
Proceedings of CHT-17 
ICHMT International Symposium on Advances in Computational Heat Transfer 

 
May 28-June 1, 2017, Napoli, Italy 

 
CHT-17-106 

 

 

INVERSE DETERMINATION OF SPATIALLY VARYING HEAT CAPACITY AND 

THERMAL CONDUCTIVITY IN ARBITRARY 2D OBJECTS 

 

Sohail R. Reddy, George S. Dulikravich and S. M. Javad Zeidi 
*Department of Mechanical and Materials Engineering, MAIDROC Laboratory 

Florida International University, Miami, Florida, USA 

Email: sredd001@fiu.edu, dulikrav@fiu.edu, szeid001@fiu.edu 

 

 

 

 

ABSTRACT  A methodology for non-destructive simultaneous estimation of spatially varying thermal 

conductivity and heat capacity in 2D solid objects was developed that requires only boundary 

measurements of temperatures. The spatial distributions were determined by minimizing the normalized 

sum of the least-squares differences between measured and calculated values of the boundary 

temperatures. Computing time was significantly reduced for the entire inverse parameter identification 

process by utilizing a metamodel created by an analytical response surface supported by an affordable 

number of numerical solutions of the temperature fields obtained by the high fidelity finite element 

analyses. The minimization was performed using a combination of particle swarm optimization and the 

BFGS algorithm. The methodology has shown to accurately predict linear and nonlinear spatial 

distributions of thermal conductivity and heat capacity in arbitrarily shaped multiply-connected 2D 

objects even in situations with noisy measurement data thus proving that it is robust and accurate. The 

current drawback of this method is that it requires an a priori knowledge of the general spatial analytic 

variation of the physical properties. This can be remedied by representing such variations using products 

of infinite series such as Fourier or Chebyshev and determining correct values of their coefficients.  

 

INTRODUCTION 
 

With advances in rapid prototyping, it is now possible to create solid objects with spatially varying 

material properties. It becomes then imperative to determine the spatial distribution of these 

properties that will create desired responses of the objects. This paper deals with an inverse approach 

for simultaneous non-destructive determination of spatially varying material properties. This method 

does not require any information from within a solid object and therefore it is non-invasive. 

 

Electrical and thermal properties such as electric permittivity, magnetic permeability, thermal 

capacity and thermal conductivity influence the spatial variation of the field variable, ߶ ൌ ߶ሺݔ,  ሻݕ
such as electric, magnetic and temperature fields. Steady field problems of this type can be modelled 

by an elliptic partial differential equation governing the steady-state diffusion of ߶. 

 

׏  ∙ ሺߣ߶ሻ ൌ 0 (1) 

 

Here, ߣ ൌ ,ݔሺߣ  ሻ is the diffusion coefficient (physical property of the media). Having a mathematicalݕ

model, the question to answer becomes: Using only boundary values of the field variable ߶, or its 

normal derivatives on the boundary of the solid, how can the spatial distribution of the physical 

property, ߣ, be determined throughout the arbitrarily shaped object?  



 

In the forward problem, the solution of Eq. (1) can easily be obtained either analytically, or 

numerically through finite element or finite volume integration for a known distribution of ߣ. In an 

inverse problem, ߣ is not known and must be determined non-destructively. This typically requires 

the values of the field variable ߶ and its normal derivatives to be known on the boundary. Since most 

of the solution methods [1-7] of such ill-posed problems are iterative, they require regularization.  

 

This inverse problem is somewhat more tractable if the diffusion coefficient ߣ is assumed to vary as 

a function of x, y, z coordinates according to some analytic functions defined by a number of unknown 

parameters and the coordinates x, y, z. The inverse problem can then be solved by minimizing the 

scaled sum of squared differences between the computed ߶ or ߲߶/߲݊ values on the boundaries 

obtained from the assumed distribution of material properties and the measured ߶ or ߲߶/߲݊ on the 

boundaries. In this approach, the initial distribution of material properties is assumed and iteratively 

updated (by varying the values of the parameters) until the scaled sum of squares of differences is 

below a specific threshold. This inverse parameter identification concept was previously used to 

estimate a single spatially varying material property [8-10] based on solutions of steady state equation 

(1). It is here extended to simultaneously determining two spatially varying material properties: heat 

capacity and thermal conductivity. Both linear and non-linear distributions of these two properties 

were non-destructively simultaneously estimated in 2D solid objects.  

