
MalwareDetectioninCloudInfrastructuresusing
ConvolutionalNeuralNetworks

MahmoudAbdelsalam∗,RamKrishnan†,YufeiHuang‡andRaviSandhu§
∗†§InstituteforCyberSecurityandCenterforSecurityandPrivacyEnhancedCloudComputing,
∗§DepartmentofComputerScience,†‡DepartmentofElectricalandComputerEngineering

UniversityofTexasatSanAntonio,SanAntonio,Texas,USA
Email:∗mahmoud.abdelsalam@utsa.edu,†ram.krishnan@utsa.edu,‡yufei.huang@utsa.edu,§ravi.sandhu@utsa.edu

Abstract—AmajorchallengeinInfrastructureasaService
(IaaS)cloudsisitsexposuretomalware. Malwarecanspread
rapidlywithinadatacenterandcancausemajordisruptionto
acloudserviceprovideranditsclients.Thispaperintroduces
anddiscussesaneffectivemalwaredetectionapproachincloud
infrastructureusing Convolutional Neural Network(CNN),
adeeplearningapproach. Weinitiallyemployastandard
2dCNNbytrainingon metadataavailableforeachofthe
processesinavirtualmachine(VM)obtainedbymeansofthe
hypervisor. WeenhancetheCNNclassifieraccuracybyusing
anovel3dCNN(whereaninputisacollectionofsamples
overatimeinterval),whichgreatlyhelpsreducemislabelled
samplesduringdatacollectionandtraining.Ourexperiments
areperformedondatacollectedbyrunningvariousmalware
(mostlyTrojansandRootkits)onVMs.The malwareused
inourexperimentsarerandomlyselected.Thisreducesthe
selectionbiasofknown-to-behighlyactivemalwareforeasy
detection. Wedemonstratethatour2dCNN modelreaches
anaccuracyof 79%,andour3dCNNmodelsignificantly
improvestheaccuracyto 90%.

Keywords-Security; MalwareDetection;CloudIaaS;Deep
Learning;ConvolutionalNeuralNetworks

I.INTRODUCTION

Cloudinfrastructurehasbecomeincreasinglyproneto
novelattacksandmalware[1]–[6].Oneofthemostprevalent
threatstocloudismalware.Cloudmalwareinjection[3]is
athreatwhereanattackerinjectsamalwaretomanipulate
thevictim’sVirtual Machine(VM).Duetothenatureof
thecloudandautomaticprovisioning,alargenumberofthe
VMsaresimilarlyconfigured.Oneexampleiswhenaweb
serverscales-outduetoincreaseindemandandscales-in
whenthedemandgoesdown.Thismeansthattheattackthat
compromisedoneoftheVMsishighlylikelytocompromise
manyoftheotherVMs.Theattackercaninjectabotware
touseitforcreatingabotnetduetoalargenumberof
VMsavailableinscalingscenarios.Asaresult,theneedfor
malwaredetectioninVMsiscritical.
Inourearlierwork[7],weshowedthatmalwaredetection
canbeeffectivelyperformedbyinspectingtheperformance
andresourceutilizationmetricsofVMsasablack-box.
Althoughtheapproachworkswellwithhighlyactivemal-
ware(e.g.ransomware),itisnotaseffectivefordetecting
malwarethatmaintainsalow-profileofresourceutilization.
Inthispaper,wedevelopanovelandeffectivetechniqueto
detectsuchlow-profilemalwarethatutilizesminimalsystem

resources,byinspectingraw,fine-grainedmeta-dataofeach
processinaVM.
Twomajorapproacheshavebeenexploredformalware

detectioninthecurrentliterature:staticanalysis,where
malwarecodeisanalyzedwithoutrunningit,anddynamic
analysis,wherea malwareisexecutedanditsbehavior
observedinordertodetectit.Theprosandconsofthese
approachesformalwaredetectionarewellunderstood.
Inthispaper,weintroduceanddiscussamalwaredetec-

tionapproachusingDeepLearning(DL). Wedemonstrate
theapplicabilityofusinga2dConvolutionalNeuralNet-
work(CNN)formalwaredetectionthroughtheutilization
ofraw,processbehavior(performancemetrics)data.Our
approachfallsunderdynamicanalysis. However,unlike
mostpriorworksthatutilize machinelearning(ML)in
dynamicanalysistoclassifymalwarefiles,weuseitfor
onlinemalwaredetection.Notethattheapproachintroduced
inthispaperisgeneralandisnotconfinedtotheuseof
CNN.ThechoiceofusingCNNisduetoitssimplicity
andtrainingspeedasopposedtootherDLarchitectures
suchasRecurrentNeuralNetworks(RNNs).Applyingand
comparingdifferentMLapproachesislefttofuturework.
Oneofthebiggestchallengesinemploying MLfor

malwaredetectionisthe mislabelingproblem.Thisis
because,duringthetrainingphase,thereisnoguarantee
thatamalwareexhibitedmaliciousbehavior. Whilesome
malwarestartperformingmaliciousactivitiesimmediately
afterinfectingamachine,areasonablysophisticatedmal-
warestartsoffasaprocessandidlesuntilsomecondition
ismet(e.g.,acommandfromitsremoteowner),whichcan
occuratanytime.Inparticular,suchaconditionmaynever
occurduringthetrainingphaseforthemalwaretoactivate.
However,thisissueisrarelyaddressedinexistingliterature
exceptfortheworkin[8],whichrecognizesthisissue.The
authorsstatedthatthisproblemcanpollutethetrainingand
testingdata;however,sincethereisnowayaroundit,they
hadtomaketheassumptionthatitisalrighttolabelall
thedataasmaliciousafteramalwareexecutiontakesplace.
Inotherwords,theassumptionisthatmalwarewillalways
showmaliciousactivityatalltimes.
Wefollowtheirassumptioninthisworkbutnottothe

