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ABSTRACT

The rapid pace of urbanization and socioeconomic development

encourage people to spend more time together and therefore moni-

toring of human dynamics is of great importance, especially for fa-

cilities of elder care and involving multiple activities. Traditional ap-

proaches are limited due to their high deployment costs and privacy

concerns (e.g., camera-based surveillance or sensor-attachment-

based solutions). In this work, we propose to provide a fine-grained

comprehensive view of human dynamics using existing WiFi infras-

tructures often available in many indoor venues. Our approach is

low-cost and device-free, which does not require any active human

participation. Our system aims to provide smart human dynamics

monitoring through participant number estimation, human density

estimation and walking speed and direction derivation. A semi-

supervised learning approach leveraging the non-linear regression

model is developed to significantly reduce training efforts and ac-

commodate different monitoring environments. We further derive

participant number and density estimation based on the statistical

distribution of Channel State Information (CSI) measurements. In

addition, people’s walking speed and direction are estimated by

using a frequency-based mechanism. Extensive experiments over

12 months demonstrate that our system can perform fine-grained

effective human dynamic monitoring with over 90% accuracy in

estimating participants number, density, and walking speed and

direction at various indoor environments.
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•Human-centered computing→Ubiquitous andmobile com-

puting;
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1 INTRODUCTION

With the rapid pace of urbanization and socioeconomic develop-

ment, people spend more time gathering in indoor venues for work,

social and physical activities, etc. When multiple people gather

together, they exhibit distinct characteristics in terms of crowd

size, density distribution and moving patterns that reflect different

social behaviors. The awareness of human dynamics is critically

important in designing management services [8]. For example, the

caring services for seniors, especially for those who have been iden-

tified as suffering from social isolation [4] in assisted living places,

can be proactively treated once they are identified. In addition,

management services in community activity rooms can be planned

more effectively if the popularity of different activities within these

rooms is understood.

In particular, in assisted living places, due to the gradual loss of

physical and cognitive functions, seniors experience many health

concerns and they can also easily develop depression [17] [7] caused

by social isolation. Thus, it is important to track the activities of

seniors in an assisted living place so that their physical and mental

health could be assessed in time. For example, tracking the num-

ber of elderly people helps to quickly identify whether any elderly

people is sitting on the couch without interacting with anybody suf-

fering social isolation in an assisted living place. In other instances,

identifying a senior person who is a sleep walker via detecting

him walking in a common living room late night or spotting the

physically active seniors moving from one activity to another dur-

ing the day helps to obtain the first-hand information to assess

mental state health and social activeness. Additionally, an adminis-

trator of a multi-function room (e.g., campus, corporation) often

desires to have a comprehensive view of the activities engaged

by participants in that room (e.g., watching TV and playing pool

table in campus activity rooms; attendance participation of differ-

ent conference sessions). Such information allows us to infer the

most popular activity in a big multi-function room and also aids

evacuation planning under emergency situations [9]. To fulfill all

these requirements, a human dynamic monitoring system with the
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following features needs to be designed: (i) estimating the number

of participants, (ii) inferring human density distribution, (iii) esti-

mating human walking speed and direction. Toward this end, we

propose to reuse existing WiFi infrastructures to perform smart

human dynamics monitoring because WiFi technology is prevalent

in most indoor venues nowadays and does not require any active

human participation.

Recent years have witnessed the emergence of technologies uti-

lizing fine-grained Channel State Information (CSI) in WiFi signals

for people identifications [18] [26]. WifiU [18] presents a CSI-based

people identification framework by capturing the unique gait pat-

terns of different people with commercial WiFi devices. Similary,

WiWho [26] studies the gait patterns to perform people identifica-

tion utilizing various motion impact on CSI amplitudes. Further-

more, WiDir [23] estimates people walking direction leveraging

the Fresnel Zones of WiFi signal propagation. The above methods

demonstrate the success of human monitoring problem by using

CSI. There are also increasing interests of crowd estimation. For

example, Electronic Frog Eye [24] performs coarse-grained crowd

counting derived from the Verhulst model [12]. However, these

studies only focus on one specific aspect of human monitoring.

To facilitate the different needs at elderly care facilities and en-

vironments involving multiple activities, our work takes a more

comprehensive perspective to provide fine-grained monitoring on

human dynamics. Specifically, we focus on the density estimation,

walking speed and direction derivation for a smaller number of

people to facilitate the various needs of elder care and the environ-

ments involving multiple activities. For example, our system can

first provide a macro view by measuring the number of people and

people density. If there is only a single person in a room during day

time, we may want to explore if that person is suffering from social

isolation and also potentially further monitor his walking speed

and direction.

Specifically, we propose an integrated device-free human dy-

namic monitoring system, which relies on low-cost WiFi devices

to infer comprehensive activity-related information leveraging

Channel State Information (CSI). In particular, we demonstrate that

our proposed system is capable of providing a comprehensive view

of human dynamic information in the following three aspects: (1)

Participant estimation.We develop a semi-supervised learning

approach using the non-linear regression method to accurately es-

timate the number of participant leveraging CSI readings in indoor

venues. This method allows our system to be deployed in different

locations with significantly reduced training efforts. This informa-

tion will well serve a variety of public scenarios requiring human

dynamic monitoring, such as activity rooms in campuses, corpo-

ration meeting rooms, and senior care centers, etc., (2) Human

density estimation. Our system also proposes a novel approach

for the human density estimation based on the analysis of the CSI

variance histogram across different WiFi subcarriers. A broad range

of applications would benefit from people density information, such

as inferring the most popular activity in a multi-function activity

room or social isolation of any senior in an assisted living place. (3)

Walking speed and direction derivation. Our system develops

a frequency-based classification method based on Total Harmonic

Distortion (THD) to infer both walking speed and direction. Such

detailed information on walking pattern is extremely useful for sce-

narios where seniors need to be watched closely for their activities

to ensure their safety and to provide in-time assistance.

The contributions of our work are summarized as follows:

• We leverage existing WiFi infrastructure to monitor human

dynamics without active user participation to facilitate ap-

plications of elder care and smart space management. We

design the system to perform comprehensive people dynam-

ics monitoring by estimating participant number and density

and inferring walking speed and direction using low-cost

commodity WiFi.