 

MATHEMATICAL MODELS AND VERIFICATION OF SOFTWARE ACCURACY 

 

The transient heat conduction problem is discretized using the finite element method. The governing 

equation for transient heat conduction with spatially varying material properties can be written as  

 

)( Tk
t

T
Cp 




    (2) 

 

Here,  is density, Cp is heat capacity, T is temperature, t is time, and k is thermal conductivity. This is 

done by multiplying Eq. (2) with a test function, v, and integrating over the domain,  . The resulting 

equation becomes 
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The right hand term can be expanded using divergence theorem and the equation can be rewritten as 
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Here, S is the surface of the control volume, , while  is the test function. Representing the 

temperature and test function as a linear combination of finite element basis functions such that 
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yields 
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Here, 
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where sq is the boundary heat flux. The test functions become zero at the boundary nodes where Dirichlet 

condition is specified leading to the first term on the right side of Eq. (4) equalling to zero. It should be 

noted that convection, radiation and internal heat sources/sinks were neglected in this derivation.  

 

The finite element solver was validated against an analytical solution for a 2D, steady-state heat 

conduction problem with spatially varying thermal conductivity on a square domain. Consider an 

arbitrary 2D domain with the distribution of thermal conductivity given as 

 

  yBxAyxk ),(  (10) 

 

where A and B are arbitrary constants. Then the analytical temperature field that satisfies the steady-

state form of Eq. (2) takes the general form 

 

 (11) 

 

Figure 1 shows the analytical and numerical solutions to the steady-state heat conduction equation on a 

square with ݔ, ݕ ∈ ሾ0,2ሿ, subject to boundary conditions given by Eq. (11) where A = B = 1.0. It can be 

observed that the numerical method produces accurate solution.  

 

     
a)      b)           c) 

Figure 1. Verification of software accuracy for spatial distribution of: a) thermal conductivity given by 

Eq. (8), b) analytical temperature given by Eq. (9) and c) temperature calculated by COMSOL 

 

INVERSE PARAMETER IDENTIFICATION METHODOLOGY 

 

Spatially varying material properties can be determined from over-specified thermal boundary 

conditions using a variety of iterative algorithm including Bayesian statistics employing Kalman filter 

or non-linear filters [11]. The methodology presented herein uses a more versatile and computationally 

T (x, y)  (A x)2  (B y)2  273



efficient approach based on a combination of a field analysis algorithm (using finite volume, finite 

elements, etc.) and an accurate and robust minimization algorithm capable of avoiding local minima.  

 

The methodology utilized in this work, minimizes the normalized least-squares difference between 

measured and calculated values of the field variable by iteratively adjusting these parameters. Let us 

refer to the temperature or temperature gradient on the boundaries obtained from experiments or 

analytical solution as “measured” values. Let us refer to temperature or temperature gradient on the 

boundaries obtained from the solution of the forward problem with guessed values of the parameters 

defining the spatial distribution of thermal conductivity and heat capacity as “calculated” values. Then 

the functional to minimize becomes 
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where  is a very small positive number of the order 1.0E-06 and the summation is performed over the 

boundary of the arbitrarily shaped domain, and over mmax number of time steps. The J functional is 

minimum when the thermal conductivity and heat capacity, from which the “calculated” and “measured” 

are obtained, are the same.  

 

The minimization of Eq. (12) was performed using a hybrid of evolutionary particle swarm and Broyden-

Fletcher-Goldfarb-Shanno (BFGS) gradient-based optimization algorithms [12, 13]. Given x0 and an 

approximate Hessian matrix B0, the BFGS algorithm progresses as follows. 

