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1. Introduction

In many practical problems, physical properties of the material
of an arbitrarily shaped three-dimensional object varies spatially,
that is, throughout that object. Non-destructive methods that
require only boundary measurements of the field variables to
determine parameters defining the spatial distribution of the
physical property of the material within the domain are needed.

The material properties such as thermal conductivity, electric
permittivity, magnetic permeability, and concentration diffusivity,
influence the spatial variation of the field quantities such as tem-
perature, electric field potential, magnetic field potential, diffusion
of non-reacting particles in a solid. These field problems can be
modeled by an elliptic partial differential equation governing the
steady-state diffusion of the field variable ¢ = ¢(x,y,2).

V-(AV$) =0 (1)

where 1 = A(x,y,z) is the diffusion coefficient. Using this mathe-
matical model, the question to answer becomes: Using the
boundary values of the field function, ¢, or its normal derivatives on
the boundary of the solid, how can the spatial distribution of the
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diffusion coefficient 1 be determined throughout the arbitrarily
shaped solid object?

In the case of a forward or analysis problem, Eq. (1) can be
numerically integrated inside the arbitrarily shaped three-
dimensional object using finite element or finite volume methods
for a known distribution of 1 and Dirichlet or Neumann boundary
conditions.

In the case of an inverse problem, the spatial distribution of A is
not known and is to be determined iteratively. Non-destructive
determination of the diffusion coefficient requires measured
boundary values of ¢ = ¢(x,y,z) and/or the measured values of the
normal derivative of ¢ = ¢(x,y,z) on the boundary of the solid
object [1-3].

A variety of analytical, statistical, numerical and algorithmic
approaches have been used by researchers to inversely determine
spatially varying thermal conductivity in solid objects [4—10]. For
example, Rodrigues et al. [6] and Naveira-Cotta et al. [7] deter-
mined non-isotropic thermal conductivity from the over-specified
thermal boundary conditions using Bayesian statistics employing
Kalman filter or non-linear filters. Fu et al. [8], Gu et al. [9] and Chen
et al. [10] identified anisotropic thermal conductivity in 2D and 3D
media. It should be pointed out that all of these methodologies
focused on determining constant coefficients in a tensor repre-
sentation of thermal conductivity. None of these works, however,
address estimation of the more general spatially varying thermal
conductivity.
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However, an entirely different and computationally efficient
approach to inverse determination of spatially varying physical
properties of solid media is based on a combination of a field
analysis algorithm (using finite volume, finite element, finite dif-
ference, radial basis function, etc.) or experimental data, and an
accurate, fast and robust minimization algorithm [11—13] capable
of avoiding local minima. This paper demonstrates extension of the
inverse parameter identification methodology from two-
dimensional arbitrarily shaped objects [14,15] to three-
dimensional arbitrarily shaped objects with known outer geome-
try and possible internal inclusions.

The challenging inverse problem of determination of spatial
distribution of diffusion coefficient in an arbitrarily shaped three-
dimensional object is somewhat more tractable if A = A(x,y,2) is
known to vary as a function of x, y, z according to an analytic
function defined by a number of unknown parameters. The easiest
and the most versatile method for solving this inverse problem is
minimization of the properly scaled sum of squares of differences
between the computed ¢ or d¢/dn values on the boundaries subject
to chosen values of these parameters, and the measured ¢ or d¢/dn
values on the boundaries. In this case, these unknown parameters
need to be iteratively optimized to give an accurate match between
the calculated and the measured boundary values of ¢ or d¢/on.
This method will be now presented on sequence of examples
dealing with inverse determination of parameters governing
spatial variation of one of the most common diffusion coefficients
A= A(x,y,z) known as thermal conductivity, k(x,y,z).

It should be pointed out that an unrelated inverse problem is
inverse determination of thermal conductivity as a function of
temperature (not space) which can be efficiently and accurately
solved with the use of Kirchoff's transformation [16].

