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Abstract

In this paper, we study the problem of

geometric reasoning in the context of

question-answering. We introduce Dy-

namic Spatial Memory Network (DSMN),

a new deep network architecture designed

for answering questions that admit latent

visual representations. DSMN learns to

generate and reason over such representa-

tions. Further, we propose two synthetic

benchmarks, FloorPlanQA and ShapeIn-

tersection, to evaluate the geometric rea-

soning capability of QA systems. Experi-

mental results validate the effectiveness of

our proposed DSMN for visual thinking

tasks1.

1 Introduction

The ability to reason is a hallmark of intelligence

and a requirement for building question-answering

(QA) systems. In AI research, reasoning has been

strongly associated with logic and symbol manip-

ulation, as epitomized by work in automated theo-

rem proving (Fitting, 2012). But for humans, rea-

soning involves not only symbols and logic, but

also images and shapes. Einstein famously wrote:

“The psychical entities which seem to serve as el-

ements in thought are certain signs and more or

less clear images which can be ‘voluntarily’ re-

produced and combined... Conventional words or

other signs have to be sought for laboriously only

in a secondary state...” And the history of sci-

ence abounds with discoveries from visual think-

ing, from the Benzene ring to the structure of

DNA (Pinker, 2003).

There are also plenty of ordinary examples of

human visual thinking. Consider a square room

1 Code and datasets: https://github.com/

umich-vl/think_visually

with a door in the middle of its southern wall. Sup-

pose you are standing in the room such that the

eastern wall of the room is behind you. Where is

the door with respect to you? The answer is ‘to

your left.’ Note that in this case both the question

and answer are just text. But in order to answer the

question, it is natural to construct a mental picture

of the room and use it in the process of reasoning.

Similar to humans, the ability to ‘think visually’ is

desirable for AI agents like household robots. An

example could be to construct a rough map and

navigation plan for an unknown environment from

verbal descriptions and instructions.

In this paper, we investigate how to model geo-

metric reasoning (a form of visual reasoning) us-

ing deep neural networks (DNN). Specifically, we

address the task of answering questions through

geometric reasoning—both the question and an-

swer are expressed in symbols or words, but a ge-

ometric representation is created and used as part

of the reasoning process.

In order to focus on geometric reasoning, we do

away with natural language by designing two syn-

thetic QA datasets, FloorPlanQA and ShapeInter-

section. In FloorPlanQA, we provide the blueprint

of a house in words and ask questions about loca-

tion and orientation of objects in it. For ShapeIn-

tersection, we give a symbolic representation of

various shapes and ask how many places they in-

tersect. In both datasets, a reference visual repre-

sentation is provided for each sample.

Further, we propose Dynamic Spatial Memory

Network (DSMN), a novel DNN that uses vir-

tual imagery for QA. DSMN is similar to existing

memory networks (Kumar et al., 2016; Sukhbaatar

et al., 2015; Henaff et al., 2016) in that it uses vec-

tor embeddings of questions and memory modules

to perform reasoning. The main novelty of DSMN

is that it creates virtual images for the input ques-

tion and uses a spatial memory to aid the reasoning
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process.

We show through experiments that with the aid

of an internal visual representation and a spa-

tial memory, DSMN outperforms strong baselines

on both FloorPlanQA and ShapeIntersection. We

also demonstrate that explicitly learning to cre-

ate visual representations further improves perfor-

mance. Finally, we show that DSMN is substan-

tially better than the baselines even when visual

supervision is provided for only a small propor-

tion of the samples.

It’s important to note that our proposed datasets

consist of synthetic questions as opposed to natu-

ral texts. Such a setup allows us to sidestep diffi-

culties in parsing natural language and instead fo-

cus on geometric reasoning. However, synthetic

data lacks the complexity and diversity of natu-

ral text. For example, spatial terms used in nat-

ural language have various ambiguities that need

to resolved by context (e.g. how far is ”far” and

whether ”to the left” is relative to the speaker or

the listener) (Shariff, 1998; Landau and Jackend-

off, 1993), but our synthetic data lacks such com-

plexities. Therefore, our method and results do

not automatically generalize to real-life tasks in-

volving natural language. Additional research is

needed to extend and validate our approach on nat-

ural data.