 

1) Evaluate the search direction pk by solving ܤ௞ܘ௞ ൌ െ݂׏ሺܠ௞ሻ 
2) Update ܠ௞ାଵ ൌ ௞ܠ ൅  ௞ is an acceptable step size found using line searchߙ ௞ whereܘ௞ߙ

3) Set ݏ௞ ൌ  ௞ܘ௞ߙ

௞ܡ (4 ൌ ௞ାଵሻܠሺ݂׏ െ  ௞ሻܠሺ݂׏
5) 

 
 

The optimizer iteratively modifies the parameters in the analytic expressions for thermal conductivity 

and heat capacity in the forward (analysis) problem during minimization of the J functional. In several 

cases, the solution of forward problem can be very computationally expensive. In most inverse problems 

dealing with parameter identification, the forward problem needs to be solved a large number of times, 

each time for different guessed values of parameters in material properties, until the methodology 

converges. For this reason, it is very appealing to replace the finite element solver with a slightly less 

accurate but much faster surrogate model. The surrogate model used in this work is a response surface 

for the J functional, based on Radial Basis Functions [13]. The response surface of the J functional was 

created by interpolating J values calculated using COMSOL. The interpolation points were uniformly 

distributed throughout the search space using Sobol’s algorithm [14]. Figure 2 shows the workflow of 

the complete inverse problem methodology implemented. First, the response surface is constructed using 

values obtained from COMSOL. The constructed surrogate model was then coupled with the hybrid 

optimizer to minimize the J functional.  

 

All computations were performed on a single thread of Intel Xeon CPU E5-4620v2@2.60 GHz with 

256GB of RAM. Each transient COMSOL solution of equation (2) took approximately 15 seconds. The 

same non-structured computational grid of 30000 triangular elements was used for each analysis.  
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Figure 2. Flow chart of the inverse problem methodology 

 

NUMERICAL RESULTS FOR ARBITRARY 2D GEOMETRY 

 

The proposed inverse problem methodology was validated for several cases considering linear and non-

linear spatial distribution of material properties in an arbitrary geometry. Table 1 shows the equations 

defining the arbitrary multiply-connected 2D geometry shown in Fig. 3. 

 

 
 

Figure 3. Arbitrary configurations defined using equations in Table 1. 

 

Table 2 shows the thermal boundary conditions applied to each of the four boundaries. The boundary 

conditions were kept the same for each case. All heat fluxes in this work are considered to be inwards 

and normal to the surface. 

 

Table 1 

Geometry definition of arbitrary multiply-connected solid considered in this work 

 Equation # Cells on Boundary 

Boundary 1 r  r0  Acos(3 ), where r0  1, A  0.2, 0.0   2  250 

Boundary 2 
x  0.4

0.2


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
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2


y 0.2

0.2







2

1 198 

Boundary 3 
x  0.1

0.4







2


y  0.5

0.3


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


2

 1 346 

Boundary 4 
x  0.5

0.1





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4


y 0.2

0.3


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


4
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Boundary #1 

Boundary #2 

Boundary #3 

Boundary #4 

Heat Transfer Analysis 

(COMSOL)

Guess k and Cp 

distribution 

Response Surface 

Construction

Solve Forward 

Problem

Compute J 

Functional

Converged? 
No 

Stop Optimization 

Constructing 

Metamodel 



 

Table 2 

Thermal boundary conditions applied to the arbitrary geometry 

 Boundary conditions 

Boundary #1 T = 353 K 

Boundary #2 q = 100 * k(x,y) 

Boundary #3 q = 50 * k(x,y) 

Boundary #4 q = 125 * k(x,y) 

 

Case 1: Estimation of Bilinear Distribution of Cp and k in Arbitrary 2D Objects 

Ability of this methodology was first tested assuming bilinear variations of thermal conductivity and 

heat capacity given by Eq. (13) and Eq. (14), respectively. This means that the optimizer needs to find 

values of four parameters that minimizes the J functional.  

 

  yBxAyxk kk ),(  (13) 

 

  yBxAyxC
pp CCp ),(  (14) 

 

The response surface for this test case was constructed using 40 COMSOL analyses solutions. The 

response surface was then coupled with the optimizer. Table 3 shows the exact parameters and converged 

values of the parameters that define the thermal conductivity and heat capacity distributions in Case 1.  

