
Non-destructive estimation of spatially varying thermal conductivity
in 3D objects using boundary thermal measurements

Sohail R. Reddy*, George S. Dulikravich, S.M.Javad Zeidi

Department of Mechanical and Materials Engineering, MAIDROC Laboratory, Florida International University, 10555 W. Flagler St., Miami, FL 33174, USA

a r t i c l e i n f o

Article history:

Received 18 October 2016

Received in revised form

17 February 2017

Accepted 11 May 2017

Keywords:

Non-destructive testing

Inverse problems

Parameter identification

Minimization

a b s t r a c t

A methodology for non-destructive, accelerated inverse estimation of spatially varying material prop-

erties using only boundary measurements is presented. The spatial distribution of diffusion coefficient in

3D solid object is determined by minimizing the sum of the least-squares difference between measured

and calculated values. The forward problem is solved using the finite volume and finite element methods,

both of which were compared against analytical solution. The inverse problem was solved using an

optimization technique to minimize the sum of the least-square errors. The non-destructive estimation

was accelerated by the use of surrogate models to solve the forward problem. The presented method-

ology is applied to measurements containing varying levels of noise. Finally, it is used to detect both the

location, size and shape of a subdomain within a solid object and material property of the subdomain

material.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

In many practical problems, physical properties of the material

of an arbitrarily shaped three-dimensional object varies spatially,

that is, throughout that object. Non-destructive methods that

require only boundary measurements of the field variables to

determine parameters defining the spatial distribution of the

physical property of the material within the domain are needed.

The material properties such as thermal conductivity, electric

permittivity, magnetic permeability, and concentration diffusivity,

influence the spatial variation of the field quantities such as tem-

perature, electric field potential, magnetic field potential, diffusion

of non-reacting particles in a solid. These field problems can be

modeled by an elliptic partial differential equation governing the

steady-state diffusion of the field variable f ¼ fðx; y; zÞ.

V$ðlVfÞ ¼ 0 (1)

where l ¼ lðx; y; zÞ is the diffusion coefficient. Using this mathe-

matical model, the question to answer becomes: Using the

boundary values of the field function, f, or its normal derivatives on

the boundary of the solid, how can the spatial distribution of the

diffusion coefficient l be determined throughout the arbitrarily

shaped solid object?

In the case of a forward or analysis problem, Eq. (1) can be

numerically integrated inside the arbitrarily shaped three-

dimensional object using finite element or finite volume methods

for a known distribution of l and Dirichlet or Neumann boundary

conditions.

In the case of an inverse problem, the spatial distribution of l is

not known and is to be determined iteratively. Non-destructive

determination of the diffusion coefficient requires measured

boundary values of f ¼ fðx; y; zÞ and/or the measured values of the

normal derivative of f ¼ fðx; y; zÞ on the boundary of the solid

object [1e3].

A variety of analytical, statistical, numerical and algorithmic

approaches have been used by researchers to inversely determine

spatially varying thermal conductivity in solid objects [4e10]. For

example, Rodrigues et al. [6] and Naveira-Cotta et al. [7] deter-

mined non-isotropic thermal conductivity from the over-specified

thermal boundary conditions using Bayesian statistics employing

Kalman filter or non-linear filters. Fu et al. [8], Gu et al. [9] and Chen

et al. [10] identified anisotropic thermal conductivity in 2D and 3D

media. It should be pointed out that all of these methodologies

focused on determining constant coefficients in a tensor repre-

sentation of thermal conductivity. None of these works, however,

address estimation of the more general spatially varying thermal

conductivity.
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However, an entirely different and computationally efficient

approach to inverse determination of spatially varying physical

properties of solid media is based on a combination of a field

analysis algorithm (using finite volume, finite element, finite dif-

ference, radial basis function, etc.) or experimental data, and an

accurate, fast and robust minimization algorithm [11e13] capable

of avoiding local minima. This paper demonstrates extension of the

inverse parameter identification methodology from two-

dimensional arbitrarily shaped objects [14,15] to three-

dimensional arbitrarily shaped objects with known outer geome-

try and possible internal inclusions.