fullest.Consideramorecommonscenariowhenamalware
periodically(e.g.,every1minute)performsmaliciousactiv-



itiessuchasstealingandsendingsomeinformationtoits
CommandandControlservers(C&Cs).Nowthemalwareis
surelyconductingamaliciousbehaviorbutonlyperiodically.
Asaresult,ifamalwareisrunfor15minutesandwecollect
adatasampleevery10seconds(totalof90samples),allthe
collecteddatasampleswillbelabeledasmaliciouswhereas
infactonly15ofthemaremalicious.Thiswillcausea
mislabelingproblemduringthetrainingphase.

Tomitigatethisproblem,werefinetheaboveassumption
byassumingthatamalwarewillshowmaliciousactivity
withinatimewindow.Theunderlyingrationaleisthatwhile
thereisnowaytoknowforsurethatamalwareeverexhib-
itedmaliciousbehaviorduringthetrainingphase,itismore
practicaltoconsideraslidingwindowoftimeduringwhich
maliciousbehaviorisexhibitedinsteadofassumingthat
alldatasamplescollectedaftermalwareinjectionindicate
maliciousactivity.Thisincreasestheprobabilityofcorrectly
labelingoursamples.Towardthisend,wedevelopa3dCNN
classifierwhichtakesa3dinputmatrixcontainingmultiple
samplesoveratimewindow.Insummary,thecontributions
ofthispaperaretwo-fold:

• Wedevelopaneffectiveapproachfordetectingmal-
warebylearningbehaviorfromfine-grainedandraw
processmeta-datathatareavailabledirectlyfromthe
hypervisor.Theapproachwedevelopisresistanttothe
aforementionedmislabelingproblem.

• Wedemonstratetheeffectivenessofthisapproachby
firstdevelopingastandard2dCNNmodelthatdoes
notincorporatethetimewindow,andthencomparing
itwithanewlydeveloped3dCNNmodelthatsignif-
icantlyimprovesdetectionaccuracymainlyduetothe
employmentofatimewindowasthethirddimension,
therebymitigatingthemislabelingproblem.

Tothebestofourknowledge,ourworkisthefirsttoapply
2dand3dCNNonrawperformancemetricsofprocesses,
whichcanbeeasilyobtainedthroughthehypervisorlayer.
Thisiscriticalifacloudserviceproviderweretooffersuch
amalwaredetectionservice.Sincetheapproachwepropose
doesnotrequireanagenttorunwithinVMs,weavoidany
majorprivacyandsecurityconcernforcloudtenants.

Theremainderofthepaperisorganizedasfollows.
SectionIIdiscussesrelated workon malwaredetection
methodsoutlinedasstaticanddynamicanalysis.SectionIII
outlinesthemethodologyincludingthearchitectureofthe
CNNmodelsused.SectionIVdescribestheexperiments
setupandresults.SectionVgivesadiscussionaboutsome
oftheimportantlimitationsandpossiblemitigations.Section
VIsummarizesandconcludesthispaper.

II.RELATEDWORK

Thissectionprovidesanabbreviatedintroductiontothe
majormalwaredetectiontechniquesusingML.Themajority
ofmalwaredetectiontechniquesfallsunderoneofthetwo
approaches:staticanalysisordynamicanalysis.

A.StaticAnalysisusingMachineLearning

Duringstaticanalysis,noexecutionofexecutables/binary
filestakesplace.Itistheprocessofanalyzingexecutables
byexaminingtheircodewithoutactuallyexecutingthem.
Therearetwoapproachesusedforstaticanalysis.First,an
executablefilecanbedisassembledorreverseengineered
usingdisassemblerstogettheactualcode.Thendetectionof
malwaretakesplaceontheactualcode.Mostsophisticated
malwarecanevadethis methodbyembeddingsyntactic
codeerrorsthatwillconfusedisassemblersbutthatwillstill
functionduringactualexecution.Second,analysiscanbe
donedirectlyonabinaryfileformat.Forexample,oneof
thesimplestformsofstaticanalysis,isextractingpartsof
thebinaryfileasfeatures(n-grams).ThenMLtechniques
areusedtofindmaliciouspatterns.In[9],theapproachisto
removen-gramsthatareknowntobebenign.Forexample,a
wormthatdistributesitselfviaemailscontainscodetosend
anemailwhichisbenigninmanyapplications,soremoving
thesesegmentsfromthefile,whilecomparingwhatisleft
toknownmalicioussegmentsisavalidapproach.Thepaper
useddifferent MLtechniquesincludingArtificialNeural
Networks(ANN)andDecisionTrees(DT).Theworksin
[10]–[12]aresimilarbutusedifferentMLalgorithms.
Theauthorsin[13]useseveralDL modelsincluding
LSTMandGRUbasedlanguagemodelsaswellasaCNN
model.Thisisastaticanalysisapproach which works
directlyonthemalwarefileswithoutexecutingit.Similarly,
[14],[15]useDLformalwarestaticanalysis.
Malwaredevelopersevadedetectionusingstaticanalysis
approachesbyintroducingpolymorphism,whereamalware
changesandevolveswhilepreservingcodesemantics.Dy-
namicanalysisapproachescanhelpovercomingsomeofthe
staticanalysisdrawbackssincetheyrelyonmonitoringthe
behaviorasopposedtostaticinspection.