• We propose a semi-supervised learning approach to estimate

the number of participants. The advantage is that our system

only needs to perform limited training, and the constructed

model can be generalized and applied to different environ-

ments, significantly reducing the labor efforts and make the

system scalable.

• We show that our system has the fine-grained capability

to estimate participants’ density within a monitored area

as well as derive people walking speeds and directions to

provide first-hand information of seniors’ social activeness

and smart space requirements.

• Our extensive experiments with 10 people in different types

of environments during a period of 12 months demonstrate

that our system is highly feasible to estimate the participants’

number and density and derive fine-grained walking speed

and direction information 1.

The rest of this paper is organized as follows. In Section 2, we

review the state-of-the-art solutions and briefly present how the

proposed approaches advance the existing ones. We then conduct

several experiments to show the insights of our idea in Section 3.

We next show our system design overview in Section 4. In Section 5,

we present our algorithm design in details. Next, in Section 5.3, we

conduct extensive experiments to evaluate our system and show our

system is robust under different environments. At last, we conclude

our work in Section 7.

2 RELATEDWORK

Recent years have witnessed great efforts on exploring a vari-

ety of technologies on human monitoring. Traditional approaches

are usually categorized into two types, device-based and device-

free methods. Device-based solutions require assistance of the ded-

icated devices and sensors (e.g., Wireless devices, dedicated sen-

sors) [1, 3, 10, 16, 20, 21, 27] to monitor human beings. Specifically,

Jens et al. [21] estimate crowd density by scanning nearby Bluetooth

devices with smartphones. Kannan et al. [10] perform crowd count-

ing based on audio signal generated and received by the speakers

and microphones that on mobile phones. Zihajehzadeh et al. [27]

derive people walking speed with lower body-mounted Inertial

Measurement Unites (IMU). SurroundSense [1] achieves accurate

logical localization by sensing the ambient sound, light and color

with various built-in smartphone sensors. However, the applica-

tion scenarios of the above solutions are limited by requiring the

1The experiments involving human participants have been approved by the authors’
institutional ethics review board and necessary consent from all the participants are
also recorded.
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Figure 1: CSI measurements affected by different number of participants: empty room, 1 person and 5 persons.
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Figure 2: Human density Study: CSI variance when people

are in Region 1, 2, or 3 respectively.

users to carry the appropriate equipments. Therefore, Device-free

approaches are developed to remove such requirement, and utilize

either received signal strength from wireless links [14, 25] or image

information [2, 13] to facilitate human monitoring. Nakatsuke et

al. [14] perform passive crowd density estimation by analyzing the

Received Signal Strength Indicator (RSSI) and Link Quality Indicator

(LQI) obtained from the wireless sensors in indoor environments.

Xu et al. [25] focus on multi-subject counting and indoor local-

ization by utilizing coarse-grained RSSI along with a successive

cancellation algorithm. However, these approaches require exten-

sive deployment of sensor nodes which result in extremely high

cost and training efforts. With the assistance of camera-based tech-

niques, Cho et al. [2] perform crowd density estimation by studying

appropriate features from a sequence of images. Ma et al. [13] es-

timate crowd density through foreground segmentation of video

images and then relate the foreground pixel count to the number

of people. But the high deployment costs and privacy concerns of

these methods hinder them from widespread use.

Unlike traditional RSS-based techniques, which rely on a single

feature per transmitted packet, we use Channel State Information

(CSI), which provides more fine-grained information (i.e., ampli-

tude and phase) with respect to each OFDM subcarrier per wireless

channel. It is readily available in many commercial network inter-

face cards such as Intel 5300 [5] and Atheros 9390 [11]. Nowadays,

CSI has been widely applied to various application scenarios espe-

cially for indoor localization, activity recognition as well as people

identification [6, 18, 19, 22, 26]. To assist indoor localization, Wu et

al. [22] use CSI to detect the Line-Of-Sight path in an indoor envi-

ronment. They studied the correlation between CSI streams and

estimate Angle of Arrival (AoA) based on phase differences between

different antennas. E-eyes [19] performs in-place activity recog-

nition by utilizing CSI measurements. This work uses Dynamic

Time Warping (DTW) to classify walking activities and use Earth

Mover Distance (EMD) for similarity comparison. WiFall [6] was

proposed to detect the falling activity for individual person based

on CSI measurements. They extract features from CSI streams and

develop a one-class Support Vector Machine (SVM) to differentiate

falling activity from the others. In the direction of people identifica-

tion [18] [26], WifiU [18] identifies human by analyzing frequency

spectrum of WiFi traffic to derive the walking behavior and gait.

Similarly, WiWho [26] focuses on people identification by utilizing

CSI amplitude to identify a person’s steps and walking gait. A peak-

and-valley method is developed to identify step cycles for effective

feature extraction. However, the aforementioned works only focus

on one specific aspect (i.e., localization, activity recognition or hu-

man identification) on human dynamics, so a systematic study on

monitoring human dynamics is desired.

Along this trend, there are works which focus on crowd count-

ing [24] and walking direction estimation [23] by leveraging CSI-

based techniques. WiDir [23] proposes to estimate the human walk-

ing direction based on a Fresnel Zone based model which depicts

the relationship between walking direction and CSI phase shift.

However, a dedicated device setup (i.e., at least three laptops to

form two Fresnel zones) is required to ensure that the system can

operate properly. Electronic Frog Eye [24] performs coarse-grained

crowd counting by using the Verhulst model [12], which maps a

specific CSI variance level to the corresponding number of walking

people. This study only provides coarse-grained crowd counting

information and can not be deployed to infer other critical human

dynamic information (i.e., people density and walking speed). Our

work, from a different angle, aims to provide fine-grained moni-

toring of human dynamics by studying a small number of people

with density estimation and walking speed and direction derivation,

which are suitable for mental state health and social activity study
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in elder care and efficiency activity management in multi-purpose

facilities.

3 PRELIMINARY

3.1 CSI Fundamental

In order to facilitate the human dynamics monitoring by leveraging

CSI measurements in WiFi networks, we first need to understand

how human dynamics affect the wireless channel. In a multi-path

wireless environment, the received wireless signal can be expressed

as: y = Hx + n = e jω0t
∑N
i=1Aie

−jω0τi + n,

where y and x = e jω0t are the receiving and transmitting signals

in vector form, respectively, and H =
∑N
i=1Aie

−jω0τi and n are

the channel response and the ambient noise. Specifically, Ai is the

complex amplitude attenuation for the ith , i ∈ (1,N ), path as aie
jϕi ,

e−jω0τi is the phase shift on the ith path with a propagation delay

τi . Note that, τi =
li
c , where li is the length of the ith path and c is

the speed of light.