The challenging inverse problem of determination of spatial

distribution of diffusion coefficient in an arbitrarily shaped three-

dimensional object is somewhat more tractable if l ¼ lðx; y; zÞ is

known to vary as a function of x, y, z according to an analytic

function defined by a number of unknown parameters. The easiest

and the most versatile method for solving this inverse problem is

minimization of the properly scaled sum of squares of differences

between the computed f or vf=vn values on the boundaries subject

to chosen values of these parameters, and the measured f or vf=vn

values on the boundaries. In this case, these unknown parameters

need to be iteratively optimized to give an accurate match between

the calculated and the measured boundary values of f or vf=vn.

This method will be now presented on sequence of examples

dealing with inverse determination of parameters governing

spatial variation of one of the most common diffusion coefficients

l ¼ lðx; y; zÞ known as thermal conductivity, k(x,y,z).

It should be pointed out that an unrelated inverse problem is

inverse determination of thermal conductivity as a function of

temperature (not space) which can be efficiently and accurately

solved with the use of Kirchoff's transformation [16].

2. Validation of numerical solvers for forward problem

With advances in additive manufacturing, it is now possible to

create three-dimensional objects that feature spatially varying

thermo-physical properties. Also, it can often become imperative to

non-destructively determine the thermo-physical properties of

such objects.

The previously posed inverse problem, when applied to the

thermal diffusion problems, can be stated as: For a specified tem-

perature/heat flux distribution on the boundaries of a solid object,

what should be the spatial variation of thermal conductivity in this

domain that will create such temperature/heat flux distribution at the

boundaries?

As previously mentioned, the methodology in this work uses a

least-squares minimization technique that requires the tempera-

ture and/or heat flux to be calculated at the boundary of the

domain. This was done by numerically integrating Eq. (1) using the

finite volume method in ANSYS Fluent [17] software package. The

spatial variation of thermal conductivity was incorporated using a

User-Defined Function (UDF) in this analysis software package.

In this inverse parameter identification method, it is necessary

to solve the forward (analysis) problem several times. For this

reason, the accuracy of the numerical integration code needs to be

verified. The accuracy verificationwas performed against analytical

solutions. One such analytical solution test case can be formulated

as a three-dimensional cube x2½0;1�, y2½0;1�, z2½0;1� with the

distribution of thermal conductivity defined by

kðx; y; zÞ ¼ ½ðAþ xÞðBþ yÞðC þ zÞ�1�n (2)

Here, A, B, C and n are arbitrary parameters. The corresponding

analytical solution for the temperature field then has the general

form

Tðx; y; zÞ ¼ ðAþ xÞn þ ðBþ yÞn þ ðC þ zÞn (3)

The accuracy verification was performed by solving Eq. (1) in a

cube subject to Dirichet conditions specified in Table 1 where

A ¼ B ¼ C ¼ 1:0 and n ¼ 2. Equation (1) was solved using ANSYS

Fluent [17] with UDF on a computational grid of 62 � 62 � 62 grid

cells.

Fig. 1 shows the analytical distribution of thermal conductivity

defined by Eq. (2), analytical temperature field, computed tem-

perature field and the relative error between the computed and

analytical temperature fields subject to boundary conditions in

Table 1. It can be seen that the maximum relative error is 0.015%. It

shows that the proposed numerical method is capable of producing

accurate results and therefore can be used for the proposed inverse

problem method.

3. Inverse problem solution methodology

The solution of the inverse problem results in the determination

of parameters defining thermal conductivity variation throughout

the domain. This methodology minimizes the sum of normalized

least-squares differences between measured and calculated

boundary values of the field variable by iteratively adjusting these

parameters. Let us refer to temperature or temperature gradient on

the boundaries obtained from experiments or analytical solution as

“measured” values. Let us refer to temperature or temperature

gradient on the boundaries obtained from the solution of the for-

ward problem with guessed values of the parameters defining

spatial distribution of thermal conductivity as “calculated” values.

Then the functional to minimize becomes

J ¼
X

vS

h�

Tcalcj � Tmeas
j

�.�

Tmeas
j þ ε

�i2
(4)

where ε is a very small positive number of the order 1.0E-06 (to

prevent division by zero when measured boundary temperature is

zero) and summation is performed over vS, the boundary of the

arbitrarily shaped solid object.