B.DynamicAnalysisusingMachineLearning

Indynamicanalysis,theexecutableisexecuted,typically,
inanisolatedenvironment(e.g.,sandboxor VM)and
informationisgatheredduringexecution(e.g.,systemcalls,
memoryaccessesornetworkcommunications).Dynamic
analysisisusedformalwarefilesclassificationaswellasfor
onlinemalwaredetection(e.g.,similartointrusiondetection
systems).Manyworksexistinthisarea.In[16],theauthors
use MLtechniquesinorderto monitorvirtual memory
formaliciousaccesspatternscausedbythemalware.The
featuresarerepresentedinhistogramsofmemoryaccess.
Theauthorstrainonemodelforeachapplicationwhichcan
bequiteexpensive.
Theworkin[17]usesmulti-tasklearningusingDeep
NeuralNetworks(DNN)formalwaredetectionandmalware
familyclassificationofbinaryfiles.Inmulti-tasklearning,
asetofnetworklayersissharedbetweenlearningtasks.
The workin[18]appliesdeeplearningfor malware
detectionusingprocessAPIcallsloginformation.First,a
RecurrentNeuralNetwork(RNN)isusedtoextractfeatures
andthenCNNisgiventhesefeaturesasinput.Thedownside



Fig. 1: CNN overview

of this work is using a sandbox to monitor processes. In
most cases, malware will detect the presence of a sandbox
and hide its true behavior. Also, this deals with single data
sample without considering that malware can be benign at
certain times and malicious at others.
The work in [19] uses dynamic analysis for malware

files classification. Malware run in a lightweight VM and
hundreds of thousands of features are extracted to be used
in a DL technique. This approach is for files classification
which is not naturally suitable for online malware detection.
Most dynamic analysis approaches for online detection

deal with single samples and do not consider the mislabeling
problem nor malicious patterns across windows of time.
In this paper, we are motivated by:

• The feasibility of applying CNN to VMs malware de-
tection using fine-grained process performance metrics.

• Tackling the mislabeling problem by using 3d CNNs.

III. METHODOLOGY

This section provides an overview of the methodology
used for malware detection in VMs using CNN.

A. Convolutional Neural Network

CNN is a type of DL that has been applied to images
analysis and classification. One advantage of CNN is that it
requires little pre-processing as compared to similar image
classification algorithms since it works on raw data. It acts
as a feature extractor which is very convenient since feature
selection in most cases requires human experts.
Figure 1 shows the architectural overview of a CNN.

Much like deep neural networks, CNN consists of input and
output layers and multiple hidden layers. AConvolutional
layerapplies a convolution operation on the input matrix and
passes the output to the next layer. A convolution operates
on two inputs: feature map (input matrix) and convolution
kernel (works as a filter) and outputs another image. The
kernel is used to filter out certain information from the
feature map and discard other information. In other words,
a convolution operation uses multiple kernels where each
kernel is responsible to extract and focus on a piece of
information (e.g., one kernel might filter edge information).
Usually, a convolutional layer is followed by aPooling layer
which takes the output of the convolutional layer as input.
Pooling is an operation in which it down samples the feature
maps received from the convolutional layer. It works by
taking a certain area of the input and reduces it to a single
value. For example, max pooling uses the maximum value
from certain area, while average pooling uses the average

value. Convolutional and pooling layers are followed by
fully connected layers, which connect every neuron in one
layer to every neuron in the next layer.

B. Process Performance Metrics

In this work, we use performance metrics as a way of
defining a process behavior. Table I shows metrics that are
selected to be collected for the VMs. Selected metrics are for
the purpose of showing the effectiveness of our approach; in
practice, many more metrics are available. For the sake of
practicality, we assume no prior knowledge of any additional
information other than the metrics we collect in Table I.

C. CNN Input

We represent each sample as an image (2d matrix) which
will be the input to the CNN. Consider a sampleXtat
a particular timet, that recordsnfeatures (performance
metrics) per process formprocesses in a VM, such that:

Xt=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1 f2 ... fn

p1
...
... ...

...
...

...
...
...

...

pm
...
... ...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Note that a CNN requires the same process to remain
in the same row in each sample. For example, a process
with PID 1 that resides in the first row of the matrix
must remain in the first row across all upcoming samples.
The CNN in computer vision takes fixed-size images as
inputs, so the number of features (n) and processes (m)
must be predetermined. The number of features is easily
determined since we have a fixed number of collected
features represented in Table I (28 in our case). On the other
hand, determining the number of processes is not as easy
since the processes are dynamic in nature. In highly active
systems (e.g., web or app server), many processes get created
and killed to handle client requests based on the workload.
A process is defined by a process identification number
(PID) which is assigned by the OS. In a Linux based OS
(used in our experiments), PID numbers will increase to
a maximum system-dependent limit and then wrap around
(recycle). The kernel will not reuse a PID before this wrap-
around occurs.1The limit (maximum number of PIDs) is
defined in /proc/sys/kernel/pidmax which is usually 32k.
This number presents a problem because a matrix of32k×28
is a huge input matrix. Also having too many variables in
the input requires a large number of input in any neural
network. Limiting the max number of processes to a lower
value and depending on the concept of wrap-around will not
solve the problem because of many reasons. First, the reason
the max number of processes is set to a very large number
(i.e. 32k) is that it can confuse the kernel if the value is
too small and wraps around too often, not to mention that
it is hard to determine the appropriate number before hand.

