with each node. For each
formula graph, we max-pool its node embeddings and train a classifier. The accuracy is 61.8%
(conditional) and 61.7% (unconditional). This result suggests that for embedding formulas it is
important to use token information and end-to-end supervision.

4.5 Ablation Experiments

Invariance to Variable Renaming One motivation for our graph representation is that the meaning
of formulas should be invariant to the renaming of variable values and variable functions. To achieve
such invariance, we perform two main transformations of a parse tree to generate a graph: (1) we
convert the tree to a graph by linking quantifiers and variables, and (2) we discard the variable names.

We now study the effect of these steps on the premise selection task. We compare FormulaNet-basic
with the following three variants whose only difference is the format of the input graph:

• Tree-old-names: Use the parse tree as the graph and keep all original names for the nodes.
An example is the tree in Fig. 2 (b).

• Tree-renamed: Use the parse tree as the graph but rename all variable values to VAR and
variable functions to VARFUNC.

• Graph-old-names: Use the same graph as FormulaNet-basic but keep all original names for
the nodes, thus making the graph embedding dependent on the original variable names. An
example is the graph in Fig. 2 (c).
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Table 2: The accuracy of FormulaNet-basic and its ablated versions on original and renamed validation
set.

Tree-old-names Tree-renamed Graph-old-names Our Graph
Original Validation 89.7 84.7 89.8 89.9
Renamed Validation 82.3 84.7 83.5 89.9

Table 3: Validation accuracy of proposed models with different numbers of update steps on conditional
premise selection.

Number of steps 0 1 2 3 4
FormulaNet-basic 81.5 89.3 89.8 89.9 90.0
FormulaNet 81.5 90.4 91.0 91.1 90.8

We train these variants on the same training set as FormulaNet-basic. To compare with FormulaNet-
basic, we evaluate them on the same held-out validation set. In addition, we generate a new validation
set (Renamed Validation) by randomly permutating the variable names in the formulas—the textual
representation is different but the semantics remains the same. We also compare all models on this
renamed validation set to evaluate their robustness to variable renaming.

Table 2 reports the results. If we use a tree with the original names, there is a slight drop when
evaluate on the original validation set, but there is a very large drop when evaluated on the renamed
validation set. This shows that there are features exploitable in the original variable names and the
model is exploiting it, but the model is essentially overfitting to the bias in the original names and
cannot generalize to renamed formulas. The same applies to the model trained on graphs with the
original names, whose performance also drops drastically on renamed formulas.

It is also interesting to note that the model trained on renamed trees performs poorly, although it is
invariant to variable renaming. This shows that the syntactic and semantic information encoded in
the graph on variables—particularly their quantifiers and coreferences—is important.

4.6 Visualization of Embeddings

Number of Update Steps An important hyperparameter of our approach is the number of steps
to update the embeddings. Zero steps can only embed a bag of unstructured tokens, while more
steps can embed information from larger graph structures. Table 3 compares the accuracy of models
with different numbers of update steps. Perhaps surprisingly, models with zero steps can already

real_gt extreme_point_of IN T = hull DISJOINT VAR

NOT NOT NOT NOT NOT NOT NOT NOT NOT

=> => => => => => => =>

VARVARVARVARVAR

VARFUNC VARFUNC VARFUNC VARFUNC VARFUNC

= complex_mul condensation_point_of => ALL

vector_sub VAR casn VAR =_c VAR continuous VAR FST VAR NUMERAL VAR

= = = = = =

=> => => => => =>

Figure 5: Nearest neighbors of node embeddings after step 1 with FormulaNet. Query nodes are in
the first column. The color of each node is coded by a t-SNE [51] projection of its step-0 embedding
into 2D. The closer the colors, the nearer two nodes are in the step-0 embedding space.
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achieve an accuracy of 81.5%, showing that much of the performance comes from just the names
of constant functions and values. More steps lead to notable increases of accuracy, showing that
the structures in the graph are important. There is a diminishing return after 3 steps, but this can
be reasonably expected because a radius of 3 in a graph is a fairly sizable neighborhood and can
encompass reasonably complex expressions—a node can influence its grand-grandchildren and
grand-grandparents. In addition, it would naturally be more difficult to learn generalizable features
from long-range patterns because they are more varied and each of them occurs much less frequently.

To qualitatively examine the learned embeddings, we find out a set of nodes with similar embeddings
and visualize their local structures in Fig. 5. In each row, we use a node as the query and find the
nearest neighbors across all nodes from different graphs. We can see that the nearest neighbors have
similar structures in terms of topology and naming. This demonstrates that our graph embeddings
can capture syntactic and semantic structures of a formula.

5 Conclusion

In this work, we have proposed a deep learning-based approach to premise selection. We represent
a higher-order logic formula as a graph that is invariant to variable renaming but fully preserves
syntactic and semantic information. We then embed the graph into a continuous vector through a
novel embedding method that preserves the information of edge ordering. Our approach has achieved
state-of-the-art results on the HolStep dataset, improving the classification accuracy from 83% to
90.3%.
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