The estimation of H represents the channel state information

(CSI), which is readily available from many commercial wireless

devices. Ĥ can be expressed as follows: Ĥ =
∑N
i=1Aie

−jω0
li
c . This

equation implies that Ĥ is dominated by three major factors, ampli-

tude attenuation, phase shift and the propagation delay. The presence

of people and their movement would result in different CSI vari-

ations in the area of interest. In particular, the signal strength is

attenuated when the line-of-sight (LOS) path is blocked by human

body, and human body changes the number of propagation paths

as well as introduces more reflections that alter the phase at the re-

ceiver side. Based on the analysis above, we find the amplitude and

phase variations on Channel State Information (CSI) could reveal

the fine-grained information on people movements. Integrating the

CSI measurements across multiple subcarriers, it is possible to infer

the human dynamics via statistical analysis.

3.2 Feasibility Study

3.2.1 Experimental Methodology. In order to utilize CSI mea-

surements to depict the human dynamics (i.e., the number of partic-

ipants, human density, walking speed and direction), it is necessary

to understand the relationship between different human dynamic

patterns and the corresponding CSI measurements. Towards this

end, we conduct a set of preliminary studies in a typical classroom

of the size 12m × 5m, where several chairs and tables are placed.

Two laptops, acting as a pair of transmitter and receiver, are placed

at the two ends of the classroom and hence they are 5m apart from

each other. The packet sending rate is fixed at 100pkt/sec , and 5

volunteers participated in this experimental study.

3.2.2 Impact of the Number of People on CSI. In this part, we

show that the CSI measurements will certainly be affected by the

presence of people in a room due to their impacts on the wireless

signal propagation paths (i.e. reflection and refraction). Intuitively,

as the number of people increases, more signal propagation paths

will be affected, resulting in different CSI readings. Figure 1 (a)-(c)

plots the raw CSI values against polar coordinates, which includes

both the amplitude and phase information lasting for 30 seconds

under the scenarios with no person, 1 walking person and 5 walking

people, respectively. It is obvious that the CSI amplitude readings

are quite stable in an empty room. On the contrary, when people

are moving inside the room, both the CSI amplitude and phase

are affected differently with varying number of people. This result

motivates us to explore the relationship between the CSI reading

and the number of participants. After we obtain such information,

we can further quickly identify the situation where one elderly

person wanders away.

3.2.3 Impact of the Human Density on CSI. Estimating human

density is also important since it allows us to infer some important

context information, e.g. the most popular activity in a big multi-

functional room or the most popular display in a big museum

display room. Here, we show that different people densities inside

a room should also have different impacts on the CSI readings.

The rationale lies in the fact that when more people gather at

some specific regions, the wireless signal will experience heavier

distortions caused by their movements in those regions. This could

help us on differentiating the people density via CSI readings. We

use one pair of laptop and ask 3 volunteers to move at three different

regions. The three different regions are defined as follow: the area

close to the transmitter; the area close to the receiver; the area in the

middle of the transmitter/receiver pair. We collect a minute of CSI

readings for each case and analyze the collected data. The results

are plotted in Figure 2. The results show that the distribution of CSI

variance across different subcarriers for different people densities

in the room. It inspires us to utilize the CSI distribution to perform

people density estimation.

3.2.4 Impact of the People Walking Speed and Direction on CSI.

Walking speed and direction are critical information which allows

us to infer human dynamics, e.g., inferring if a senior walks out of

his bedroom to a common living room at night. In order to find out

how the CSI readings are affected by different walking speeds and

directions, we ask the a volunteer to walk back and forth between

two ends of a room with different speeds and directions while we

collect CSI readings on bothwireless links. As shown in Figure 3, the

CSI readings have significant differences as the walking speed and

direction change, and the peaks correspond to the moment when

walks across the LOS of wireless link. Specifically, slow walking

speed causes larger variation than fast walking speed on the power

of phase difference, while walking along the LOS of wireless links

has less impact on the CSI readings than walking across the LOS.

Inspired by the above observations, we will study the relationship

between the power distributions of phase difference in frequency

domain and walking speed & direction.

4 SYSTEM DESIGN

The proposed system aims to develop a systematic approach to

enable comprehensive human dynamics monitoring to assist smart

management in public indoor environments. To achieve such a

goal, we propose to utilize the readily available CSI information

in commodity wireless devices to sense how the human dynamics

affect the wireless channel.

The architecture of our proposed system is shown in Figure 4.

In general, our system will first monitor the macro perspective of

an area of interests through estimating the number of participants
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Figure 3: Relative phase variationwhenwalking in perpendicular or parallel to thewireless linkwith differentwalking speeds.

Figure 4: System overview of human dynamic monitoring.

and human density. Then, if only one person is present in the mon-

itoring area, we will have a closer look at this person by measuring

the micro perspective via walking speed and direction derivation.

First, our system takes time-series of raw CSI readings as the input

and each CSI measurement contains 30 Nt × Nr , matrices, where

Nt and Nr are the number of antennas on transmitter and receiver,

respectively. We first feed the raw CSI readings into theData Prepro-

cessing module to filter out high frequency noise that are caused by

interference or ambient noise. Next, the Subcarrier Selectionmodule

will remove the subcarriers that are not sensitive to capture human

dynamic characteristics. Then, the preprocessed CSI readings will

be fed into three functional modules, Participant Counting, Human

Density Estimation, Speed and Direction Derivation. In particular,

the Participant Counting module performs quantitative analysis

of the CSI readings to derive the number of people in a specific

area; the Human Density Estimation module estimates the human

density information based on CSI variances over subcarrriers; and

the Speed and Direction Derivation module classifies the walking

speed into different levels and estimate the walking direction based

on the frequency-based analysis.