1Linux Manual. http://man7.org/linux/man-pages/man5/proc.5.html



TABLE I: Virtual machines performance metrics

Metric Category Description
Status Process status
CPU information CPU usage percent, CPU times in user space, CPU times in system/kernel space, CPU times of children processes in user

space, CPU times of children processes in system space.
Context switches Number of context switches voluntary, Number of context switches involuntary
IO counters Number of read requests, Number of write requests, Number of read bytes, Number of written bytes, Number of read chars,

Number of written chars
Memory information Amount of memory swapped out to disk, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual

memory size (VMS), Number of dirty pages, Amount of physical memory, text resident set (TRS), Memory used by shared
libraries, memory that with other processes

Threads Number of used threads
File descriptors Number of opened file descriptors
Network information Number of received bytes, Number of sent bytes

Second, there is no guarantee that, for instance, a process
with a PID 1000 at timet1is going to be the same process at
timet100. Considering the wrap-around concept, this process
might have been killed and a new different process could be
assigned the same PID later on. This can cause inaccurate
results by the CNN since an important requirement is that
the same processes remain in the same rows at all times.
To solve these problems, instead of defining a process

by it’s PID, we define a process, referred to asunique
process, by a 3-tuple: process name, command line used
to run process, and the hash of the process binary file
(if applicable). In cases where the same application (e.g.,
apache web server) forks multiple child processes (with
the same name, cmd, and originated binary), we aggregate
these processes by taking the average of their performance
metrics. This also helps in smoothing the fluctuations of
processes that have similar functions. In all of our experi-
ments none of the VMs had more than 100 unique processes;
however, for practicality, we set the maximum number of
unique processes to 120 to accommodate for newly created
unique processes. Any unavailable unique process (due to
termination) at a particular time is padded with zero-values.
In the rest of the paper, the term process and unique process
are used interchangeably, where they refer to unique process.
The 3d CNN model input includes multiple sam-

ples over a time window. The input matrixXtij =

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

f1,...,fn

p1,...,pm

Xti,...,Xtj

, whereXtijis the 3d
input matrix containing samples from timetitotj. As stated
in section I, we use a 3d CNN model to enhance the results
by capturing patterns over a small time window which in
turn helps in mitigating the mislabeling problem.

IV. EXPERIMENTSETUP ANDRESULTS

In this section, first, we present the CNN model used in
this work as well as the data preprocessing step. Second, we
review our experimental setup. Then, we provide the results
to illustrate that a 2d CNN can be effective in detecting

Fig. 2: Proposed CNN Model

low-profile malware using per-process performance metrics.
Lastly, we show how using a 3d CNN can improve the
results by attempting to solve the mislabeling problem.

A. Preprocessing

It is essential to CNN to have scaled data input for
faster convergence and better accuracy results. A standard
approach is to rescale the data to have a mean of 0
and standard deviation of 1. It is done in a per feature
fashion. Given a set of featuresF={f1,fi, ..., fn}and
a set of samplesX = {x1,xj, ..., xt}, it is defined as

x
(fi)
jstandardized

=(x
(fi)
j −μ(fi))/σ(fi),where x

(fi)
j is a

vector of values corresponding to featurefiin thejthinput
sample, andμ(fi),σ(fi)are respectively the mean and the
standard deviation of values corresponding to featurefi
across all samples in setX. The same two sets ofμ(fi)

andσ(fi)(obtained from the training dataset) are used for
standardizing the validation and testing datasets.

B. CNN Model Architecture

Figure 2 shows the CNN model used in this work. It
consists of 8 layers. First, the input layer which is basi-
cally received as the input matrix. Second, a convolutional
layer which receives ad×120×28standardized matrix,
representing samples in a particular time window, where



dis the depth of the input matrix and120×28is the
length of the 2d matrices representing the number processes
and features, respectively. Then, it performs a convolutional
operation with32kernels of sized×5×5with zero-
padded ending. The results of this layer are32feature maps
of sized×120×28. Third, a max pooling layer of size
2×2×2which down size each dimension by a magnitude
of2, resulting in a32feature maps of sized/2×60×14. The
fourth and fifth layer are replicates of layer two and three so
the output of the max pool layer 2 is64feature maps of size
d/4×30×7. The last 3 layers are a fully connected layer
with size of1024, a dropout layer described below, and,
last, another fully connected layer with size of2denoting
the classification probability of a malicious or benign VM
sample. Note that the model doesn’t classify malicious or
benign processes but rather the VM as a whole which means
there is no way to know which process is malicious.
To reduce over fitting, we use a dropout [20] layer after

the first fully connected layer, since it is shown in previous
work [21] that dropout regularization works well with fully
connected layers.
Rectified linear unit (ReLU), a simple and fast activation

function, is simply defined asf(x)=max(0,x). It turned
out that ReLU (which is used in our work) works better in
practice than the other activation functions as well as it’s
several times faster in training as stated in [22].
The model is trained using back-propagation for Adam

Optimizer [23], a stochastic gradient descent that auto-
matically adapt the learning rate. The optimizer works on
minimizing the loss function. We use the mean cross entropy
as a loss function. The model is also trained using mini-
batches which is not reflected in the layers described above.
The described CNN model is used for both 2d CNN and

3d CNN except the former has one less dimension (i.e.
the depthdof the input matrix is 1). The CNN structure
used in this work is considered to be shallow as opposed to
models such as GoogleNet and LeNet due to the limit of the
experiments we could perform in our lab which, in turn, led
to lack of large data sets. Experimenting in a larger scale
and comparing different CNN models is left to future work.