2. Validation of numerical solvers for forward problem

With advances in additive manufacturing, it is now possible to
create three-dimensional objects that feature spatially varying
thermo-physical properties. Also, it can often become imperative to
non-destructively determine the thermo-physical properties of
such objects.

The previously posed inverse problem, when applied to the
thermal diffusion problems, can be stated as: For a specified tem-
perature/heat flux distribution on the boundaries of a solid object,
what should be the spatial variation of thermal conductivity in this
domain that will create such temperature/heat flux distribution at the
boundaries?

As previously mentioned, the methodology in this work uses a
least-squares minimization technique that requires the tempera-
ture and/or heat flux to be calculated at the boundary of the
domain. This was done by numerically integrating Eq. (1) using the
finite volume method in ANSYS Fluent [17] software package. The
spatial variation of thermal conductivity was incorporated using a
User-Defined Function (UDF) in this analysis software package.

In this inverse parameter identification method, it is necessary
to solve the forward (analysis) problem several times. For this
reason, the accuracy of the numerical integration code needs to be
verified. The accuracy verification was performed against analytical
solutions. One such analytical solution test case can be formulated
as a three-dimensional cube x<(0, 1], y=[0, 1], z€[0, 1] with the
distribution of thermal conductivity defined by

k(x,y.z) = [(A+X)B+y)(C+2)]"" )

Here, A, B, C and n are arbitrary parameters. The corresponding
analytical solution for the temperature field then has the general
form

T(x,y,2) = (A+x)" +(C+2)" (3)

The accuracy verification was performed by solving Eq. (1) in a
cube subject to Dirichet conditions specified in Table 1 where
A=B=C=1.0 and n = 2. Equation (1) was solved using ANSYS
Fluent [17] with UDF on a computational grid of 62 x 62 x 62 grid
cells.

Fig. 1 shows the analytical distribution of thermal conductivity
defined by Eq. (2), analytical temperature field, computed tem-
perature field and the relative error between the computed and
analytical temperature fields subject to boundary conditions in
Table 1. It can be seen that the maximum relative error is 0.015%. It
shows that the proposed numerical method is capable of producing
accurate results and therefore can be used for the proposed inverse
problem method.

+ B+y)"

3. Inverse problem solution methodology

The solution of the inverse problem results in the determination
of parameters defining thermal conductivity variation throughout
the domain. This methodology minimizes the sum of normalized
least-squares differences between measured and calculated
boundary values of the field variable by iteratively adjusting these
parameters. Let us refer to temperature or temperature gradient on
the boundaries obtained from experiments or analytical solution as
“measured” values. Let us refer to temperature or temperature
gradient on the boundaries obtained from the solution of the for-
ward problem with guessed values of the parameters defining
spatial distribution of thermal conductivity as “calculated” values.
Then the functional to minimize becomes

J= % K-chalc _ ijeas)/(q’neas n 8)]2 (4)

where ¢ is a very small positive number of the order 1.0E-06 (to
prevent division by zero when measured boundary temperature is
zero) and summation is performed over 9S, the boundary of the
arbitrarily shaped solid object.

The minimization of Eq. (4) was performed using a hybrid of
particle swarm and Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithms [11—13]. The optimizer iteratively modifies the parame-
ters defining the distribution of thermal conductivity in the
forward problem during minimization of the J functional. A hybrid
optimization algorithm was chosen because it is highly reliable and
fast. That is, single-objective optimization algorithms based on
gradient search have good convergence rates, but their search will
often terminate in the nearest feasible minimum instead in the
global minimum. Non-gradient population-based optimization al-
gorithms converge at a slower rate, but are able to successfully
converge to the immediate vicinity of the global minimum. A
typical hybrid optimizer [11—-13] is a set of one or more of the
gradient-based optimizers and one or more of the population-
based optimizers, with an automatic switching logic among these

Table 1
Dirichlet boundary conditions, whenA=B=C=1.0and n = 2.