Our contributions are three-fold: First, we

present Dynamic Spatial Memory Network

(DSMN), a novel DNN that performs geometric

reasoning for QA. Second, we introduce two

synthetic datasets that evaluate a system’s visual

thinking ability. Third, we demonstrate that on

synthetic data, DSMN achieves superior perfor-

mance for answering questions that require visual

thinking.

2 Related Work

Natural language datasets for QA: Several nat-

ural language QA datasets have been proposed

to test AI systems on various reasoning abili-

ties (Levesque et al., 2011; Richardson et al.,

2013). Our work differs from them in two key as-

pects: first, we use synthetic data instead of natural

data; and second, we specialize in geometrical rea-

soning instead of general language understanding.

Using synthetic data helps us simplify language

parsing and thereby focus on geometric reasoning.

However, additional research is necessary to gen-

eralize our work to natural data.

Synthetic datasets for QA: Recently, synthetic

datasets for QA are also becoming crucial in AI.

In particular, bAbI (Weston et al., 2015) has driven

the development of several recent DNN-based QA

systems (Kumar et al., 2016; Sukhbaatar et al.,

2015; Henaff et al., 2016). bAbI consists of 20

tasks to evaluate different reasoning abilities. Two

tasks, Positional Reasoning (PR) and Path Finding

(PF), are related to geometric reasoning. However,

each Positional Reasoning question contains only

two sentences, and can be solved through simple

logical deduction such as ‘A is left of B implies

B is right of A’. Similarly, Path Finding involves

a search problem that requires simple spatial de-

ductions such as ‘A is east of B implies B is west

of A’. In contrast, the questions in our datasets in-

volve longer descriptions, more entities, and more

relations; they are thus harder to answer with sim-

ple deductions. We also provide reference visual

representation for each sample, which is not avail-

able in bAbI.

Mental Imagery and Visual Reasoning: The im-

portance of visual reasoning has been long rec-

ognized in AI (Forbus et al., 1991; Lathrop and

Laird, 2007). Prior works in NLP (Seo et al., 2015;

Lin and Parikh, 2015) have also studied visual rea-

soning. Our work is different from them as we

use synthetic language instead of natural language.

Our synthetic language is easier to parse, allowing

our evaluation to mainly reflect the performance

of geometric reasoning. On the other hand, while

our method and conclusions can potentially ap-

ply to natural text, this remains to be validated

and involves nontrivial future work. There are

other differences to prior works as well. Specif-

ically, (Seo et al., 2015) combined information

from textual questions and diagrams to build a

model for solving SAT geometry questions. How-

ever, our task is different as diagrams are not pro-

vided as part of the input, but are generated from

the words/symbols themselves. Also, (Lin and

Parikh, 2015) take advantage of synthetic images

to gather semantic common sense knowledge (vi-

sual common sense) and use it to perform fill-in-

the-blank (FITB) and visual paraphrasing tasks.

Similar to us, they also form ‘mental images’.

However, there are two differences (apart from

natural vs synthetic language): first, their bench-

mark tests higher level semantic knowledge (like

“Mike is having lunch when he sees a bear.” =⇒
“Mike tries to hide.”), while ours is more focused
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on geometric reasoning. Second, their model is

based on hand-crafted features while we use a

DNN.

Spatial language for Human-Robot Interac-

tion: Our work is also related to prior work on

making robots understand spatial commands (e.g.

“put that box here”, “move closer to the box”)

and complete tasks such as navigation and as-

sembly. Earlier work (Müller et al., 2000; Grib-

ble et al., 1998; Zelek, 1997) in this domain used

template-based commands, whereas more recent

work (Skubic et al., 2004) tried to make the com-

mands more natural. This line of work differs from

ours in that the robot has visual perception of its

environment that allows grounding of the textual

commands, whereas in our case the agent has no

visual perception, and an environment needs to be

imagined.

Image Generation: Our work is related to image

generation using DNNs which has a large body

of literature, with diverse approaches (Reed et al.,

2016; Gregor et al., 2015). We also generate an

image from the input. But in our task, image gen-

eration is in the service of reasoning rather than

an end goal in itself—as a result, photorealism or

artistic style of generated images is irrelevant and

not considered.