In the Participant Counting module, we first investigate and de-

termine the effective features that has monotonic relationship with

the number of participant capturing the human dynamic charac-

teristics from the CSI readings, and then describe the monotonic

relationship via a non-linear model. During the modeling phase,

the system integrates the CSI features from multiple dimensions,

including different links (i.e., four laptops form two orthogonal

links), frequency bands (i.e., 2.4GHz and 5GHz) and channels (i.e.,

our system scans the adjacent orthogonal channels and concatenate

them together). Given the model built upon one specific room, it can

be generalized and applied to other indoor environments without

repeating the whole training process. Specifically, we only need to

extract the features from another empty room via opportunistic

approaches (e.g., collecting CSI measurements at mid-night or early

morning when no one is there), and then the non-linear model

will update the critical parameters based on these new features to

perform participant counting in a new environment.

Human Density Estimation module aims to provide human den-

sity information inside the monitoring area, which would assist

various application scenarios as described in Section 1. Specifically,

it consists of two components: Distribution Analysis over Multiple

Subcarriers and Earth Mover Distance Calculation. Our system first

constructs the human density profiles based on the CSI amplitude

distribution over multiple subcarriers under different densities in

the monitoring area. Next, given a new time series of CSI, we calcu-

late its CSI amplitude distribution and then determine the current

density by examining its Earth Mover Distance extracted from the

predefined profiles.

Three submodules are involved in deriving the speed and direc-

tion information, namely Phase Difference Information Extraction,

Total Harmonic Distortion (THD)-based algorithm and Estimation pa-

rameter calculation. Given the relative phase information extracted

from the raw CSI measurements, we develop the THD-based al-

gorithm and FFT-based algorithm for walking speed and direction

estimation, respectively. Specifically, THD-based algorithm esti-

mates the walking speed based on the fundamental signal extracted

from the relative phases through THD analysis, while the FFT-

based algorithm determines the walking direction by classifying

the frequency-domain features of the relative phases into one of the

the predefined profiles with respect to different walking directions.

5 ALGORITHM DESIGN

In this section, we first present our participant number estimation

and human density estimation scheme, and then propose the new

approaches for deriving people walking speed and direction.
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Figure 5: CSI amplitude difference between two antennas un-

der different number of participants.

5.1 Semi-Supervised Participant Number
Estimation

Estimating the number of participants is of great importance es-

pecially in providing smart monitoring in senior care or multi-

functional room scenarios. To achieve this goal, we propose a semi-

supervised learning algorithm to derive the monotonic relationship

between the number of people and relevant statistical features

extracted from CSI measurements.

5.1.1 Feature Extraction. Unlike many existing works, which

rely on the CSI measurements collected from a single antenna, we

take the advantage of the spatial diversity on the MIMO-enabled

WiFi devices to extract effective features from the CSI difference

between two antennas. As the wireless channel is easily affected by

various factors (i.e., hardware instability, environmental changes,

etc.), resulting in unpredictable offset of CSI readings on a single

antenna, given the fixed distance between two antennas, the CSI

differences will only retain the human dynamics related informa-

tion.

Figure 5 shows the impact of the number of participants on CSI

amplitude difference with no person, 1 person, 3 persons and 5 per-

sons, respectively. We examine several features extracted from the

amplitude and phase information of CSI measurements, and finally

determine the following 4 features that follow a monotonic rela-

tionship with the number of participants: CSI amplitude variance,

CSI amplitude range, CSI amplitude mode, Entropy of HIP (Hermitian

Inner Product) (i.e., phase difference). Figure 6 shows the monotonic

varying trend of the four different features when there are 1 to 6

people in the monitoring area, respectively. In the proposed sys-

tem, we calculate these features for each of the selected subcarriers

and then average the feature values to reduce the computational

complexity.

5.1.2 Feature-based Non-linear Regression. To derive the mono-

tonic relationship between the number of participants and relevant

features, we formulate the relationship as a non-linear regression
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Figure 6: Monotonic relationships between different fea-

tures and the number of participants for human density es-

timation.

model. Specifically, we adopt the logistic bounded exponential func-

tion whose growth rate is proportional to the size of the function’s

value and the growth is bounded by some fixed capacities. This

model has been widely used for modeling resource limited expo-

nential growth such as island populations, bacteria in a petri dish,

and growth of seedling. Similarly, the space of the monitored area

is limited and thereby physically restricts human’s walking range.

In other words, the impact of the number of people is also bounded

and the values of the relevant CSI-based features have finite increas-

ing range as the number of people increases. The logistic bounded

exponential model is expressed as:

f (x) =
a

b + ce−dx
, (1)

wherex is the number of people anda,b, c,d are the four parameters

that control the growth rate and range of the function f (x). We can

express the number of people as a function of these four parameters

via the inverse function f −1(x). Note that it is only necessary to

derive useful values for these 4 parameters once at a certain location.

During this training process, the relationships between parameters

c and d can be identified and hence one only needs to estimate

the new a and b values for subsequent deployment of our system

at a new location. This is because the shape and the offset of the

model are determined by the parameters a and b while parameters

c and d depict the shape curvature which is relatively stable across

different environments.

The values of the parameters in Equation 1 are derived during

the construction of our non-linear model. Specifically, we first col-

lect CSI measurements under five scenarios, including an empty

room with no people inside the monitoring area, and 1 to 4 peo-

ple walking inside the area. Then, we extract the aforementioned

features as discussed in Section. 5.1.1. For each feature, we have

several instances associated with different number of participants

and we further fit the feature values into Equation 1 to estimate

the parameters by solving a corresponding objective function.
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Figure 7: Concatenation of multiple channels with different

number of participants.

After obtaining all single-feature non-linear models, the final

estimate on the number of participants is obtained by minimizing

the total estimation errors produced by these N features as follow:

minimize
ŷ,wi

N∑

i=1

wi (yfi − ŷ)2

subject to min(yf1, ...,yfi
) ≤ ŷ ≤ max(yf1 , . . . ,yfi ),

N∑

i=1

wi = 1,

(2)

where yfi is the output from the ith feature and ŷ is the fused

estimate, wi is the weight associated with its error and can be

determined via experiments.

After the model is constructed, it can be easily extended to other

environments via a semi-supervised learning approach. Specifically,

the proposed non-linear model in Equation 1 relies on the parameter

a and b to determine the trend of CSI features, which are similar at

different locations, as the number of people increases. Therefore,

we can determine such similar trend in an empty room to estimate

these two parameters via opportunistic approaches, i.e., collecting

CSI measurements at mid-night or the early morning when there is

no people presence. The other two parameters c andd , depicting the
curvature of the model, usually has little impact of the trend. Thus,

our system can be easily adapted to run at different locations with

little training efforts. Further, our system uses the CSI measurement

in the empty room to update the model parameters for the new

environment, which is equivalent to an equation solving process.

