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SUMMARY

Computational analysis of forced conjugate convection cooling of realistic human hearts including
main epicardial blood vessels was performed. It was found that including the main epicardaial
blood vessels in the forced conjugate cooling analysis accelerated the cooling process and reduced
temperature irregularities in the heart tissue, suggesting that usable life of transplantation bound
human hearts can be extended from 10.2 to 11.5 hours after extraction from the donor’s body.
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1 INTRODUCTION

An empirical relationship based on experimental evidence, known as “‘Qio law’’, states that for
every 10°C reduction in tissue temperature, there is a corresponding reduction in cell metabolic rate
equal to the constant Q. The law is written as:

G _ (Qlo)[(T Ty)/10] (1

qu
Here, T is the living tissue temperature in degrees Celsius and g is the cell metabolic rate. Values
for Q1o range from 2.0 to 3.0 and are cited in the physiology literature [1]. For example, assuming
the worst situation where Q1o = 2.0, it can be observed that reducing temperature from +37°C to
+27°C reduces the metabolic rate by 50%. Reducing temperature to +4°C would reduce the
metabolic rate in the same scenario by 89.9%, thus significantly reducing oxygen and glucose
consumption and carbon dioxide production. The conclusion is that the cooling of 3D organs
should not only be done quickly, but also as uniformly as possible. Temperature uniformity must
be accomplished in order to minimize the amount of time when parts of the organ are still at an
elevated temperature, thus experiencing high local metabolic rates. Our early efforts in simulating
cooling of a canine kidney and a human brain accounted only for heat conduction [2, 3]. Our recent
computations simulating optimized conjugate cooling protocols of a fully 3D realistic human heart
without accounting for the main epicardial blood vessels [4, 5] suggest that the usable life of an
extracted heart can be extended from the current 4.5 hours (using non-circulating cold saline bath)
to 10.2 hours. This paper extends this recent study and suggests that the usable life of a heart can be
further extended to 11.5 hours by perfusing also the main epicardial blood vessels, thus, enabling
transport of hearts across the entire north American continent.

2 METHODOLOGY

The human heart geometry used for simulations was obtained from 3D, high resolution CT scans.
Figure 1 demonstrates different domain surfaces of the heart in different colors. The blood contact
surfaces consisting of the right (pulmonic) and left (systemic) heart circulations domains are shown
in green (Fig. 1a & 1c) and blue (Fig. 1a & 1d), respectively. Figures 1a & 1b show the outermost
surfaces in red.
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Figure 1. Heart surfaces: a) all surfaces, b) outermost surfaces, c) heart pulmonary circulation
domain surfaces, and d) heart systemic circulation domain surfaces.
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Figure 2. Cooling container with the heart (left), cooling container with inlets and outlets
indicated (middle), and an epicardial blood vessel imbedded in the heart tissue.

A hexahedra (Figure 2) of 214 mm in length, 212 mm in width and 282 mm in height was virtually
created as the heart-cooling container. For circulating the coolant outside of the heart, two inlets
with 15 mm diameter and two outlets with 20 mm diameter were designed on the cooling container
walls. These inlets and outlets were designed to create cooling fluid jets and vortices around the
heart, thus, enhancing convection heat transfer. For internal cooling, two inlets and two outlets
were designed for each of the heart right and left circulation loops. University of Wisconsin (UW)
solution was used in simulations as the cooling liquid with constant inlet temperature of +4°C.
Outlet pressure of the epicardial blood vessel was enforced to be atmospheric, while average inlet
coolant speeds were 1 m/s (external circulation loop), 0.4 m/s (heart pulmonary circulation), and
1.0 m/s (heart systemic circulation). All cooling container walls were assumed to be thermally
insulated in all cooling scenarios. Fully 3D unsteady conjugate conduction/convection heat transfer
analyses were performed by solving the fully 3D governing equations for fluid and solid domains.
For turbulent coolant flow cases, k—¢& turbulent model equations were added to Navier-Stokes
equations for the external flow domain. 3D stress analyses were also performed to calculate
thermal and hydraulic stresses during the cooling process. All numerical simulations were
performed using OpenFOAM software platform on a 16 processor parallel computer [4, 5].