Visual Question Answering: Our work is also re-

lated to visual QA (VQA) (Johnson et al., 2016;

Antol et al., 2015; Lu et al., 2016). Our task

is different from VQA because our questions are

in terms of words/symbols whereas in VQA the

questions are visual, consisting of both text de-

scriptions and images. The images involved in our

task are internal and virtual, and are not part of the

input or output.

Memory and Attention: Memory and attention

have been increasingly incorporated into DNNs,

especially for tasks involving algorithmic infer-

ence and/or natural language (Graves et al., 2014;

Vaswani et al., 2017). For QA tasks, memory

and attention play an important role in state-of-

the-art (SOTA) approaches. (Sukhbaatar et al.,

2015) introduced End-To-End Memory Network

(MemN2N), a DNN with memory and recurrent

attention mechanism, which can be trained end-to-

end for diverse tasks like textual QA and language

modeling. Concurrently, (Kumar et al., 2016)

introduced Dynamic Memory Network (DMN),

which also uses attention and memory. (Xiong

et al., 2016) proposed DMN+, with several im-

[3, 8.00, 7.46,

 1.80, 1.83]

[3, 0.61, 5.40,

 8.94, 2.79]

[1, 0.66, 9.70,

 8.14, 3.59]

[2, 3.67, 5.51,

 0.80, 0.00]

Description and visual representation

1: line

2: circle

3: rectangle

Question: How many 

places do the shapes 

intersect? 

Figure 1: An example in the ShapeIntersection

dataset.

provements over the previous version of DMN

and achieved SOTA results on VQA (Antol et al.,

2015) and bAbI (Weston et al., 2015). Our pro-

posed DSMN is a strict generalization of DMN+

(see Sec. 4.1). On removing the images and spatial

memory from DSMN, it reduces to DMN+. Re-

cently (Gupta et al., 2017) also used spatial mem-

ory in their deep learning system, but for visual

navigation. We are using spatial memory for QA.

3 Datasets

We introduce two synthetically-generated QA

datasets to evaluate a system’s goemetrical rea-

soning ability: FloorPlanQA and ShapeIntersec-

tion. These datasets are not meant to test natural

language understanding, but instead focus on ge-

ometrical reasoning. Owing to their synthetic na-

ture, they are easy to parse, but nevertheless they

are still challenging for DNNs like DMN+ (Xiong

et al., 2016) and MemN2N (Sukhbaatar et al.,

2015) that achieved SOTA results on existing QA

datasets (see Table 2a).

The proposed datasets are similar in spirit to

bAbI (Weston et al., 2015), which is also synthetic.

In spite of its synthetic nature, bAbI has proved

to be a crucial benchmark for the development

of new models like MemN2N, DMN+, variants

of which have proved successful in various nat-

ural domains (Kumar et al., 2016; Perez and Liu,

2016). Our proposed dataset is first to explicitly

test ‘visual thinking’, and its synthetic nature helps

us avoid the expensive and tedious task of collect-

ing human annotations. Meanwhile, it is important

to note that conclusions drawn from synthetic data

do not automatically translate to natural data, and

methods developed on synthetic benchmarks need

additional validation on natural domains.

The proposed datasets also contain visual rep-

resentations of the questions. Each of them has

38,400 questions, evenly split into a training set, a

validation set and a test set (12,800 each).
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Component Template

House
door

The house door is in the middle of the {nr, sr, er, wr} wall of the house.
The house door is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side of the house, such that it
opens towards {n, s, e, w}.

Room
door

The door for this room is in the middle of its {nr, sr, er, wr} wall.
This room’s door is in the middle of its {nr, sr, er, wr} wall.
The door for this room is located in its {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side, such that it opens
towards {n, s, e, w}.
This room’s door is located in its {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr} side, such that it opens towards
{n, s, e, w}.

Small
room

Room {1, 2, 3} is small in size and it is located in the {n, s, e, w, c, n-e, s-e, n-w, s-w} of the house.
Room {1, 2, 3} is located in the {n, s, e, w, c, n-e, s-e, n-w, s-w} of the house and is small in size.