5.1.3 Data Fusion. To ensure the robustness and high accuracy

on participant number estimation, we fuse not only multiple fea-

tures but also multiple links and multiple channels.

Multiple Links.Multiple transceiver links provide redundant

dimensions on CSI collection to eliminate the unstable readings

and outliers, so that a more robust estimation result will be ensured

in our system as follows:

FL =

NL∑

i=1

wLi (FLi ), (3)

where, FL is the fusion results from multiple links, FLi is the output

from the ith link with the associated empirical weightwLi and NL

is the total number of links. Note that
∑NL

i=1wLi = 1.

Figure 8: Similar patterns of CSI variance under different

number of participants for human density estimation.

Multiple Channels. For each transmission link, we choose

three adjacent orthogonal channels for feature extraction. Our pro-

totype system can switch automatically among these 3 channels and

hence the CSI readings of a total of 90 subcarriers will be collected

simultaneously instead of 30 subcarriers from one single channel

as in existing works. Figure 7 illustrates an example explained as

follow: we collect CSI from three different orthogonal channels

(i.e., channel 1, channel 6 and channel 11) at 2.4GHz with 2 people,

4 people, and 6 people walking inside the room, respectively. We

observe a continuous CSI amplitude variance across all 90 subcar-

riers and therefore we can perform subcarrier selection with high

flexibility. The channel concatenation does not only provide high

dimensional CSI measurement from more subcarriers, but also has

the capability to resist possible interference over some subcarriers.

The final output is obtained as:

FC =

NC∑

i=1

wCi (FCi ), (4)

where FC is the fusion results from multiple channels, FCi is the

output from the ith channel with the associated empirical weight

wCi andNC is the total number of channels. Note that
∑NC

i=1wCi = 1.

Combine Equation 3 and Equation 4, we have:

F =

NL∑

j=1

NC∑

i=1

wLi (wCi (FCi )), (5)

where F is the fusion results based on both multiple links and

multiple channels.

In particular, our prototype sets the weight of each wireless

link asWL = 0.5 since there are two wireless links deployed in our

system. In addition, we set the weight of each channel asWC = 0.25,

since our prototype employs 4 different channels for participant

estimation, where three of them work at 5GHz, and the remaining

one is at 2.4GHz. Note that the reason why more 5GHz channels

are used is that 5GHz frequency band experiences less interference

than 2.4GHz.

5.2 Human Density Estimation

Beside participant counting, our proposed system also estimates

the people density distribution within the area under surveillance.

People density estimation is of great importance since it allows us

to infer the denser areas as well as other general crowd information
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which facilitate space management and seniors’ health service plan-

ning. For example, we could infer the popularity of the activities

in a multi-function room based on the density information and

accordingly expand on the space housing the most popular activity.

To understand how different people density distributions affect

CSI measurements, we first define the densest region as follow:

the region that contains more people than other regions will be

denoted as the densest region.

Take two perpendicular transceiver links as an example, it di-

vides the monitoring area into four regions. We can further define

the four regions as: Close to Rx1 and Rx2 (R1); Close to Rx1 andTx2
(R2); Close to Tx1 and Tx2 (R3); Close to Tx1 and Rx2 (R4); Then,
we construct the profile database. In particular, for each of the sub-

region, we build a corresponding profile with 4 people. To infer

the density region at the monitoring phase, our system collects

CSI and calculates the variance distribution across all subcarriers.

The system will perform similarity matching by applying the Earth

Mover Distance (EMD) [15], which is a well-known approach for

evaluating the similarity between two probability distributions, to

the CSI variance distribution obtained in a sliding time window.

In particular, it calculates the minimal cost to transform one dis-

tribution into the other. Our system seeks to derive the EMD by

comparing the CSI variance distribution of the testing CSI mea-

surements with the profiles of known human density region. CSI

measurements being tested are identified to one of the profile with

the minimal cost (i.e., minimal EMD distance).

We further seek solutions to reduce the labor-extensive profiling

process. We find that the human density information is preserved

in the distribution of the CSI variance across all subcarriers. That

means the profiles built from a fixed number of people would be

enough. The intuition behind this lies in an experimental observa-

tion as shown in Figure 8. We plot the difference of CSI variance

from two antennas against 30 subcarriers when volunteers are at

four different regions with 1 person and 4 persons respectively.

We find the presence of people at different regions leads to a dif-

ferent distribution of the CSI amplitude variance. We can define

the sensitive subcarrier whose neighbors have lower variance as

marked in the figure. We further find that the sensitive subcarriers

are location-dependent, regardless of the number of people and

only the value is different. Consequently, the profiles built from 1

person have the same series of sensitive subcarriers as the profiles

built from 4 persons. This further implies that the human density

information is preserved in the distribution of the CSI variance

across all subcarriers. The proposed system can take advantage of

this property to reduce the training size by only constructing the

profile based on a fixed number of people in an environment.

5.3 Walking Speed Derivation

The walking speed of people is a critical descriptor of human dy-

namics, and essential for human dynamics monitoring and smart

management under possible emergencies. For example, walking

too fast or slow may indicate some abnormal activities, especially

for the senior people. The changes in walking speed would result

in different patterns of CSI readings. In this subsection, we first

present our walking speed derivation scheme leveraging the CSI

measurements.
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Figure 9: (a), (b) and (c) are THD fundamental signal power

from three different walking speeds. (d) is the energy distri-

bution of the first bin from two transceiver links forwalking

direction estimation.

In our preliminary study, given the spectrum derived from the

time series of CSI relative phases, we find the power level in lower

frequency band decreases as the working speed increases. There-

fore, a total harmonic distortion (THD) based method is developed

to achieve accurate speed estimation from CSI readings. THD is

traditionally used to characterize the linearity of audio systems

and the power quality of electric power systems. It can also help

to identify the linear relationship between the fundamental signal

embedded in the relative phase information and the walking speed

regardless any people.

Given the relative phase from the extracted CSI samples, we

first subtract the mean value from the relative phase across 30

subcarriers. Next, we need to identify the periods that capture the

walking characteristics of people in CSI samples. Specifically, a

hypothesis test is adopted to compare the CSI energy level within a

sliding window (i.e., 1sec) with a predefined threshold to determine

whether there is anyone walking in the area of interest. If the energy

level is constantly below the threshold, it is marked as a static

period; otherwise walking period. We apply both Butterworth filter

and moving average filter to the CSI relative phase in static period,

so that the environmental impact, including the high-frequency

noise and outliers, will be effectively removed.