Location Dirichlet boundary conditions
East boundary x=1.0 T(1,y,2) =4+ (1+y)? + (1 +2)
West boundary x=0.0 T(0,y,2) =1+ (1 +y) +(1 +z)
North boundary y=10 T(x,1,2) =4+ (1 +x)? +(1 +z)
South boundary y=00 T(x,0,2) =1+ (1+x)? + (1+2)?
Top boundary z=10 T(x,y,1) =4+ (1+x)?%+(1+y)?
Bottom boundary z=00 T(x,y,0)=1+(1 +x)?% + +(1 +y>2
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Fig. 1. Distribution of: a) analytical thermal conductivity, b) analytical temperature field given by Eq. (3), c) calculated temperature field using ANSYS Fluent and analytical thermal
conductivity given by Eq. (2), and d) relative error of temperature computed using ANSYS Fluent.

algorithms after every iteration (or population generation) in order
to maximize the overall convergence rate and avoid local minima.
In this work, instead of automatically switching back-and-forth
between the BFGS and the particle swarm optimizers, the popu-
lation based algorithm was used exclusively until the search
converge to the vicinity of the global minimum (when the
convergence rate became very low) and then switched [18] to
exclusively using BFGS fast gradient-based optimizer to quickly
converge to the actual global minimum point.

In certain cases, it can be computationally expensive to compute
the forward problem especially when using a very fine computa-
tional grid. The forward problem needs to be solved a large number
of times, each time for different guessed values of thermal con-
ductivity parameters. Thus, it is more economical to replace the
finite volume or the finite element solver with a less accurate, but
much faster surrogate model. For this reason, a response surface
[12,13] was created for the J functional and then used to extremely
quickly predict the forward problem solutions for any guessed
values of the parameters defining thermal conductivity spatial
variation. The response surface of the J functional was created by

interpolating J values calculated using high fidelity ANSYS analyses
corresponding to a relatively small set of randomly distributed
values of the unknown thermal conductivity parameters created
using Sobol's algorithm [19]. The entire methodology is summa-
rized in Fig. 2.

All simulations were run on a single core of an Intel Xeon CPU
E5-4620. Each finite volume analysis took approximately 15 s,
while the response surface was constructed in less than 10 s. Once
the response surface was constructed using the J functional values
from the analysis runs, the optimizer, when coupled with the
response surface, took approximately 20—30 s for each case to
minimize Eq. (4).

4. Numerical results

4.1. Case 1: inverse determination of smoothly varying thermal
conductivity

The proposed inverse problem solution methodology was vali-
dated for a simple cube. The thermal conductivity was defined by
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Fig. 2. Inverse problem methodology.

Eq. (2), in a cube where x<(0,1], y=(0, 1] and z<|0, 1], and sub-
jected to boundary conditions defined by Eq. (3) where the pa-
rameters were A = 1.25, B=1.34, C =3.20 and n = 2. The east,
west, north, south and top faces were subject to Neumann
boundary conditions, while the bottom face was subjected to
Dirichlet boundary condition. The Neumann boundary condition
can be computed by analytically differentiating Eq. (3).

The “calculated” values were obtained using ANSYS Fluent and
guessed values of A, B and C, while the “measured” values were
obtained from the analytical solution Eq. (3). The three-
dimensional response surface was created using Shepard's K-
Nearest algorithm [18] that was supported by 30 values of the |
functional obtained using 30 guessed sets of parameters A, B and C
in Eq. (2). In this example, the hybrid particle swarm-BFGS opti-
mizer [18] was coupled with the three-dimensional response sur-
face to minimize the J functional.

Table 2 shows converged value of the parameters A, B and C that
best minimized the J functional. Relative error of the inversely
determined parameters was less than 1% The maximum
computing time required to converge the three unknown param-
eters was less than 45 min. This includes times to construct the
response surface as well as the optimization. In previous work
dealing with two-dimensional problems only [ 14,15], which did not
use a response surface, the computing times were more than 10 h.