Medium
room

Room {1, 2, 3} is medium in size and it extends from the {n, s, e, w, c, n-e, s-e, n-w, s-w} to the {n, s, e, w,
c, n-e, s-e, n-w, s-w} of the house.
Room {1, 2, 3} extends from the {n, s, e, w, c, n-e, s-e, n-w, s-w} to the {n, s, e, w, c, n-e, s-e, n-w, s-w} of
the house and is medium in size.

Large
room

Room {1, 2, 3} is large in size and it stretches along the {n-s, e-w}direction in the {n, s, e, w, c} of the house.
Room {1, 2, 3} stretches along the {n-s, e-w} direction in the {n, s, e, w, c} of the house and is large in size.

Object

A {cu, cd, sp, co} is located in the middle of the {nr, sr, er, wr} part of the house.
A {cu, cd, sp, co} is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr, cr} part of the house.
A {cu, cd, sp, co} is located in the middle of the {nr, sr, er, wr} part of this room.
A {cu, cd, sp, co} is located in the {n-er, s-er, n-wr, s-wr, n-er, s-er, n-wr, s-wr, cr} part of this room.

Table 1: Templates used by the description generator for FloorPlanQA. For compactness we used the

following notations, n - north, s - south, e - east, w - west, c - center, nr - northern, sr - southern, er -

eastern, wr - western, cr - central, cu - cube, cd - cuboid, sp - sphere and co - cone.

FloorPlanQA: Each sample in FloorPlanQA in-

volves the layout of a house that has multiple

rooms (max 3). The rooms are either small,

medium or large. All the rooms and the house have

a door. Additionally, each room and empty-space

in the house (i.e. the space in the house that is

not part of any room) might also contain an object

(either a cube, cuboid, sphere, or cone).

Each sample has four components, a descrip-

tion, a question, an answer, and a visual represen-

tation. Each sentence in the description describes

either a room, a door or an object. A question is

of the following template: Suppose you are enter-

ing the {house, room 1, room 2, room 3}, where is

the {house door, room 1 door, room 2 door, room

3 door, cube, cuboid, sphere, cone} with respect

to you?. The answer is either of left, right, front,

or back. Other characteristics of FloorPlanQA are

summarized in Fig. 2.

The visual representation of a sample consists

of an ordered set of image channels, one per sen-

tence in the description. An image channel picto-

rially represents the location and/or orientation of

the described item (room, door, object) w.r.t. the

house. An example is shown in Fig. 2.

To generate samples for FloorPlanQA, we

define a probabilistic generative process which

produces tree structures representing layouts of

houses, similar to scene graphs used in computer

graphics. The root node of a tree represents an en-

tire house, and the leaf nodes represent rooms. We

use a description and visual generator to produce

respectively the description and visual representa-

tion from the tree structure. The templates used by

the description generator are described in Table 1.

Furthermore, the order of sentences in a descrip-

tion is randomized while making sure that the de-

scription still makes sense. For example, in some

sample, the description of room 1 can appear be-

fore that of the house-door, while in another sam-

ple, it could be reversed. Similarly, for a room, the

sentence describing the room’s door could appear

before or after the sentence describing the object

in the room (if the room contains one). We per-

form rejection sampling to ensure that all the an-

swers are equally likely, and thus removing bias.

ShapeIntersection: As the name suggests,

ShapeIntersection is concerned with counting the

number of intersection points between shapes. In

this dataset, the description consists of symbols

representing various shapes, and the question is al-

ways “how many points of intersection are there

among these shapes?”

There are three types of shapes in ShapeInter-

section: rectangles, circles, and lines. The de-

scription of shapes is provided in the form of a

sequence of 1D vectors, each vector represent-

ing one shape. A vector in ShapeIntersection is

analogous to a sentence in FloorPlanQA. Hence,
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A cube is located in 

the south-eastern 

part of the house.

Room 1 is located in the 

north-west of the house 

and is small in size. 

The door for this room 

is in the middle of its 

southern wall.

The house door is located in the 

north-eastern side of the house, 

such that it opens towards east. 

Question: If you 

are entering the 

house through its 

door, where is the 

cube with respect 

to you?  