 

Table 3 

Case 1: Search ranges for each of the four parameters, exact and converged values of the parameters 

defining thermal conductivity and heat capacity (when mmax = 10) 

   

Min 0.0 0.0 0.0 0.0 

Max 20.0 20.0 2.0 2.0 

Exact 0.6 1.5 0.04 0.06 

Estimated 0.6 1.5 0.04 0.06 

 

It can be seen from Table 3 and Fig. 4 that the optimizer was able to converge to the exact values of the 

four parameters, thereby accurately determining the two material properties.  

 

  
a)       b) 

Figure 4. Case 1: Inversely determined distribution of: a) thermal conductivity, and b) heat capacity 

 

Ak Bk ACP
BCP



Case 2: Estimation of Nonlinear Distribution of Cp and k in Arbitrary 2D Objects 

The proposed methodology was validated for linear distribution of material properties. It is now tested 

for highly non-linear distributions of material properties. Thermal conductivity and heat capacity were 

defined the Matyas [15], Eq. (15), and McCormick [15], Eq. (16) functions, respectively. Therefore, a 

total of six parameters needed to be identified that minimize the J functional. 

 

  xyByxAyxk kk  22
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     1sin
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The response surface for this test case was constructed using 60 COMSOL analyses solutions. That is, 

the heat conduction equation was solved 60 times, each time with different random guesses for the six 

parameters. Using these 60 calculated values of the J functional, a six-dimensional response surface was 

generated using an optimal polynomial radial basis function formulation [13]. Table 4 below shows the 

exact and the optimizer converged values of the six parameters. It can be seen that even for a non-linear 

spatial distribution of thermal conductivity and heat capacity, this inverse parameter identification 

methodology was able to converge to the exact values of the six parameters.  

 

Table 4 

Case 2: Search ranges for each of the five parameters, exact and converged values of the parameters 

defining thermal conductivity and heat capacity (when mmax = 10) 

       
Min 0.0 -50.0 0.0 0.0 -2.0 0.0 

Max 20.0 -10.0 2.0 2.0 0.0 2.0 

Exact 13.6 -43.2 0.3 0.112 -0.012 0.021 

Estimated 13.6 -43.2 0.3 0.112 -0.012 0.021 

 

Figure 5 shows the nonlinear distribution of thermal conductivity and heat capacity in Case 2.  

 

  
a)        b) 

Figure 5. Case 2: Inversely determined distribution of: a) thermal conductivity, and b) heat capacity 

 

Case 3: Estimation of Nonlinear Distribution of Cp and k with Noisy Measurements 

In the previous sections, the proposed methodology was validated for linear and nonlinear distribution 

of material properties. The “measured” data, in the previous cases, was synthesized using COMSOL 

software. This does not accurately model the real-life phenomenon. The “measured” data is usually 

obtained through experimentation and therefore contains some noise. To accurately model such 
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stochastic behaviour, noise must be added to the synthetic “measured” data obtained using COMSOL. 

This was done by employing the white Gaussian noise model to add noise [16], of varying intensity, to 

the “measured” data.  

 

In Case 3, the distribution of thermal conductivity was assumed to follow the generalized Three-Hump 

Camel Function, Eq. (17), while heat capacity was again assumed to follow the generalized McCormick 

function, Eq. (18). Therefore, the optimizer needed to find values of the nine parameters that minimize 

the J functional. The “measured” boundary temperature values were stochastically perturbed by a noise-

to-signal ratio of 1%, 2% and 3%. In reality, the actual Type J, K, E, and T thermocouples and resistance 

temperature detectors (RTDs) all have a maximum error of approximately 1% [17]. 

 
2642 yExyDxCxBxAyxk kkkkk ),(  (17) 
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Table 5 

Case 3: Search ranges for each of the nine parameters, exact values, and converged values of the 

parameters defining the thermal conductivity and heat capacity for various specified noise levels in the 

“measurements” of boundary temperatures (when mmax = 10) 