Fig. 3 shows the distribution of analytical thermal conductivity,
analytical temperature field, converged distribution of thermal
conductivity and the relative error between analytical and
converged distribution of thermal conductivity. It shows that the
difference between the analytical thermal conductivity and
converged thermal conductivity is less than 0.01%, thereby vali-
dating the proposed methodology for inverse determination of
spatially varying thermal conductivity.

4.2. Case 2: determination of sharp gradient thermal conductivity

It has been shown that the proposed methodology is able to

Table 2
Case 1: Converged values of coefficients for n = 2.
A B C
Exact 1.250 1.340 3.20
Inversely Determined 1.248 1337 3.20
Relative error 0.8% 0.22% 0%

determine the distribution of smoothly varying thermal conduc-
tivity when it follows a simple function. Its ability to determine
sharply varying 3D distribution of thermal conductivity is investi-
gated. In this test case, the “measured” solution is no longer ob-
tained using the analytical solution, but rather by using analysis
from COMSOL software [20].

The thermal conductivity was assumed to have the form

k ki A .
k(x,y.z) = M + (kmax — Kmin) {ﬁ - ESIHD(ZWX)]

y B . E z C . F
X Lmax —ﬂsm (27‘(}/)} X {Zmax—ﬂsm (2#2)}

(5)

The “measured” solution was obtained by solving Eq. (1) using
the distribution of thermal conductivity given in Eq. (5) (with
boundary conditions given in Table 4) using the finite element
method in COMSOL. When solving inverse problems, one must
avoid the so called “inverse crime”. This is because in a numerical
study, the inverse problem will converge exactly to the measure-
ments if the “measurements” were obtained using the same anal-
ysis code as that used in the inverse problem. To avoid this, two
different solvers must be used; one to obtain the “measurements”
(COMSOL) and another (ANSYS) to solve the forward problem. It
should be pointed out that, once the response surface is used to
solve the forward problem, this inverse crime issue is avoided
altogether as the response surface is a very crude but efficient
approximation to the J functional. It does not know anything about
the physics of the heat transfer problem. In Case 1, the “measure-
ments” were given as an analytic solution instead of been simulated
by any computer code. In other cases, the “measurements” were
generated using COMSOL, while forward solutions needed for the
generation of the response surface were generated using ANSYS.
The J functional was then calculated using these “measured” and
“calculated” values.

An eight-dimensional response surface was created using 80
support points by means of the Shepard's K-Nearest algorithm [ 18].
The optimizer was then coupled with this response surface to find
values of the eight parameters that best minimized the J functional.
The range for each variable that the optimizer was allow to search is
given in Table 3.

Table 4 shows the boundary conditions applied to the cube,
where q is the heat flux. The J functional was constructed using the
temperature value on the east, west, north, south and top
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Fig. 3. Case 1 - Distribution of: a) analytical thermal conductivity, b) analytical temperature distribution, c) inversely determined thermal conductivity, and d) relative error be-

tween exact and estimated thermal conductivity.

Table 3
Case 2 - Allowable range and step size for each unknown parameter in Eq. (5).
Kmin Kmax A B C D E F
Min 100 1000 0 0 0 1 1 1
Max 500 6000 1.0 1.0 1.0 100 100 100
Step Size 10 10 0.01 0.01 0.01 1 1 1

boundaries. The computational grid has the same size as the one
used in Case 1 study.

As is often the case, the “measured” values that are obtained
from an experiment often have some level of noise. To account for
this, noise was added to the “measured” values obtained from

Table 4
Case 2 - Boundary conditions, when ki, = 200, kmax = 5000, A = B = C = 0.85
and D=E =F = 50.

COMSOL. The noise model used was additive white Gaussian [21].
The “measured” values were perturbed by a noise-signal ratio of 1%,
3%, 5% and 10%. In reality, the actual Type ], K, E, T thermocouples
and resistance temperature detectors (RTDs) all have a maximum
error of approximately 1% [22].