Answer: Left 

Description and visual representation

vocabulary size 66
# unique sentences 264
# unique descriptions 38093
# unique questions 32
# unique question-description pairs 38228
Avg. # words per sentence 15
Avg. # sentences per description 6.61

Figure 2: An example and characteristics of FloorPlanQA (when considering all the 38,400 samples i.e.

training, validation and test sets combined).

for ShapeIntersection, the term ‘sentence’ actu-

ally refers to a vector. Each sentence describing a

shape consists of 5 real numbers. The first number

stands for the type of shape: 1 - line, 2 - circle, and

3 - rectangle. The subsequent four numbers spec-

ify the size and location of the shape. For example,

in case of a rectangle, they represent its height, its

width, and coordinates of its bottom-left corner.

Note that one can also describe the shapes using a

sentence, e.g. “there is a rectangle at (5, 5), with

a height of 2 cm and width of 8 cm.” However, as

our focus is to evaluate ‘visual thinking’, we work

directly with the symbolic encoding.

In a given description, there are 6.5 shapes on

average, and at most 6 lines, 3 rectangles and 3

circles. All the shapes in the dataset are unique

and lie on a 10 × 10 canvas. While generating

the dataset, we do rejection sampling to ensure

that the number of intersections is uniformly dis-

tributed from 0 to the maximum possible number

of intersections, regardless of the number of lines,

rectangles, and circles. This ensures that the num-

ber of intersections cannot be estimated from the

number of lines, circles or rectangles.

Similar to FloorPlanQA, the visual representa-

tion for a sample in this dataset is an ordered set of

image channels. Each channel is associated with

a sentence, and it plots the described shape. An

example is shown in Figure 1.

4 Dynamic Spatial Memory Network

We propose Dynamic Spatial Memory Network

(DSMN), a novel DNN designed for QA with geo-

metric reasoning. What differentiates DSMN from

other QA DNNs is that it forms an internal visual

representation of the input. It then uses a spatial

memory to reason over this visual representation.

A DSMN can be divided into five modules: the

input module, visual representation module, ques-

tion module, spatial memory module, and answer

module. The input module generates an embed-

ding for each sentence in the description. The vi-

sual representation module uses these embeddings

to produce an intermediate visual representation

for each sentence. In parallel, the question mod-

ule produces an embedding for the question. The

spatial memory module then goes over the ques-

tion embedding, the sentence embeddings, and the

visual representation multiple times to update the

spatial memory. Finally, the answer module uses

the spatial memory to output the answer. Fig. 3

illustrates the overall architecture of DSMN.

Input Module: This module produces an embed-

ding for each sentence in the description. It is

therefore customized based on how the descrip-

tions are provided in a dataset. Since the descrip-

tions are in words for FloorPlanQA, a position en-

coding (PE) layer is used to produce the initial sen-

tence embeddings. This is done to ensure a fair

comparison with DMN+ (Xiong et al., 2016) and

MemN2N (Sukhbaatar et al., 2015), which also

use a PE layer. A PE layer combines the word-

embeddings to encode the position of words in a

sentence (Please see (Sukhbaatar et al., 2015) for

more information). For ShapeIntersection, the de-

scription is given as a sequence of vectors. There-

fore, two FC layers (with ReLU in between) are

used to obtain the initial sentence embeddings.

These initial sentence embeddings are then

fed into a bidirectional Gated Recurrent Unit

(GRU) (Cho et al., 2014) to propagate the infor-

mation across sentences. Let −→si and←−si be the re-

spective output of the forward and backward GRU

at ith step. Then, the final sentence embedding for

the ith sentence is given by si =
−→si +

←−si .

Question Module: This module produces an em-

bedding for the question. It is also customized to

the dataset. For FloorPlanQA, the embeddings of

the words in the question are fed to a GRU, and the

final hidden state of the GRU is used as the ques-

tion embedding. For ShapeIntersection, the ques-

tion is always fixed, so we use an all-zero vector

as the question embedding.