C. Parameters Tuning

Parameters tuning is a very challenging problem in ML in
general. It helps choosing the set of parameters that yields
the best classification accuracy. A common approach, used
for most of the parameters in our work, is grid search,
where we define (based on our knowledge) bounds for each
parameter and try all the combinations that yields the best
classification accuracy during the validation phase. Other ap-
proaches can be more practical such as random search [24].
In our case, the set of important parameters are as follows.
Dropout. Dropout is a regularization technique that turns
neurons on/off in each layer to force them to go through
different path. This operation improves generalization of the
network and prevents over-fitting. We set this parameter to
0.5[25].Learning rate. This determines how fast we move

Fig. 3: 3-tier web architecture

Fig. 4: Data collection overview

toward the optimal weights in our network. If this parameter
is very large, it will skip optimal values. On the other hand,
if it is too small, it will take too much time to converge to
the optimal values, and it may get stuck in local minima.
Typically, a stochastic gradient descend uses decay learning
rate to slow down the learning rate as it moves forward.
AdamOptimizer (used in our study), adapts the learning rate
automatically, however the adaptation maximum ceiling is
defined by our learning rate parameter. If we set it very large,
it will give the optimizer more room to adapt which can be
problematic in some cases. The values we found reasonable
during our experiments lies between1e−3and1e−5.
Mini-batch size. As CNN is using mini-batches to learn, we
define the bounds of our mini-batches sizes between 10 and
30. Going lower or higher proved to decrease the accuracy.

D. Experimental Setup

Our experiments were conducted on Openstack2(a major
open-source cloud orchestration software). To simulate a real
world scenario, we used a 3-tier web architecture (one of the
most common cloud architectures according to Amazon3).
Note that our work is not confined to the 3-tier web archi-
tecture use case used in the experiments since our approach
relies on learning the behavior of processes in VMs. This
means that learning approach of processes behavior would
remain the same regardless the architecture in place. Figure
3 shows the setup used to conduct our experiments on
Openstack. A 3-tier web architecture, typically, consists of
3 separate tiers: web, application and database server. In our
case, we used Apache as a web server, Wordpress4(a major
open-source content management system) that utilizes PHP
as an application server and MySQL as a database server.
According to [26], Internet traffic is of self-similar nature.
Thus, we built a multi-process traffic generator (set to the
NS25default parameters values), based on ON/OFF Pareto

2Openstack website. https://www.openstack.org/
3Amazon architecture references. https://aws.amazon.com/architecture/
4Wordpress website. https://wordpress.org/
5NS2 tool manual. http://www.isi.edu/nsnam/ns/doc/node509.html



0 5 10 15 20 25 30

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
ur
a
c
y

0.8580.859

0.849

mini-batch size 10

mini-batch size 20

mini-batch size 30

0 5 10 15 20 25 30

Epoch

0

5

10

15

20

25

30

35

40

M
e
a
n 
cr
o
s
s 
e
nt
r
o
p
y 
l
o
s
s

training loss

validation loss

(a)Accuracyof2dCNN.mini-
batchsizesof10,20and30

0 5 10 15 20 25 30

Epoch

0

5

10

15

20

25

M
e
a
n 
cr
o
s
s 
e
nt
r
o
p
y 
l
o
s
s

training loss

validation loss

(b) Meancrossentropylossof
2dCNN.mini-batchsize=10

0 5 10 15 20 25 30

Epoch

0

5

10

15

20

25

30

35

40

45

M
e
a
n 
cr
o
s
s 
e
nt
r
o
p
y 
l
o
s
s

training loss

validation loss

(c) Meancrossentropylossof
2dCNN.mini-batchsize=20

(d) Meancrossentropylossof
2dCNN.mini-batchsize=30

Mini-batch size = 10 Mini-batch size = 20 Mini-batch size = 30
0

20

40

60

80

100

%

Percision Recall Accuracy F1 score

Fig.5:2dCNNtrainedwithdifferentmini-batchsizes.Optimizedwithlearningrateof1e-5forAdamOptimizer

Fig.6:2dCNNclassifiersresults

distribution,togeneratetrafficforourexperiments.

Figure4showsanoverviewofthedatacollectionpro-
cess.Eachofourexperimentswas30minuteslong.The
aforementioned3-tierarchitecturewascreatedfromknown-
to-becleanimages.Thefirst15minutesisthenormalphase,
wherenomaliciousactivitytakesplace,andisfollowedby
15minutesofmaliciousphase,whereasinglemalwareis
injectedandexecutedintheapplicationserver.Fewnormal
processeswereinjectedduringthenormalphasetocheckthe
effectivenessofourapproachinhandlingfalsepositives.The
malwarewasinjectedintheapplicationserverVMbecause
mostvulnerabilities,typically,liesintheapplicationside.

TheimageusedforspawningVMsisUbuntu16.04which
wasmodifiedtoincludeadatacollectionagent.Datawas
collectedat10-secondintervalsinaJSONobject.Werefer
toeachofthecollectedobjectsataparticulartimeasa
sample.Forsimplicity,weincludedanagentinsideVMs
tocollectdata;however,datacollectioncouldalsobedone
throughVirtualMachineIntrospection(VMI)sincesimilar
metrics[27],[28]couldbecollectedfromthehypervisor.

The25malwarebinaries6usedwererandomlyobtained
fromVirusTotal7.Theymainlybelongto3classes:Rootkits,
TrojansandBackdoorsandhaveuniqueSHA-256hashes.