Table 5 shows the values of the converged six parameters in Eq.
(5) with varying level of noise. It is evident that the inverse problem
methodology is also able to determine a highly non-linear distri-
bution of the diffusion coefficient. The table also shows the values
of the J functional when the analytical values of the six parameters
are used to solve Eq. (1) and perturbed “measured” values are used
to construct the J functional. It can be seen that the J functional
rapidly increases for noise levels greater than approximately 2%.

Table 5
Case 2: Converged values of coefficients, and J functional with randomly perturbed
boundary values.

Boundary conditions

East boundary q(1,y,2) =10 x k(1,y,2)

West boundary q(0,y,2z) =10 x k(0,y,2)
North boundary q(x,1,z) =10 x k(x,1,2)
South boundary q(x,0,z) = 400 x k(x,0,2)
Top boundary q(x,y,1) = 600 x k(x,y,1)

Bottom boundary T(x,¥,0)=85K

kmin Kmax A B C D E F ]Analyticul

Analytical 200 3000 085 085 085 50 50 50 -
emeas = 0% 200 3000 085 085 085 50 50 50 3E-8
emeas = 1% 200 3000 085 085 085 50 50 50 8E-6
€meas = 3% 200 3000 085 085 085 50 50 50 433
€meas = 5% 410 4210 083 070 052 95 21 34 28E7
emeas = 10% 340 4910 032 082 071 85 4 35 5.9E6
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Fig. 4 shows the distribution of converged thermal conductivity
for varying levels of noise in “measured” thermal boundary con-
ditions. Good convergence can be seen for noise levels up to 3%.
This shows that the methodology is able to inversely determine
even a sharp gradient distribution of thermal conductivity for high
measurement noise levels, considering the maximum noise expe-
rienced by an actual thermocouple is less than 1%.

Fig. 5 shows the relative error of the converged calculated dis-
tribution of thermal conductivity and its analytical distribution. The
relative error is zero for noise levels below 5%. It can be seen that
the distribution of the thermal conductivity is still predicted rela-
tively accurately despite the large noise present in the measured
data.

4.3. Case 3: determination of sharp gradient thermal conductivity
in arbitrary domain

In the previous two cases, a cube was used to demonstrate the
efficiency of the proposed methodology. However, the proposed

900 1190 1480 1770 2060 2350 2640 2930 3220 3510 3800

A

b) c)

Fig. 4. Converged thermal conductivity for: a) emeas = 0%, emeas = 1%, emeas = 3%, D) emeas = 5%, C) emeas = 10%.

methodology can also be applied to arbitrary shaped domains. In
this section, an arbitrary three-dimensional configuration featuring
no planar symmetry or axis-symmetry is used (Fig. 6). The para-
metric equations defining this geometry are given by Lame curves
as

r=rg9 — A cos(30),

x —0.4]2 y—o.22_1 x+0.5]* y—0.24_1
0.2 02 | ~ | 01 03 | —

P—oqz P+Qﬂ2:1

where 1o =1,A=02, 0.0<6§<2m

0.4 03
(6)

Fig. 6 shows the arbitrary multiply-connected geometry defined
by Eq. (6). Each of the four boundaries is revolved by a different
angle ¢ about the axis which is offset by 2 m from the origin. This
ensures there is neither a planar symmetry nor axisymmetry.

The assumed distribution of thermal conductivity is again given

Error (%): 0

10 20 30 40 50 60 70 80 90 100

a)

b)

Fig. 5. Relative error in Case 2 between analytical and converged distribution of thermal conductivity for: a) emeqs = 5% and b) emeas = 10%.
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Fig. 6. Case 3: Arbitrary three-dimensional geometry example: a) vertical cross section plane of a torus showing cross-sections of three cavities, and b) an isometric translucent

view of the complete 3D torus with three cavities.

by Eq. (5), where the eight parameters are given in Table 5. The
governing Eq. (1) was subject to boundary conditions given in
Table 6. The “measured” values were once again obtained using
COMSOL. The J functional was constructed using temperature
values on boundaries #2, #3 and #4. A total of 80 support points (80
numerical analyses with different values of the eight parameters)
were used to create the response surface again by means of the
Shepard's K-Nearest algorithm [18].