The minimization of Eq. (4) was performed using a hybrid of

particle swarm and Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithms [11e13]. The optimizer iteratively modifies the parame-

ters defining the distribution of thermal conductivity in the

forward problem during minimization of the J functional. A hybrid

optimization algorithmwas chosen because it is highly reliable and

fast. That is, single-objective optimization algorithms based on

gradient search have good convergence rates, but their search will

often terminate in the nearest feasible minimum instead in the

global minimum. Non-gradient population-based optimization al-

gorithms converge at a slower rate, but are able to successfully

converge to the immediate vicinity of the global minimum. A

typical hybrid optimizer [11e13] is a set of one or more of the

gradient-based optimizers and one or more of the population-

based optimizers, with an automatic switching logic among these

Table 1

Dirichlet boundary conditions, when A ¼ B ¼ C ¼ 1:0 and n ¼ 2.

Location Dirichlet boundary conditions

East boundary x ¼ 1.0 Tð1; y; zÞ ¼ 4þ ð1þ yÞ2 þ ð1þ zÞ2

West boundary x ¼ 0.0 Tð0; y; zÞ ¼ 1þ ð1þ yÞ2 þ ð1þ zÞ2

North boundary y ¼ 1.0 Tðx;1; zÞ ¼ 4þ ð1þ xÞ2 þ ð1þ zÞ2

South boundary y ¼ 0.0 Tðx;0; zÞ ¼ 1þ ð1þ xÞ2 þ ð1þ zÞ2

Top boundary z ¼ 1.0 Tðx; y;1Þ ¼ 4þ ð1þ xÞ2 þ ð1þ yÞ2

Bottom boundary z ¼ 0.0 Tðx; y;0Þ ¼ 1þ ð1þ xÞ2 þ ð1þ yÞ2
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algorithms after every iteration (or population generation) in order

to maximize the overall convergence rate and avoid local minima.

In this work, instead of automatically switching back-and-forth

between the BFGS and the particle swarm optimizers, the popu-

lation based algorithm was used exclusively until the search

converge to the vicinity of the global minimum (when the

convergence rate became very low) and then switched [18] to

exclusively using BFGS fast gradient-based optimizer to quickly

converge to the actual global minimum point.

In certain cases, it can be computationally expensive to compute

the forward problem especially when using a very fine computa-

tional grid. The forward problem needs to be solved a large number

of times, each time for different guessed values of thermal con-

ductivity parameters. Thus, it is more economical to replace the

finite volume or the finite element solver with a less accurate, but

much faster surrogate model. For this reason, a response surface

[12,13] was created for the J functional and then used to extremely

quickly predict the forward problem solutions for any guessed

values of the parameters defining thermal conductivity spatial

variation. The response surface of the J functional was created by

interpolating J values calculated using high fidelity ANSYS analyses

corresponding to a relatively small set of randomly distributed

values of the unknown thermal conductivity parameters created

using Sobol's algorithm [19]. The entire methodology is summa-

rized in Fig. 2.

All simulations were run on a single core of an Intel Xeon CPU

E5-4620. Each finite volume analysis took approximately 15 s,

while the response surface was constructed in less than 10 s. Once

the response surface was constructed using the J functional values

from the analysis runs, the optimizer, when coupled with the

response surface, took approximately 20e30 s for each case to

minimize Eq. (4).

4. Numerical results

4.1. Case 1: inverse determination of smoothly varying thermal

conductivity

The proposed inverse problem solution methodology was vali-

dated for a simple cube. The thermal conductivity was defined by

Fig. 1. Distribution of: a) analytical thermal conductivity, b) analytical temperature field given by Eq. (3), c) calculated temperature field using ANSYS Fluent and analytical thermal

conductivity given by Eq. (2), and d) relative error of temperature computed using ANSYS Fluent.
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Eq. (2), in a cube where x2½0;1�, y2½0;1� and z2½0;1�, and sub-

jected to boundary conditions defined by Eq. (3) where the pa-

rameters were A ¼ 1:25, B ¼ 1:34, C ¼ 3:20 and n ¼ 2. The east,

west, north, south and top faces were subject to Neumann

boundary conditions, while the bottom face was subjected to

Dirichlet boundary condition. The Neumann boundary condition

can be computed by analytically differentiating Eq. (3).