MostmalwarecheckforconnectiontotheirC&Cs,oth-
erwise,theyremainidle. Manyresearches(on malware

6https://github.com/mahmoudaslan/researchrepo/blob/master/malwarehashes
7VirusTotalwebsite.https://www.virustotal.com

dynamicanalysis)usesandboxesorVMsinacontrolled
environmentwhichcancausehindrancetothe malware.
Toaccommodateforthisproblem,allofourVMsare
connectedtotheInternetoutsideoffirewallstoprevent
anyintervention.Toavoiddatapollution,experimentswere
totallyindependentandallVMsusedforonerunwere
completelydestroyedbeforethenextrunbecausemalware
caninfectotherVMsandpossiblypollutesubsequentruns.
Wecollectedsamplesat10secondsintervalsfor30
minutesduration,sowehaveatotalof 180samplesper
experimentand 4500samplesintotal.

E.Evaluation

Weusefourevaluation8metrics.Precisionisthenum-
berofcorrectmalwarepredictions.Recallisthenumber
ofcorrect malwarepredictionsoverthenumberoftrue
malicioussamples. Accuracyisthe measureofcorrect
classification.Fscoreistheharmonicmeanofprecision
andrecall.TruePositive(TP)referstomaliciousactivity
thatoccurredandwascorrectlypredicted.FalsePositive
(FP)referstomaliciousactivitythatdidnotoccurbutwas
wronglypredicted.TrueNegative(TN)referstomalicious
activitythatdidnotoccurandwascorrectlypredicted.False
Negative(FN)referstomaliciousactivitythatoccurredbut
waswronglypredicted.

F.2dCNNResults

Thedatacollectedaredividedinto3sets:training,vali-
dationandtestingsetswiththepercentagesof60%,20%,
and20%respectively.Thesplitisdoneonthenumberof
experiments.Forexample,the25experiments(eachusinga
differentmalware)issplitto15,5and5respectively.This
meansthatthevalidationandtestingphasesareexposedto
unknownmalware.TrainingdataisusedtotraintheCNN
models.Then,thevalidationsetisusedasawaytotunethe
parametersoftheCNN.Oncewegetthehighestvalidation
accuracyforamodelwithspecificsetofparameters,weuse
thetestingsettotestthechosenmodel(optimizedclassifier).
Theclassifiersweretrainedfor30epochsasitturnedout,
inourcase,thattherewasnoextragainofaccuracyor
decreaseinmeancrossentropylossafterwards.

8Accuracy= TP+TN
TP+TN+FP+FN

,Precision= TP
TP+FP

,

Recall= TP
TP+FN

,Fscore=2×Precision×Recall
Precision+Recall



Time window = 10s
2d CNN

Time window = 20s
3d CNN 1

Time window = 30s
 3d CNN 2

0

20

40

60

80

100
%

Percision Recall Accuracy F1 score

Fig.7:Optimized2dand3dCNNclassifiersresults.3dCNN
classifiersarebestoptimizedwithlearningrateof1e-4as
wellaswith20and30mini-batchsizes,respectively.

Weonlyshowresultsforclassifiersusinglearningrate
of1e−5becausetheyshowedthehighestaccuracyand
lowestmeancrossentropyloss.Figure5showsthreetrained
classifiersbasedondifferentmini-batchsizesof10,20,and
30.Figures5ashowstheaccuracythethree2dclassifiers,
andsimilarly,Figures5b,5cand5dshowthemeancross
entropyformini-batchsizeof10,20and30,respectively.
Ingeneral,theresultsshowthatusingmini-batchsizeof

20yieldsthehighestaccuracyof85.9%duringvalidation.
Figure6showstheresultsofthe4evaluationmetrics.

TheCNNclassifierwithmini-batchof20showsthehighest
resultswhenitisevaluatedonthetestingdataset,whilethe
classifierwithmini-batchsizeof30showsthelowest(larger
mini-batchsizescanlosegeneralization[29]);however,
thereisadropintheoverallperformanceoftheclassifiers
onthetestingdatasetwherethehighestaccuracyis 79%.

G.3dCNNResults

The3dCNNclassifierstaketime-windowedinput.Sam-
plesinsidethistimewindowrepresentthedepthoftheinput
matrix.Infact,the2dCNNisaspecialcaseofthe3d
CNNwherethedepthis1.Ourexperimentsisdoneon2
time-windows:20and30seconds.Sincedataiscollected
in10secondsintervals,a10secondstimewindowmeans1
datasampleand,similarly,20and30secondstimewindows
means2and3datasamples,respectively.
Figure7showsacomparisonoftheperformancemetrics

ofthe2dandthenewlytested3dclassifiers.Theseresults
arebasedonthetestingdataset.Werefertotheclassifiers
asshowninFigure7:2dCNN,3dCNN1(20secondstime
window)and3dCNN2(30secondstimewindow).The
resultsshowedsignificantimprovementofusing3dCNN1
and3dCNN2.Theaccuracyof3dCNN1and3dCNN
2classifiersjumpedto 86%and 90%,respectively,as
opposedtothe2dCNNclassifieraccuracyof 79%.

V.DISCUSSION

Inthissection,wediscusssomerelevantissuesinour
approachandsomepossibleimprovementsforfuturework.