Once the above preprocessing on raw CSI measurements is com-

pleted, we then adopt THD analysis to perform walking speed

estimation. THD analysis derives the periodogram of input signals

using a Kaiser window with large sidelobe attenuation. Our speed

estimation scheme searches for the largest nonzero spectral com-

ponent, called fundamental frequency, across the periodogram, and

then computes the central moment of all adjacent bins that decrease

monotonically away from the maximum. The walking steps of peo-

ple always create periodic impacts on the wireless channel, which

corresponds to the amplitude of fundamental frequency in THD
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Figure 10: Monotonic relationship between features and the

number of people.

analysis and implies the walking speed information. The higher

order frequencies in THD analysis reflect the arms movement or the

environment noise during the walking period, and will be removed

for better walking speed estimation. Given a sliding window of 1sec
length applied to the CSI readings, our THD-based method extracts

the fundamental signal to reconstruct a new time series of CSI read-

ings. As the example shown in Figure 9 (a-c), a volunteer walked

several rounds between two ends of a classroom at 3 different speed

levels, and stopped at both ends for a few seconds to separate the

walking and static periods during each round. It is obvious to find

that the prominence and width of fundamental signals for each

walking round increase as the walking speed decreases.

According to our empirical study, each peak of the fundamental

signal stands for the scenario that the person walks across the LOS

between the transmitter and receiver. The signal power decreases

as the person walks away, and vice versa. Taking a close look at

the fundamental signal variation, we find higher walking speed

causes smaller fluctuation on the fundamental signal, resulting in

small prominence h around the peak of the fundamental signal due

to the shorter dwelling period at each position. Further, the width

w at half prominence h implies the time taken to walk the same

distance. Intuitively, higher walking speed has smaller w . Given

both the prominence h and widthw information, we could derive

the estimation parameter as e = h × w , which has a monotonic

relationship with walking speed.

We tested a few different walking routes in different rooms,

our algorithm can estimate the walking speed if it is relatively

stable in different locations. Even though different scenarios may

have impacts on the CSI readings, our algorithm can still derive

the estimation parameter e to estimate the walking speed. It is

possible that the algorithm may fail if the walking speed changes

dramatically in a short time window (e.g. 1s) which we will explore

in our near future work.

5.4 Walking Direction Estimation

Walking direction estimation can be useful in scenarios related to

senior care services. In particular, we focus on the walking direction

of a single people, especially for the sleep walker, who may walk

towards dangerous places (e.g., staircases or balcony) at night.

To derive the walking direction, we first segment CSI measure-

ments using a fixed time window (3 ∼ 5 seconds) and define the

frequency distribution as: e(n) =
fn∑N
i fi

, where e(n) represents the

frequency distribution of the nth output fn from the FFT operation,

and fn is frequency bin (i.e., sub-band). For example, given the sam-

pling rate at 50Hz, a 5-points FFT transform converts the frequency

band of 50Hz into 5 bins with each representing 10Hz bandwidth.

To further demonstrate our algorithm, we ask a volunteer to walk

in three directions: parallel to link 2 (0◦); walking across both links

(45◦); and parallel to link 1 (90◦). In the meanwhile, the CSI over

both links are collected to examine their frequency distribution.

As shown in in Figure 9 (d), we only examine the dominant fre-

quency bin e(1), which locates at the lower frequency band, for both
links on three walking directions, as it is affected more by direction

changes than the other frequency bins. We found that, when the

person walks parallel to link 1, e(1) on this wireless link has lower

energy level than that on the other wireless link 2 perpendicular to

link 1. Further, if the the people walks along the 45 degree direction,

which crosses two wireless links, e(1) on both links have similar

energy level.

We also utilize CSI variance to enhance direction estimation

performance. In general, given a fixed time period (i.e., 4 seconds),

fast speed in one direction causes low CSI variance due to the short

duration at each location, whereas low speed causes high CSI vari-

ation. Inspired by two above interesting observations, we propose

to leverage both CSI frequency distribution and variance on two

perpendicular wireless links as a combined feature vector, z, to
estimate walking direction. Our system trains a support vector ma-

chine (SVM) model with Gaussian kernel and classifies the walking

direction based on the pre-built walking direction profiles above,

which include three walking directions (i.e., 0◦, 45◦, 90◦). The SVM

model then classifies the combined features to the closest walking

direction. More precise direction estimation can be achieved with

fine-grained direction profiles.

Currently, we focus on estimating a single person’s walking

direction, and we will further investigate the capabilities of our sys-

tem on dealing with the cases when multiple people walk together

and have different walking directions in the near future.

6 PERFORMANCE EVALUATION

6.1 System Prototype

We implement our system on two pairs of laptops equipped with

Intel 5300 802.11nWiFi NIC acting asWiFi transceivers. Specifically,

the laptops form two transceiver links with their LOS are perpen-

dicular to each other. The laptops for each pair of transceivers, we

let the Lenovo T500 laptop as receiver, while Dell E6430 laptop

acts as the transmitter. Both transmitters are configured to trans-

mit packets at the packet rate 100 pkt/sec, but work at different

WiFi channels to avoid conflicts. The receivers work at Monitor

mode, which enables the receivers to capture and decode the 802.11

frames sent by the transmitters. The CSI values are extracted from

these frames with the CSI tool developed by Halperin et al. [5]. The

captured CSI measurements contain the samples from 30 subcar-

riers, and each subcarrier entry is a complex number with signed

8-bit resolution for both the real and imaginary parts. The proto-

typed system can work at both 2.4GHz and 5GHz frequency bands

involving multiple 20MHz bandwidth channels.
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Figure 11: Performance of participant estimation by using CSI in empty room of location A, B, C for training.

6.2 Experimental Methodology

We conduct extensive experiments by recruiting 10 volunteers to

move at 5 different indoor venues over a 12-month time period.

Specifically, The experiments are carried out twice per week with

each lasting for 2 to 3 hours, and the total amount of CSI data col-

lected during the experiments is about 10GB. Each time before our

experiments, we detect the channel occupancy by opportunistically

scanning the channel usage at both 2.4GHz and 5GHz. Then, we

select the channels that experience less interferences in our sys-

tem. In addition, given the fixed number of people in the area of

interest, we find that irrespective of the combinations of people

with different sizes and dresses, the CSI readings are less impacted.