The “calculated” values were obtained using ANSYS Fluent and

guessed values of A, B and C, while the “measured” values were

obtained from the analytical solution Eq. (3). The three-

dimensional response surface was created using Shepard's K-

Nearest algorithm [18] that was supported by 30 values of the J

functional obtained using 30 guessed sets of parameters A, B and C

in Eq. (2). In this example, the hybrid particle swarm-BFGS opti-

mizer [18] was coupled with the three-dimensional response sur-

face to minimize the J functional.

Table 2 shows converged value of the parameters A, B and C that

best minimized the J functional. Relative error of the inversely

determined parameters was less than 1%. The maximum

computing time required to converge the three unknown param-

eters was less than 45 min. This includes times to construct the

response surface as well as the optimization. In previous work

dealing with two-dimensional problems only [14,15], which did not

use a response surface, the computing times were more than 10 h.

Fig. 3 shows the distribution of analytical thermal conductivity,

analytical temperature field, converged distribution of thermal

conductivity and the relative error between analytical and

converged distribution of thermal conductivity. It shows that the

difference between the analytical thermal conductivity and

converged thermal conductivity is less than 0.01%, thereby vali-

dating the proposed methodology for inverse determination of

spatially varying thermal conductivity.

4.2. Case 2: determination of sharp gradient thermal conductivity

It has been shown that the proposed methodology is able to

determine the distribution of smoothly varying thermal conduc-

tivity when it follows a simple function. Its ability to determine

sharply varying 3D distribution of thermal conductivity is investi-

gated. In this test case, the “measured” solution is no longer ob-

tained using the analytical solution, but rather by using analysis

from COMSOL software [20].

The thermal conductivity was assumed to have the form

kðx; y; zÞ ¼
ðkmax þ kminÞ

2
þ ðkmax � kminÞ

�

x

xmax
�

A

2p
sinDð2pxÞ

�

�

�

y

ymax
�

B

2p
sinEð2pyÞ

�

�

�

z

zmax
�

C

2p
sinFð2pzÞ

�

(5)

The “measured” solution was obtained by solving Eq. (1) using

the distribution of thermal conductivity given in Eq. (5) (with

boundary conditions given in Table 4) using the finite element

method in COMSOL. When solving inverse problems, one must

avoid the so called “inverse crime”. This is because in a numerical

study, the inverse problem will converge exactly to the measure-

ments if the “measurements” were obtained using the same anal-

ysis code as that used in the inverse problem. To avoid this, two

different solvers must be used; one to obtain the “measurements”

(COMSOL) and another (ANSYS) to solve the forward problem. It

should be pointed out that, once the response surface is used to

solve the forward problem, this inverse crime issue is avoided

altogether as the response surface is a very crude but efficient

approximation to the J functional. It does not know anything about

the physics of the heat transfer problem. In Case 1, the “measure-

ments”were given as an analytic solution instead of been simulated

by any computer code. In other cases, the “measurements” were

generated using COMSOL, while forward solutions needed for the

generation of the response surface were generated using ANSYS.

The J functional was then calculated using these “measured” and

“calculated” values.

An eight-dimensional response surface was created using 80

support points by means of the Shepard's K-Nearest algorithm [18].

The optimizer was then coupled with this response surface to find

values of the eight parameters that best minimized the J functional.

The range for each variable that the optimizer was allow to search is

given in Table 3.

Table 4 shows the boundary conditions applied to the cube,

where q is the heat flux. The J functional was constructed using the

temperature value on the east, west, north, south and top

Fig. 2. Inverse problem methodology.

Table 2

Case 1: Converged values of coefficients for n ¼ 2.

A B C

Exact 1.250 1.340 3.20

Inversely Determined 1.248 1.337 3.20

Relative error 0.8% 0.22% 0%
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boundaries. The computational grid has the same size as the one

used in Case 1 study.

As is often the case, the “measured” values that are obtained

from an experiment often have some level of noise. To account for

this, noise was added to the “measured” values obtained from

COMSOL. The noise model used was additive white Gaussian [21].

The “measured” values were perturbed by a noise-signal ratio of 1%,

3%, 5% and 10%. In reality, the actual Type J, K, E, T thermocouples

and resistance temperature detectors (RTDs) all have a maximum

error of approximately 1% [22].

Table 5 shows the values of the converged six parameters in Eq.