Accuracydropbetweenvalidationandtest.The2d
CNNclassifiersshowedadropofaccuracyfrom 86%
(validationdataset)to 79%(testingdataset).Similarly,a
dropofaccuracyalsohappenedduring3dCNNclassifiers
evaluation(from 97%to 90%and 89%to 86%).
Althoughitmightseemnormalconsideringthevalidation
setisbiasedsinceitisusedforparameterstuning,one
reasonisthatthemalwareincludedinthetestingdataset
(aftermanualexamination)isshowntohavemoredifferent
behaviorthanonesincludedinthetrainingandvalidation
set.Notealsothatmalwarewhichapparentlyhasthesame
purposecanhavedifferentbehaviorwhichcanconfuseclas-
sifiersthatusesmalwareclassesinformation.Forexample,
oneTrojanweanalyzedopensaback-doorandremains
idle,whileanotheropensaback-door,stealsandsends
systeminformationovertheInternet.Inourexperiments,
werandomlyselectedourmalwarefromfewclasses(trojans,
rootkits,etc..)tocompletelyunbiasourexperiments.
Mislabelingproblem.Using3dCNN,weimprovedthe
mislabelingproblemstatedinSectionI.Figure8showsa
behaviorofamalwareforjust1metric.Thespikeinthefig-
ureshowsthetimewhenthemalwarefirstbootedup.Then,
themalwarekeepsidleforspecifictimenotperformingany
maliciousactivity.Labelingallsamplescorrespondingtothe
benignareashowninthefigurewillpollutethedatabecause
theclassifierlearnsthattheseactionsaremaliciouswhilein
facttheyarenot.Ontheotherhand,whenthemalwaresteals
andsendsdataovertheInternet,samplesshouldbelabeled
asmalicious.Differentiatingbetweenthosetwoactionsis
notpossibleunlessitisseenbyhumanexperts.Inmost
cases,researchestaketheriskofthiskindofpollution
becausethereisnowayaroundit.Apartialsolutionis
totakeboththeshownareasasonesampleandstatethat
duringthistimewindowamaliciousactivityhashappened.
Thisisessentiallywhatour3dCNNclassifiersaretryingto
dobydecreasingthenumberofmislabeledsamplesaswell
ascapturingpatternsoverasmalltimewindow.Intheory,
thelargerthewindowthebetter;however,averylargetime
windowwouldneedalargeamountofdata,aswellasit
wouldactasawindowofopportunityforthemalwareto
maliciouslyactbeforedetectionandpossiblemitigation.
3dCNN’sneedfordata.Weexperimentedontwotime
windows(20and30seconds)duetothelimitedamount
ofdata.Increasingthetimewindow(meaningincreasing
thedepthoftheinputmatrix),needstostackmultipledata
samplestogether.Tryingtoexperimentwith40secondstime
windowandabovecauseddramaticdecreaseinaccuracy
becausetheCNNsdidnothaveenoughdatatoconverge
andlearnproperly.Using3dCNNshowedsignificantim-
provementwithaveryshorttimewindow,sohavinglarge
enoughdatacanfurtherimprovetheresults.
Processesandmetricsordering.OneadvantageofCNN
isthatittakesintoaccountthespatialstructureofthe
data;however,inourcase,itseemsthattheinputlacks
spatialstructureacrosscolumnsandrowsofthematrix.For
example,ifwesubstitutedfeaturef1columnwithfeaturef2



Fig.8:MalwarebehaviorofthenetworksentkBsmetric.

column,itisstillgoingtorepresenttheinput.Ontheother
hand,inthecaseofanormal2dimage,thissubstitution
willdistorttheimage.Thesamesituationistruewiththe
rowsofourinputmatriceswhen,forexample,substituting
processp1rowwithprocessp2row.Notethatcorrelations
mightexistbetweenthefeatures(e.g.whenCPUpercent
goesup, memoryusagegoesupaswell);however,we
didnotusethisinformationinourwork. Webelievethat
obtainingcorrelationinformationaboutthefeaturestobe
usedinorderingourinputmatricesmighthelpwithgetting
betterresults.Itistrueforprocessesaswell,althoughitis
notaseasybecauseoftheprocesses’dynamicnatureandthe
possibilityofnewlycreatedprocessesduringtestingtime.

VI.CONCLUSIONANDFUTUREWORK

Inthiswork,weintroducedamalwaredetectionmethod
forVMsusing2dCNNmodelbyutilizingperformance
metrics.Resultsshowedareasonableaccuracyof 79%
onthetestingdataset.Wenotedtheproblemofmislabeling
andweimprovedtheperformancebyintroducing3dCNN
modelwhichusessamplesoveratime-window.Itaddsa
3rddimension(depth)tothe2dinputmatrixrepresenting
thesamplesinsidethedefinedtimewindow.Resultsshowed
asignificantimprovementofaccuracyof 90%for3dCNN
2classifierwhichispracticallyacceptable.
Inthefuture,weplantodedicateapre-trainingstep

toevaluatetheeffectivenessoforderingtheprocessesand
featuresintheinputmatrix. Wealsoplantoincreasethe
scaleofourexperimentsbyusingmoremalwarebinaries
whichwillallowevaluatingdifferenttime-windowsizesfor
the3dCNNmodelsaswellasusingdeeperCNNmodels.

ACKNOWLEDGMENT

ThisworkispartiallysupportedbyNSFCRESTGrant
HRD-1736209,CNS-1423481,CNS-1538418,DoDARL
GrantW911NF-15-1-0518.

REFERENCES

[1]B.Grobauer,T. Walloschek,andE.Stocker,“Understandingcloud
computingvulnerabilities,”IEEESecurity&Privacy,vol.9,2011.

[2] M.Jensen,J.Schwenk,N.Gruschka,andL.L.Iacono,“Ontechnical
securityissuesincloudcomputing,”inIEEECLOUD,2009.

[3] N.GruschkaandM.Jensen,“Attacksurfaces:Ataxonomyforattacks
oncloudservices,”inIEEECLOUD,2010,pp.276–279.