Furthermore, we also study the impact of different placements of

APs for collecting the CSI measurements, and still obtain consistent

results. Through the above experiments, we demonstrate that a com-

prehensive view of human dynamics could be obtained leveraging

existing WiFi infrastructures.

Participants and Human Density Estimation. To evaluate

the performance of the number of participants and human density

estimation, we design and conduct the experiments at three dif-

ferent indoor scenarios (i.e., activities room (Location A), meeting

room (Location B) and classroom (Location C) with dimensions

16m × 10m, 13m × 7m and 12m × 5m, respectively). For the three

environments, we observe that the people moving in the next rooms

will not change our results since the CSI is mainly affected by the

number of participants in the current room. In total, we collect

and process over 100 hours of CSI measurements and there are 10

volunteers participate in our experiments.

Walking Speed and Direction Derivation. To evaluate the

performance of THD-based speed estimation algorithm, we collect

1296 different walking traces of 4 people in two different class-

room environments of size 7m × 6m (big classroom) and 12m × 5m
(small classroom), respectively. Each walking trace involves 3 dif-

ferent speed levels: fast (1.33m/sec), medium (1m/sec) and slow

(0.67m/sec), and each speed level spans a certain period on the

walking trace. To evaluate the performance of our classification-

based walking direction estimation, we collect 286 experimental

samples of 3 people in the big classroom. In particular, each person

is asked to walk in 3 different directions (i.e., 0◦, 45◦, 90◦). The ex-

periment processes are recorded by a camcorder serving as ground

truth for performance evaluation.
6.3 Evaluation Metrics

To quantify the estimation accuracy for each module in our system,

we define the following metrics for performance evaluation:

Participant Estimation Accuracy. To evaluate the perfor-

mance of our proposed semi-supervised learning approach, we

define the Participant Estimation Accuracy as the ratio between the

correct instances of participant estimation and the total number of

instances.

Human Density Accuracy. To evaluate the performance of

human density estimation scheme, our system profiles the CSI

patterns when the volunteers walk inside different regions with

various people densities in the area of interest. Then the human

density accuracy is defined as the ratio between the number of

correctly profiles matching and the total number of experiments.

Walking Speed and Direction Accuracy. The proposed sys-

tem categorizes 3 speed levels (i.e., slow, medium, fast) and 3 walk-

ing directions (i.e., 0 degree, 45 degree and 90 degree deviated from

the LOS of one wireless link). We define the speed and direction

accuracy as the percentage of the correct classification results.

6.4 The Number of Participants Estimation

6.4.1 Non-linear Model Construction. To build an accurate par-

ticipant estimation model, it is critical to correctly identify the rela-

tionship between the number of people and the features extracted

from CSI readings. More specifically, our system seeks to explore

such a monotonic relationship to easily and accurately predict the

number of people based on CSI readings. We first demonstrate that

the CSI features we selected exhibit a monotonic relationship with

the number of people. Figure.10 shows the four selected features

versus the number of people from 0 (i.e., empty room) to 10. It is ob-

vious that all the selected features (i.e., average CSI variance, Range,

Mode and Entropy of HIP) as introduced in Section 5 monotonically

increases or decreases as the number of people increases.

6.4.2 Semi-supervised Learning Approach. Our proposed semi-

supervised learning approach could build a generalized model to

apply limited training data to different environments without in-

troducing extra training effort. Particularly, given the CSI readings

collected from a new empty room, the model will be automatically

updated to fit into the new environment for the estimation of the

number of participants. Figure 11 shows the estimation accuracy

with the model built upon the CSI profiles at the three different

rooms. All the rooms have high accuracy on estimating the number

of participants (i.e., 90%, 89% and 91%) when building the model

based on the CSI profiles at the same room. When the model in

roomA is built based on the CSI profiles collected at different rooms

(i.e., B and C), we observe that the estimation accuracy still main-

tains as high as 83% and 81%, respectively. Similarly, the model at

location B achieves the estimation accuracy 84% and 85% based on
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Table 1: EMD distance at location A

Regions R1 R2 R3 R4
R1 3.16 4.76 6.14 6.41

R2 4.28 1.69 3.75 8.28

R3 6.03 3.78 2.29 10.74

R4 6.13 8.66 11.28 1.97
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Figure 12: Performance of participant counting at 2.4GHz

and 5GHz band with and without channel combination re-

spectively.

the profile fromA andC , while the model at locationC has 85% and

89%. Overall, all the three locations show the estimation accuracy

over 80% even without training, which proves the proposed system

can achieve high accuracy on estimating the number of participants

with the proposed semi-supervised learning approach.

6.4.3 Data Fusion. Next, we study the impact of data fusion

from different dimensions (i.e., multiple frequency bands, multiple

channels) of CSI measurement on the performance of the proposed

system.Multiple Frequency Bands. First, we evaluate the perfor-

mance of our system when working at different frequency bands.

Figure 12(a) and (b) show the participant number estimation results

at 2.4GHz and 5GHz, respectively. For three different locations, the

overall accuracy at 5GHz outperforms that at 2.4GHz. In partic-

ularly, the accuracy at location A, B and C are 78% ,84% and 86%

for 2.4GHz, while the accuracy are 82% ,92% and 92% for 5GHz.

This is caused by the poor link quality at 2.4GHz frequency band,

which involves more collisions among many WiFi transmissions.

The results demonstrate that our system can maintain good per-

formance by only operating at different frequency bands without

much accuracy degradation.

Multiple Channels. We also examine the impact of different

channel combinations on the participant number estimation in

our system. Particularly, the system combines the three adjacent

orthogonal channels (i.e., channel 1, 6, 11 at 2.4GHz and channel 40,

44, 48 at 5GHz). Thus, we provide redundancy information since

we have 90 subcarrier candidates to choose from compared with 30

subcarrier from one channel only. Such channel concatenation not

only provides high dimensional CSI readings frommore subcarriers,

but also has the capability to resist possible interference to the CSI
readings over some subcarriers. Figure 12 shows the experimental

results with different channel combinations given in Figure 12(a)

and (b) and without channel combination given in Figure 12(c)

and (d). We observe that without channel combination, the system

performance at three different locations degrades to 70%, 70% and

86% at 2.4GHz and 74%, 81% and 87% at 5GHz. The results prove

that using more channels improves the performance of our system

up to 8%.