Table 7 shows the converged values of the eight parameters in
Case 3 under varying noise levels for the three-dimensional
configuration given in Fig. 6. It can again be seen that the J func-
tional grows exponentially for noise levels greater than approxi-
mately 1.5%.

Fig. 7 shows the converged distribution of thermal conductivity
for Case 3. It can be seen that again for noise levels up to 3%, the
proposed methodology is able to accurately determine the distri-
bution of diffusion coefficient.

Fig. 8 shows the relative error between the converged distri-
bution of thermal conductivity and its analytical distribution. It was

Table 6
Case 3: Boundary conditions when ki, =420, kmax = 3160,
A=044,B=062,C=0.33and D =34, E=42,F=21

Boundary conditions

Boundary #1 T=330K

Boundary #2 q = 30000 x k(x,y,z)
Boundary #3 q = 60000 x k(x,y,z)
Boundary #4 q = 40000 x k(x,y,z)

Table 7
Case 3: Converged values of the six parameters and J functional with randomly
perturbed boundary values.

kmin Kkmax A B C D E F ]Analytical

Analytical 420 3160 044 062 033 34 42 21

emeas = 0% 420 3160 044 062 033 34 42 21 2E-8
£meas = 1% 420 3160 044 062 033 34 42 21 2E-6
£meas = 3% 420 3160 044 062 033 34 42 21 109
€meas = 5% 450 4860 0.83 047 025 95 95 49 260
emeas = 10% 450 4860 083 047 025 95 95 49 5.5E6

observed that a sensitive distribution of assumed thermal con-
ductivity as in Eq. (5) leads to a highly non-linear and highly
multimodal objective function topology featuring sharp gradients
near the global minimum. For this reason a powerful and robust
optimizer is needed to avoid the local minima. An improvement in
accuracy could be expected when using strictly high fidelity ana-
lyses instead of a relatively low fidelity response surface
metamodel.

It can be reported that the optimizer took longer to converge in
Case 2 and in Case 3 than in Case 1, due to the highly non-linear and
sensitive assumed distribution of thermal conductivity. With the
use of high fidelity finite element or finite volume for each of the
analyses, the computing time would have been an order of
magnitude longer.

4.4. Case 4: determination of subdomains within solid objects

Using this general approach, it is possible to detect subdomains
(one material subdomain imbedded within another material
domain) by minimizing the J functional. This will be demonstrated
on a simple cube made of silicon with an embedded subdomain of
gold. It will be assumed that the subdomain general shape inside
the cube is defined by a modified Lamé super-ellipsoid whose
location, size and shape and its thermal conductivity are unknown.

X — Xg 2/n2+ y—yo\*'™ nz/n1+ z—zp\*™
A B C

1

fx,y,2)

(7)

It will also be assumed that the property of the encasing ma-
terial is also unknown.

Distribution of thermal conductivity can then be assumed to
have the discontinuous form

F(x,y,2)> 1>k = Ksjjicon (8)
f(x.y,2) < 1=k = kg

The “measured” values of thermal boundary conditions were
obtained by means of the finite element method using the exact
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Fig. 7. Case 3 — Converged spatial distribution of thermal conductivity for: a) emeqs = 0%, emeas = 1%, emeas = 3%, and b) emeqs = 5%, emeas = 10%.
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Fig. 8. Case 3 - Relative error between analytical and converged thermal conductivity
for emeas = 5% and emeqs = 10%.

values (Table 8) of thermal conductivities, geometry definition
parameters used in Eq. (7) and thermal boundary conditions given
in Table 4. A total of 110 support points were used to create a
response surface using the Shepard's K-Nearest algorithm. To allow
for the accurate analysis of vastly diverse shapes, the computational
grid resolution was increased to 110 x 110 x 110.