(5) with varying level of noise. It is evident that the inverse problem

methodology is also able to determine a highly non-linear distri-

bution of the diffusion coefficient. The table also shows the values

of the J functional when the analytical values of the six parameters

are used to solve Eq. (1) and perturbed “measured” values are used

to construct the J functional. It can be seen that the J functional

rapidly increases for noise levels greater than approximately 2%.

Fig. 3. Case 1 - Distribution of: a) analytical thermal conductivity, b) analytical temperature distribution, c) inversely determined thermal conductivity, and d) relative error be-

tween exact and estimated thermal conductivity.

Table 3

Case 2 - Allowable range and step size for each unknown parameter in Eq. (5).

kmin kmax A B C D E F

Min 100 1000 0 0 0 1 1 1

Max 500 6000 1.0 1.0 1.0 100 100 100

Step Size 10 10 0.01 0.01 0.01 1 1 1

Table 4

Case 2 - Boundary conditions, when kmin ¼ 200, kmax ¼ 5000, A ¼ B ¼ C ¼ 0.85

and D ¼ E ¼ F ¼ 50.

Boundary conditions

East boundary qð1; y; zÞ ¼ 10� kð1; y; zÞ

West boundary qð0; y; zÞ ¼ 10� kð0; y; zÞ

North boundary qðx;1; zÞ ¼ 10� kðx; 1; zÞ

South boundary qðx;0; zÞ ¼ 400� kðx; 0; zÞ

Top boundary qðx; y;1Þ ¼ 600� kðx; y;1Þ

Bottom boundary T (x, y, 0) ¼ 85 K

Table 5

Case 2: Converged values of coefficients, and J functional with randomly perturbed

boundary values.

kmin kmax A B C D E F JAnalytical

Analytical 200 3000 0.85 0.85 0.85 50 50 50 e

εmeas ¼ 0% 200 3000 0.85 0.85 0.85 50 50 50 3E-8

εmeas ¼ 1% 200 3000 0.85 0.85 0.85 50 50 50 8E-6

εmeas ¼ 3% 200 3000 0.85 0.85 0.85 50 50 50 43.3

εmeas ¼ 5% 410 4210 0.83 0.70 0.52 95 21 34 2.8E7

εmeas ¼ 10% 340 4910 0.32 0.82 0.71 85 4 35 5.9E6
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Fig. 4 shows the distribution of converged thermal conductivity

for varying levels of noise in “measured” thermal boundary con-

ditions. Good convergence can be seen for noise levels up to 3%.

This shows that the methodology is able to inversely determine

even a sharp gradient distribution of thermal conductivity for high

measurement noise levels, considering the maximum noise expe-

rienced by an actual thermocouple is less than 1%.

Fig. 5 shows the relative error of the converged calculated dis-

tribution of thermal conductivity and its analytical distribution. The

relative error is zero for noise levels below 5%. It can be seen that

the distribution of the thermal conductivity is still predicted rela-

tively accurately despite the large noise present in the measured

data.

4.3. Case 3: determination of sharp gradient thermal conductivity

in arbitrary domain

In the previous two cases, a cube was used to demonstrate the

efficiency of the proposed methodology. However, the proposed

methodology can also be applied to arbitrary shaped domains. In

this section, an arbitrary three-dimensional configuration featuring

no planar symmetry or axis-symmetry is used (Fig. 6). The para-

metric equations defining this geometry are given by Lame curves

as

r ¼ r0 � A cosð3qÞ; where r0 ¼ 1;A ¼ 0:2; 0:0 � q � 2p
�

x� 0:4

0:2

�2

þ

�

y� 0:2

0:2

�2

¼ 1;

�

xþ 0:5

0:1

�4

þ

�

y� 0:2

0:3

�4

¼ 1;

�

x� 0:1

0:4

�2

þ

�

yþ 0:5

0:3

�2

¼ 1

(6)

Fig. 6 shows the arbitrary multiply-connected geometry defined

by Eq. (6). Each of the four boundaries is revolved by a different

angle s about the axis which is offset by 2 m from the origin. This

ensures there is neither a planar symmetry nor axisymmetry.

The assumed distribution of thermal conductivity is again given

Fig. 4. Converged thermal conductivity for: a) εmeas ¼ 0%, εmeas ¼ 1%, εmeas ¼ 3%, b) εmeas ¼ 5%, c) εmeas ¼ 10%.