[4]Z.XiaoandY.Xiao,“Securityandprivacyincloudcomputing,”
IEEECommunicationsSurveys&Tutorials,vol.15,no.2,2013.

[5] K.Dahbur,B. Mohammad,andA.B.Tarakji,“Asurveyofrisks,
threatsandvulnerabilitiesincloudcomputing,”inISWSA,2011.

[6] A.GholamiandE.Laure,“Securityandprivacyofsensitivedatain
cloudcomputing:asurveyofrecentdevelopments,”arXivpreprint
arXiv:1601.01498,2016.

[7] M.Abdelsalam,R.Krishnan,andR.Sandhu,“Clustering-basedIaaS
cloudmonitoring,”in10thIEEECLOUD. IEEE,2017.

[8]J.Demmeandetal.,“Onthefeasibilityofonlinemalwaredetection
withperformancecounters,”inACMSIGARCHComputerArchitec-
tureNews,vol.41,no.3. ACM,2013.

[9] G.Tahan,L.Rokach,andY.Shahar,“Mal-ID:Automaticmalware
detectionusingcommonsegmentanalysisandmeta-features,”Journal
ofMachineLearningResearch,vol.13,no.Apr,2012.

[10]J.Z.Kolterand M.A. Maloof,“Learningtodetectandclassify
maliciousexecutablesinthewild,” Journalof MachineLearning
Research,vol.7,no.Dec,2006.

[11]T.Abou-Assalehandetal.,“N-gram-baseddetectionofnewmalicious
code,”inCOMPSAC,vol.2. IEEE,2004.

[12] A.Shabtaiandetal.,“Detectionof maliciouscodebyapplying
machinelearningclassifiersonstaticfeatures: Astate-of-the-art
survey,”informationsecuritytechnicalreport,vol.14,no.1,2009.

[13]B. AthiwaratkunandJ. W.Stokes,“Malwareclassification with
LSTMandGRUlanguage modelsandacharacter-levelcnn,”in
ICASSP. IEEE,2017.

[14]J.SaxeandK.Berlin,“Deepneuralnetworkbasedmalwaredetection
usingtwodimensionalbinaryprogramfeatures,”in10thMALWARE.
IEEE,2015.

[15]S.SeokandH.Kim,“Visualizedmalwareclassificationbased-on
convolutionalneuralnetwork,”JournaloftheKoreaInstituteof
InformationSecurityandCryptology,vol.26,no.1,2016.

[16]Z.Xu,S.Ray,P.Subramanyan,andS. Malik,“Malwaredetection
using machinelearningbasedanalysisofvirtual memoryaccess
patterns,”in2017Design,Automation&TestinEuropeConference
&Exhibition(DATE). IEEE,2017.

[17] W.HuangandJ. W.Stokes,“MtNet:amulti-taskneuralnetwork
fordynamicmalwareclassification,”inDetectionofIntrusionsand
Malware,andVulnerabilityAssessment. Springer,2016.

[18]S.Tobiyama,Y.Yamaguchi,H.Shimada,T.Ikuse,andT.Yagi,
“Malwaredetectionwithdeepneuralnetworkusingprocessbehavior,”
inCOMPSAC,vol.2. IEEE,2016.

[19] G.E.Dahl,J.W.Stokes,L.Deng,andD.Yu,“Large-scalemalware
classificationusingrandomprojectionsandneuralnetworks,”in
ICASSP. IEEE,2013.

[20] G.E.Hintonandetal.,“Improvingneuralnetworksbypreventing
co-adaptationoffeaturedetectors,”arXivpreprintarXiv:1207.0580,
2012.

[21]L. Wan, M.Zeiler,S.Zhang,Y.L.Cun,andR.Fergus,“Regular-
izationofneuralnetworksusingdropconnect,”inProceedingsofthe
30thinternationalconferenceonmachinelearning(ICML-13),2013.

[22] A.Krizhevsky,I.Sutskever,andG.E.Hinton,“Imagenetclassification
withdeepconvolutionalneuralnetworks,”inAdvancesinneural
informationprocessingsystems,2012,pp.1097–1105.

[23] D.KingmaandJ.Ba,“Adam:Amethodforstochasticoptimization,”
arXivpreprintarXiv:1412.6980,2014.

[24]J.BergstraandY.Bengio,“Randomsearchforhyper-parameter
optimization,”JournalofMachineLearningResearch,vol.13,2012.

[25]P.BaldiandP.J.Sadowski,“Understandingdropout,”inAdvancesin
NeuralInformationProcessingSystems,2013.

[26] W.E.Leland,M.S.Taqqu,W.Willinger,andD.V.Wilson,“Onthe
self-similarnatureofethernettraffic(extendedversion),”IEEE/ACM
Transactionsonnetworking,vol.2,no.1,1994.

[27]F.Azmandian, M. Moffie, M.Alshawabkeh,J.Dy,J.Aslam,and
D.Kaeli,“Virtualmachinemonitor-basedlightweightintrusionde-
tection,”ACMSIGOPSOperatingSystemsReview,vol.45,2011.

[28] M.R. Watsonandetal.,“Malwaredetectionincloudcomputing
infrastructures,”IEEETransactionsonDependableandSecureCom-
puting,vol.13,no.2,2016.

[29] N.S.Keskar,D.Mudigere,J.Nocedal,M.Smelyanskiy,andP.T.P.
Tang,“Onlarge-batchtrainingfordeeplearning:Generalizationgap
andsharpminima,”arXivpreprintarXiv:1609.04836,2016.