The ten converged parameters from Eq. (8) for varying levels of
noise in the “measured” thermal boundary conditions are shown in
Table 8. It can be seen that the optimizer was able to accurately
determine the location, size and shape of the subdomain and
thermal conductivities of the materials in the two domains.

Fig. 9 shows the location and the shape of the identified sub-
domain. It can be seen that the location is exact for all three cases.
The assumed distribution of thermal conductivity was relatively
sensitive with respect to each of the ten variables.

This demonstrated that this non-destructive evaluation method
is also capable of identifying sizes, shapes and locations of
imbedded subdomains and discontinuous distribution of diffusion
coefficient in such subdomains.

The number of parameters that can be determined using this
methodology can be much higher. For example, the accuracy of this
methodology is dependent on the accuracy of the forward problem
solver (which was verified), the assumed function distribution
(which can be overcome using a product of two or three Fourier
series), the accuracy of the response surface generation algorithm
used, and the reliability and accuracy of optimizer used to perform
the minimization. It is true that for larger number of unknowns, a
more powerful optimizer is needed. One such optimizer is 10SO
which can cope with hundreds of unknowns. Our hybrid single-
objective optimizer successfully performed on analytical prob-
lems with up to 100 design variables having different degrees of
nonlinearities.

5. Conclusion

The continuous and discontinuous distribution of material
properties within a solid object can be non-destructively deter-
mined using a minimization of a sum of the least squares be-
tween the calculated and measured boundary conditions.
Numerical integration of the governing PDE was performed using
the finite volume and finite element methods and was validated
against analytical solution. This inverse parameter identification
technique showed promising results for both a continuous and

Table 8
Case 4 - Converged values of ten parameters in Eq. (8) with randomly perturbed thermal boundary values.
Ksiticon kgold Xo Yo Zo A B C n ny
Analytical 149 385 -0.5 0.0 -0.15 0.25 0.25 0.25 0.5 1.0
£meas = 0% 149 385 -0.5 0.0 -0.15 0.25 0.25 0.25 0.5 1.0
emeas = 1% 149 385 -0.5 0.0 -0.15 0.26 0.24 0.245 0.5 1.01
emeas = 3% 149 385 —0.56 0.0 -0.15 0.27 0.24 0.245 0.61 13
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Fig. 9. Case 4 - Inversely determined location, size and shape of a subdomain containing gold for: a) emeqs = 0%, b) emeas = 1%, and ¢) emeas = 3%.

discontinuous, smoothly varying and sharply varying distribution
of the diffusion coefficient in arbitrary domains. Total computing
time was significantly reduced from 10 + hours to under 1 h by
the use of metamodels. It was demonstrated that even a sensitive
and highly non-linear distribution of the material properties can
be estimated. The presented methodology was able to determine
the distribution of the diffusion coefficient for boundary tem-
perature measurement noise levels up to 3% when using
response surface metamodels, which is appealing as a typical
temperature measurement apparatus has a noise level of 1%. This
approach to inverse identification of unknown parameters was
also demonstrated as capable of accurately determining sizes,
shapes and locations of subdomains and material properties in
the subdomains imbedded within a solid object. Finally, it should
be pointed out that this parameter identification method is
directly applicable to determination of parameters defining
spatial distributions of thermal conductivity, electric permittivity
and magnetic permeability and that it is truly non-destructive. It
took approximately 30 min to 1 h to obtain objective function
values needed to construct the response surface. The actual
construction of the response surface took less than 5 s. Once the
response surface was coupled with the optimizer, the minimi-
zation process took approximately 30 s. Thus, the most compu-
tationally expensive task in this entire procedure is obtaining the
objective function values needed to construct a response surface.
An alternative would be to use reduced order modeling instead
of the response surface approach, although both approaches
require a number of high fidelity forward solutions as a starting
point.
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