3 RESULTS AND CONCLUSIONS

A number of conjugate cooling protocol cases were simulated using various boundary conditions.
The most successful was Case 5 which involved forced convection cooling of inside surface of the
heart and simultaneously forced convection cooling of the outside surface of the heart. Figure 3
shows results of cooling in Case 5 depicted at 300 seconds. Figure 3a illustrates the UW solution
streamlines around the heart with velocity distribution. This figure displays that the maximum
velocity of coolant occurred at the inlets. In comparison, the minimum velocity occurred at fluid-
solid interfaces due to fluid viscosity. The heart model and its connections were added to this figure
to better demonstrate the UW solution streamlines pattern around the heart. Thus, its red color is
not an indication of the velocity or temperature. Figure 3b shows the temperature distribution of the
UW solution around the heart at 300 s showing the maximum temperature (+5.79°C) occurring at
the place where the fluid was in direct contact with the surface of the heart. The cut-away views of
the heart shown in Figure 3c reveal one large hot spot located above the right ventricle, and on the



right side of the right atrium. Two more hot spots can be observed in Figure 3d: one is located on
the left side of the left ventricle and the other is located on the right side of the left atrium. Thus,
these three hot spots will take longer to cool compared to the rest of the heart tissue due to ticker
heart walls in these regions. Case 5 results of cooling are shown in Fig. 4 for 3600 s of cooling. It is
immediately apparent that combined conduction and convection (moving coolant inside and
outside the heart) results in considerably faster and more uniform cooling of the entire heart.
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Figure 3. Results at 300 seconds: a) temperature distribution of external flow streamlines, b) speed
distribution, c) temperature distribution inside the heart (I*' cut-away view), and d) 2" cut-away).
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Fig. 4. Temperature distribution of the heart at: a) 0s, b) 300 s, c) 600 s, d) 1500 s, and e) 3600s
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Figure 5. Average temperature variation with Figure 6. Average metabolic rate variation with
time in the heart tissue for the five test cases [5]. time in the heart tissue for the five test cases.

These two figures show that simultaneous forced convection cooling of inside and outside surfaces
of the heart is the most promising general approach to uniformly cooling the heart [4, 5].

In the next step, the stress analyses were performed by using the data obtained by the thermo-fluid
analysis results. Normal and shear forces applied by the coolant flowing along the innermost and
outermost surfaces were used as the boundary condition of these surfaces. These values were
updated for each time step. The heart temperature field was used to obtain the thermal stresses
during the cooling process. The ultimate tensile stress of the heart tissue was assumed to be 110
kPa. The maximum value of calculated von Mises stress was 103.67 kPa at 1800 s. This shows that



the effect of thermal stresses was not significant due to the very small Young's elastic modulus and
thermal expansion coefficient of the heart tissue. The importance of these simulations was to show
that maximum pressures within the pulmonary and systemic circulatory domains remained less
than 110 kPa (~ 80 mmHg).
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Figure 7. Predicted distributions of pressure (left), local average speed (middle), and wall shear
stress (right) in an epicardial blood vessel perfused by UW solution with inlet speed of 0.5 m/s.
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The fully conjugated forced convection cooling protocol (Case 5 in Figures 3-6) reduced the
average temperature of the heart to +5°C after 1500 s, which was 70% lower temperature than
currently achievable by purely conduction/natural convection cooling in a stagnant saline solution.
The resulting stress analyses of the conjugate forced cooling indicated that von Mises stresses were
lower than the maximum allowable tensile stress of the heart tissue. Details of these results were
published [4, 5], suggesting that by using simultaneously internal and external forced convection it
is possible to preserve a human heart for 10.2 hours.

When incorporating three main epicardia blood vessels (coronary arteries and cardiac veins such as
shown in Figure 7) in the internal forced convection cooling loop, the heart was cooled even faster
and more uniformly. Consequently, using the same value of Q10 coefficient from equation (1), this
more detailed heart geometry allowed for extending the extra-corporal life of the extracted heart to
11.5 hours. This time will comfortably cover the time required to locate the donor and harvest the
heart (1.0 hours), extraction site-to-airport transportation time (1.0 hour), receiving airport-to-
transplantation site transportation time (1.0 hour), and implantation time (1.0 hours). This will
leave 7.5 hours for air transportation which is sufficient to cover the entire inhabited part of the
North American continent and the Caribbean.
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