6.5 Human Density Estimation

In this subsection, we study the performance on human density

estimation in our system under different people distributions.

Different Indoor Environments.To evaluate the performance

of people density estimation, we conduct experiments at three

different indoor environments. We first divide the space of each

indoor environment into four regions (i.e., R1, R2, R3 and R4) based
on two links, and the volunteers are asked to move at different

regions forming different density distributions. Meanwhile, the

corresponding CSI measurements (i.e., testing data) will be collected

to compare with the predefined CSI profiles (i.e., training data) of

different density distributions. We try in total 20 different density

distributions and obtain the overall performance shown in Figure 13.

We observe that the proposed system achieves 100% accuracy on

determining the people density distribution in the room based on

the CSI profile of the same room. Although the accuracy drops a

little bit to 89% and 83% for location A when the density estimation

is performed using the predefined CSI profiles of location B and

C , respectively, our system still maintains a high accuracy. This

results indicate that profiles built from the training rooms can be

extended to other rooms since the pattern of the CSI distribution is

preserved.

Different Number of People. In addition, we further explore

the impact of profile construction from different number of partic-

ipants. In particular, we use profiles built upon 3 people in each

sub-region and use 4 during the testing phase. Table. 1 shows the

EMD distance between the profile and the testing data for all four

different regions in locationA. Each cell contains the EMD distance

value between the corresponding column (i.e., profile) and row (i.e.,

possible candidates). The gray cell indicates the minimum value

among all the candidates andwe observe that theminimum distance

appears in the diagonal of the table. That means, our algorithm

successfully predicts the people density region using profiles con-

structed from different numbers of people. The result also indicates

the proposed system has the ability to extend the profile built from

one location to another.

6.6 Walking Speed and Direction Derivation

We first examine the performance of walking speed estimation

with the proposed THD-based method. As shown in Figure 14(a),



SenSys’17, November 6–8, 2017, Delft, The Netherlands Guo et al.

small classroom big classroom

a
cc

u
ra

cy
(%

)

0

20

40

60

80

100

2.4G
5G

(a) Accuracy of different classrooms

P1 P2 P3 P4 2P
a
cc

u
ra

cy
(%

)

0

20

40

60

80

100

2.4G
5G

(b) Accuracy of different people

Figure 14: Performance of speed estimation utilizing THD-

based algorithm
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Figure 15: Performance of direction estimation using

classification-based method
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Figure 13: Performance of human density estimation.

Pro f ileA, Pro f ileB and Pro f ileC indicate the profiles are built

from location A, B and C, respectively.

the average accuracy of speed estimation at 5GHz outperforms

that at 2.4GHz in both small classroom and big classroom due to

the heavy interferences at 2.4GHz frequency band. In particular,

our system achieves 96% and 99% accuracy for small classroom

and big classroom at 5GHz whereas the accuracy for 2.4GHz are

82% and 85%. In addition, we also observe that the accuracy in

the big classroom is better than in the small classroom due to less

multi-path impacts.

Figure 14(b) shows the average speed estimation accuracy for dif-

ferent participants at 2.4GHz and 5GHz. We evaluate 4 participants

which are represented as P1, P2, P3 and P4. The 98.6% average accu-

racy of overall performance on 5GHz across different participants

is encouraging, but the estimation accuracy for participant 2 is 78%

at 2.4GHz and 90% at 5GHz, which are lower than other partici-

pants. By checking the ground truth recorded by a camcorder, we

find that the step frequency of participant 2 does not change while

his moving speed increases. Therefore, the difference of the funda-

mental signal amplitudes with respect to different speeds becomes

less significant and thereby results in the degradation on speed

estimation. We also evaluate 2 participants walking as a group on

5GHz which is denoted as 2P in the figure. Even though the 85%

percentage accuracy is slightly lower than the average accuracy of

1 person, two walking activities are still successfully captured by

our algorithm, which makes our system more practical.

Next, we study the performance of walking direction estima-

tion in our system. We show the walking direction classification

results as a confusion matrix in Figure 15(a). The results show that

our walking direction estimation method can achieve an average

accuracy of 96.6% for the three walking directions. As shown in Fig-

ure 15(b), the direction estimation performance improves with the

number of training samples. We can also observe that our direction

estimation algorithm has better performance at 5G than 2.4G. This

is because 5G suffers less interference over the wireless channel

than 2.4G and thus provide more reliable CSI measurements.

7 CONCLUSION

The awareness of human dynamics information is increasingly

important in designing management services, e.g., caring services

for seniors especially for those who have been identified as suffer-

ing from social isolation in assisted living places or smart facility

management (e.g., understanding the popular activities or assist-

ing evacuation planning) in meeting/activity rooms in campuses

or corporate buildings. In this paper, we show that the prevalent
WiFi signals can be exploited to provide a comprehensive view of

the human dynamic information to facilitate social activeness as-

sessment and smart environment design. Our approach is low-cost

and device-free, which does not require any active human par-

ticipation. In particular, our system provides fine-grained human

dynamics monitoring via estimating the number of participants,

human density and people walking speed and direction leverag-

ing Channel State information (CSI). The semi-supervised learning

approach based on non-linear regression can estimate the number

of participants with significantly reduced training efforts. Thus,

the constructed model can be generalized and applied to differ-

ent environments, making the system easily scalable. Furthermore,

the human density estimation grounded on the statistical distribu-

tion of CSI measurements provides complementary information

to the number of participants to facilitate senior health services

and smart space management. Additionally, our system develops

a Total Harmonic Distortion (THD)-based mechanism along with

a frequency-based classification approach to infer both walking

speed and direction. Such detailed information on walking patterns

is useful for scenarios where seniors need to be watched closely

for their activities to ensure their safety and to provide in-time

assistance. Our extensive experiments conducted in multiple types

of indoor environments confirm the effectiveness of exploiting com-

modity WiFi to capture the human dynamic characteristics without

attaching any monitoring devices to participants. The evaluation

results demonstrate that our low-cost WiFi-based system is highly

reliable and scalable on monitoring of human dynamics in indoor

environments. We will explore the walking speed and direction

estimation under the multi-people scenario in our future work.
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