          
Min 0.0 -5.0 0.0 0.0 0.0 0.0 0.0 -2.0 0.0 

Max 20.0 0.0 5.0 20.0 20.0 2.0 2.0 0.0 2.0 

Exact 2.0 -1.05 0.1667 1.00 1.00 0.30 0.112 -0.012 0.021 

Estimated (0% Error) 2.0 -1.05 0.1667 1.00 1.00 0.30 0.112 -0.012 0.021 

Estimated (1% Error) 2.0 -1.04 0.1668 0.99 0.99 0.30 0.112 -0.012 0.021 

Estimated (2% Error) 2.0 -1.04 0.1668 1.00 1.00 0.30 0.112 -0.012 0.021 

Estimated (3% Error) 2.0 -1.03 0.175 0.93 1.01 0.30 0.109 -0.030 0.027 

 

 

The nine-dimensional response surface was generated using 90 COMSOL analyses solutions. Because 

the objective function space was highly nonlinear due to the noisy “measurements”, a more robust hybrid 

optimizer [18, 19] with an automatic switching among constituent algorithms was used to minimize J 

functional. Table 5 shows the exact values and converged calculated values of the nine parameters for 

various levels of measurement errors. It can be seen that when the noise increases, the optimizer is still 

able to converge to correct parameters. This is especially promising as most techniques for acquiring 

thermal measurements have a maximum error of 1%. 

 

Figures 6 and 7 show the distribution of thermal conductivity and heat capacity respectively in Case 3. 

It can be seen that even for higher values of boundary temperature measurement noise levels, the material 

properties were predicted accurately using this inverse parameter estimation methodology.  
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a)       b) 

  
c)       d) 

Figure 6. Case 3: Inversely determined distribution of thermal conductivity obtained for boundary 

temperature measurement noise level of: a) 0%, b) 1%, c) 2% and d) 3% 

 

 

  
a)       b) 

Figure 7. Case 3: Inversely determined distribution of specific heat obtained for boundary temperature 

measurement noise levels of: a) 0%, 1% and 2%, and b) 3% 



 

Figure 8 shows the relative error distributions for thermal conductivity and heat capacity between their 

exact and converged values. It can be seen that the maximum local relative error is less than one percent 

even for large errors in the “measured” boundary values of temperature, confirming that this inverse 

parameter identification method is robust and accurate.  

 

The key factors contributing to this successful methodology are the use of a highly robust and accurate 

hybrid optimization algorithm [18, 19], use of a highly accurate multi-dimensional response surface [13], 

and the fact that we used an a priori assumed general analytical spatial variation of thermal conductivity 

and heat capacity.  

 

  
a)       b) 

  
c)       d) 

Figure 8. Case 3: Distribution of relative error in percents between exact thermal conductivity and 

converged conductivity with: a) 1% noise, b) 2% noise and c) 3% noise and d) relative error between 

exact heat capacity and converged heat capacity with 3% error 

 

CONCLUSIONS 

 

The methodology for estimating parameters in analytic models for spatial distribution of thermal 

conductivity was extended to also estimate parameters in analytic models for spatial distribution of heat 

capacity within arbitrarily shaped multiply-connected 2D solid objects. The material property can be 

non-destructively estimated by minimizing the sum of normalized least squares between the calculated 

and measured boundary temperatures. The numerical integration of the governing elliptic partial 

differential equation for steady state temperature field was performed using the finite element method, 



which was validated against an analytic solution. An efficient surrogate model in the form of a multi-

dimensional response surface supported by the high fidelity finite element solutions was created to 

facilitate very fast approximate solutions of the analysis problem, thereby significantly reducing 

computing time for the minimization algorithm to converge. The inverse determination methodology 

showed promising results in being able to accurately determine linear and highly non-linear spatial 

distributions of these two thermal properties. This inverse parameter identification technique has also 

proven to be stable, thus, robust and accurate even when the boundary temperature measurements 

contained noise. This truly non-distructive methodology is also directly applicable to simultaneous 

determination of spatially varying mechanical properties and electrical properties. It is also 

straightforward to extend this method to arbitrarily shaped multiply-connected 3D objects and to apply 

it in inverse determination of time-varying material properties. The current drawback of the presented 

method is that it requires an a priori knowledge of the spatial analytic variations of the physical 

properties. This can be remedied by representing such variations using products of truncated series 

such as Fourier or Chebyshev and determining correct values of their coefficients. Future works can 

also include solving the inverse problem within the Bayesian framework to cope with the 

uncertainties and noise arising from measurements.  
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