Fig. 5. Relative error in Case 2 between analytical and converged distribution of thermal conductivity for: a) εmeas ¼ 5% and b) εmeas ¼ 10%.
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by Eq. (5), where the eight parameters are given in Table 5. The

governing Eq. (1) was subject to boundary conditions given in

Table 6. The “measured” values were once again obtained using

COMSOL. The J functional was constructed using temperature

values on boundaries #2, #3 and #4. A total of 80 support points (80

numerical analyses with different values of the eight parameters)

were used to create the response surface again by means of the

Shepard's K-Nearest algorithm [18].

Table 7 shows the converged values of the eight parameters in

Case 3 under varying noise levels for the three-dimensional

configuration given in Fig. 6. It can again be seen that the J func-

tional grows exponentially for noise levels greater than approxi-

mately 1.5%.

Fig. 7 shows the converged distribution of thermal conductivity

for Case 3. It can be seen that again for noise levels up to 3%, the

proposed methodology is able to accurately determine the distri-

bution of diffusion coefficient.

Fig. 8 shows the relative error between the converged distri-

bution of thermal conductivity and its analytical distribution. It was

observed that a sensitive distribution of assumed thermal con-

ductivity as in Eq. (5) leads to a highly non-linear and highly

multimodal objective function topology featuring sharp gradients

near the global minimum. For this reason a powerful and robust

optimizer is needed to avoid the local minima. An improvement in

accuracy could be expected when using strictly high fidelity ana-

lyses instead of a relatively low fidelity response surface

metamodel.

It can be reported that the optimizer took longer to converge in

Case 2 and in Case 3 than in Case 1, due to the highly non-linear and

sensitive assumed distribution of thermal conductivity. With the

use of high fidelity finite element or finite volume for each of the

analyses, the computing time would have been an order of

magnitude longer.

4.4. Case 4: determination of subdomains within solid objects

Using this general approach, it is possible to detect subdomains

(one material subdomain imbedded within another material

domain) by minimizing the J functional. This will be demonstrated

on a simple cube made of silicon with an embedded subdomain of

gold. It will be assumed that the subdomain general shape inside

the cube is defined by a modified Lam�e super-ellipsoid whose

location, size and shape and its thermal conductivity are unknown.

f ðx; y; zÞ ¼

"

�

x� x0
A

�2=n2

þ

�

y� y0
B

�2=n2

#n2=n1

þ

�

z� z0
C

�2=n1

¼ 1

(7)

It will also be assumed that the property of the encasing ma-

terial is also unknown.

Distribution of thermal conductivity can then be assumed to

have the discontinuous form

f ðx; y; zÞ>1/k ¼ ksilicon
f ðx; y; zÞ � 1/k ¼ kgold

(8)

The “measured” values of thermal boundary conditions were

obtained by means of the finite element method using the exact

Fig. 6. Case 3: Arbitrary three-dimensional geometry example: a) vertical cross section plane of a torus showing cross-sections of three cavities, and b) an isometric translucent

view of the complete 3D torus with three cavities.

Table 6

Case 3: Boundary conditions when kmin ¼ 420, kmax ¼ 3160,

A ¼ 0.44, B ¼ 0.62, C ¼ 0.33 and D ¼ 34, E ¼ 42, F ¼ 21.

Boundary conditions

Boundary #1 T ¼ 330 K

Boundary #2 q ¼ 30000� kðx; y; zÞ

Boundary #3 q ¼ 60000� kðx; y; zÞ

Boundary #4 q ¼ 40000� kðx; y; zÞ

Table 7

Case 3: Converged values of the six parameters and J functional with randomly

perturbed boundary values.

kmin kmax A B C D E F JAnalytical

Analytical 420 3160 0.44 0.62 0.33 34 42 21

εmeas ¼ 0% 420 3160 0.44 0.62 0.33 34 42 21 2E-8

εmeas ¼ 1% 420 3160 0.44 0.62 0.33 34 42 21 2E-6

εmeas ¼ 3% 420 3160 0.44 0.62 0.33 34 42 21 10.9

εmeas ¼ 5% 450 4860 0.83 0.47 0.25 95 95 49 260

εmeas ¼ 10% 450 4860 0.83 0.47 0.25 95 95 49 5.5E6
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values (Table 8) of thermal conductivities, geometry definition

parameters used in Eq. (7) and thermal boundary conditions given

in Table 4. A total of 110 support points were used to create a

response surface using the Shepard's K-Nearest algorithm. To allow

for the accurate analysis of vastly diverse shapes, the computational

grid resolution was increased to 110 � 110 � 110.