Visual Representation Module: This module
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generates a visual representation for each sen-

tence in the description. It consists of two sub-

components: an attention network and an encoder-

decoder network. The attention network gathers

information from previous sentences that is impor-

tant to produce the visual representation for the

current sentence. For example, suppose the cur-

rent sentence describes the location of an object

with respect to a room. Then in order to infer the

location of the object with respect to the house,

one needs the location of the room with respect

to the house, which is described in some previous

sentence.

The encoder-decoder network encodes the vi-

sual information gathered by the attention net-

work, combines it with the current sentence em-

bedding, and decodes the visual representation of

the current sentence. An encoder (En(.)) takes an

image as input and produces an embedding, while

a decoder (De(.)) takes an embedding as input and

produces an image. An encoder is composed of

series of convolution layers and a decoder is com-

posed of series of deconvolution layers.

Suppose we are currently processing the sen-

tence st. This means we have already pro-

cessed the sentences s1, s2, . . . , st−1 and pro-

duced the corresponding visual representations

S1,S2, . . . ,St−1. We also add s0 and S0, which

are all-zero vectors to represent the null sentence.

The attention network produces a scalar attention

weight ai for the ith sentence which is given by

ai = Softmax(ws
tzi + bs) where zi = [|si −

st|; si ◦ st]. Here, ws is a vector, bs is a scalar,

◦ represents element-wise multiplication, |.| rep-

resents element-wise absolute value, and [v1;v2]
represents the concatenation of vectors v1 and v2.

The gathered visual information is S̄t =
∑t−1

i=0 aiSi. It is fed into the encoder-decoder net-

work. The visual representation for st is given by

St = Des

(

[

st;Ens(S̄t)
]

)

. The parameters of

Ens(.), Des(), ws, and bs are shared across mul-

tiple iterations.

In the proposed model, we make the simplify-

ing assumption that the visual representation of the

current sentence does not depend on future sen-

tences. In other words, it can be completely de-

termined from the previous sentences in the de-

scription. Both FloorPlanQA and ShapeIntersec-

tion satisfy this assumption.

Spatial Memory Module: This module gathers

relevant information from the description and up-

dates memory accordingly. Similar to DMN+

and MemN2N, it collects information and updates

memory multiple times to perform transitive rea-

soning. One iteration of information collection

and memory update is referred as a ‘hop’.

The memory consists of two components: a 2D

spatial memory and a tag vector. The 2D spatial

memory can be thought of as a visual scratch pad

on which the network ‘sketches’ out the visual in-

formation. The tag vector is meant to represent

what is ‘sketched’ on the 2D spatial memory. For

example, the network can sketch the location of

room 1 on its 2D spatial memory, and store the

fact that it has sketched room 1 in the tag vector.

As mentioned earlier, each step of the spatial

memory module involves gathering of relevant in-

formation and updating of memory. Suppose we

are in step t. Let M (t−1) represent the 2D spa-

tial memory and m(t−1) represent the tag vector

after step t − 1. The network gathers the relevant

information by calculating the attention value for

each sentence based on the question and the cur-

rent memory. For sentence si, the scalar attention

value g
(t)
i equal to Softmax(wt

yp
(t)
i + by), where

p
(t)
i is given as

p
(t)
i =

[

|m(t−1) − si|; m
(t−1) ◦ si; |q − si|;

q ◦ si; En(t)
p1
(|M (t−1) − Si|);

En(t)
p2
(M (t−1) ◦ Si)

]

(1)

M (0) and m(0) represent initial blank memory,

and their elements are all zero. Then, gathered in-

formation is represented as a context tag vector,

c(t) = AttGRU(gi
(t)si) and 2D context, C(t) =

∑n
i=0 gi

(t)Si. Please refer to (Xiong et al., 2016)

for information about AttGRU(.). Finally, we use

the 2D context and context tag vector to update the

memory as follows:

m(t) = ReLU
(

Wm
(t)
[

m(t−1); q; c(t);

Enc(C
(t))

]

+ bm
(t)
)

(2)

M (t) = De(t)m

(

[

m(t); En(t)
m (M (t−1))

]

)

(3)

Answer Module: This module uses the final

memory and question embedding to generate the

output. The feature vector used for predicting the

answer is given by f , where M (T ) and m(T ) rep-

resent the final memory.

f =
[

Enf (M
(T )); m(T ); q

]

(4)
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