The ten converged parameters from Eq. (8) for varying levels of

noise in the “measured” thermal boundary conditions are shown in

Table 8. It can be seen that the optimizer was able to accurately

determine the location, size and shape of the subdomain and

thermal conductivities of the materials in the two domains.

Fig. 9 shows the location and the shape of the identified sub-

domain. It can be seen that the location is exact for all three cases.

The assumed distribution of thermal conductivity was relatively

sensitive with respect to each of the ten variables.

This demonstrated that this non-destructive evaluation method

is also capable of identifying sizes, shapes and locations of

imbedded subdomains and discontinuous distribution of diffusion

coefficient in such subdomains.

The number of parameters that can be determined using this

methodology can be much higher. For example, the accuracy of this

methodology is dependent on the accuracy of the forward problem

solver (which was verified), the assumed function distribution

(which can be overcome using a product of two or three Fourier

series), the accuracy of the response surface generation algorithm

used, and the reliability and accuracy of optimizer used to perform

the minimization. It is true that for larger number of unknowns, a

more powerful optimizer is needed. One such optimizer is IOSO

which can cope with hundreds of unknowns. Our hybrid single-

objective optimizer successfully performed on analytical prob-

lems with up to 100 design variables having different degrees of

nonlinearities.

5. Conclusion

The continuous and discontinuous distribution of material

properties within a solid object can be non-destructively deter-

mined using a minimization of a sum of the least squares be-

tween the calculated and measured boundary conditions.

Numerical integration of the governing PDE was performed using

the finite volume and finite element methods and was validated

against analytical solution. This inverse parameter identification

technique showed promising results for both a continuous and

Fig. 7. Case 3 e Converged spatial distribution of thermal conductivity for: a) εmeas ¼ 0%, εmeas ¼ 1%, εmeas ¼ 3%, and b) εmeas ¼ 5%, εmeas ¼ 10%.

Fig. 8. Case 3 - Relative error between analytical and converged thermal conductivity

for εmeas ¼ 5% and εmeas ¼ 10%.

Table 8

Case 4 - Converged values of ten parameters in Eq. (8) with randomly perturbed thermal boundary values.

ksilicon kgold xo yo zo A B C n1 n2

Analytical 149 385 �0.5 0.0 �0.15 0.25 0.25 0.25 0.5 1.0

εmeas ¼ 0% 149 385 �0.5 0.0 �0.15 0.25 0.25 0.25 0.5 1.0

εmeas ¼ 1% 149 385 �0.5 0.0 �0.15 0.26 0.24 0.245 0.5 1.01

εmeas ¼ 3% 149 385 �0.56 0.0 �0.15 0.27 0.24 0.245 0.61 1.3
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discontinuous, smoothly varying and sharply varying distribution

of the diffusion coefficient in arbitrary domains. Total computing

time was significantly reduced from 10 þ hours to under 1 h by

the use of metamodels. It was demonstrated that even a sensitive

and highly non-linear distribution of the material properties can

be estimated. The presented methodology was able to determine

the distribution of the diffusion coefficient for boundary tem-

perature measurement noise levels up to 3% when using

response surface metamodels, which is appealing as a typical

temperature measurement apparatus has a noise level of 1%. This

approach to inverse identification of unknown parameters was

also demonstrated as capable of accurately determining sizes,

shapes and locations of subdomains and material properties in

the subdomains imbedded within a solid object. Finally, it should

be pointed out that this parameter identification method is

directly applicable to determination of parameters defining

spatial distributions of thermal conductivity, electric permittivity

and magnetic permeability and that it is truly non-destructive. It

took approximately 30 min to 1 h to obtain objective function

values needed to construct the response surface. The actual

construction of the response surface took less than 5 s. Once the

response surface was coupled with the optimizer, the minimi-

zation process took approximately 30 s. Thus, the most compu-

tationally expensive task in this entire procedure is obtaining the

objective function values needed to construct a response surface.

An alternative would be to use reduced order modeling instead

of the response surface approach, although both approaches

require a number of high fidelity forward solutions as a starting

point.
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