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Abstract

Domain adaptation is critical for success in new,
unseen environments. Adversarial adaptation
models have shown tremendous progress towards
adapting to new environments by focusing either
on discovering domain invariant representations
or by mapping between unpaired image domains.
While feature space methods are difficult to in-
terpret and sometimes fail to capture pixel-level
and low-level domain shifts, image space methods
sometimes fail to incorporate high level semantic
knowledge relevant for the end task. We propose
a model which adapts between domains using
both generative image space alignment and latent
representation space alignment. Our approach,
Cycle-Consistent Adversarial Domain Adaptation
(CyCADA), guides transfer between domains ac-
cording to a specific discriminatively trained task
and avoids divergence by enforcing consistency
of the relevant semantics before and after adap-
tation. We evaluate our method on a variety of
visual recognition and prediction settings, includ-
ing digit classification and semantic segmentation
of road scenes, advancing state-of-the-art perfor-
mance for unsupervised adaptation from synthetic
to real world driving domains.

1. Introduction

Deep neural networks excel at learning from large amounts
of data, but can be poor at generalizing learned knowledge
to new datasets or environments. Even a slight departure
from a network’s training domain can cause it to make
spurious predictions and significantly hurt its performance
(Tzeng et al., 2017). The visual domain shift from non-
photorealistic synthetic data to real images presents an even
more significant challenge. While we would like to train
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Figure 1: We propose CyCADA, an adversarial unsuper-
vised adaptation algorithm which uses cycle and semantic
consistency to perform adaptation at multiple levels in a
deep network. Our model provides significant performance
improvements over source model baselines.

models on large amounts of synthetic data such as data
collected from graphics game engines, such models fail to
generalize to real-world imagery. For example, a state-of-
the-art semantic segmentation model trained on synthetic
dashcam data fails to segment the road in real images, and its
overall per-pixel label accuracy drops from 93% (if trained
on real imagery) to 54% (if trained only on synthetic data,
see Table 6).

Feature-level unsupervised domain adaptation methods ad-
dress this problem by aligning the features extracted from
the network across the source (e.g. synthetic) and target
(e.g. real) domains, without any labeled target samples.
Alignment typically involves minimizing some measure of
distance between the source and target feature distributions,
such as maximum mean discrepancy (Long & Wang, 2015),
correlation distance (Sun & Saenko, 2016), or adversarial
discriminator accuracy (Ganin & Lempitsky, 2015; Tzeng
et al., 2017). This class of techniques suffers from two main
limitations. First, aligning marginal distributions does not
enforce any semantic consistency, e.g. target features of a
car may be mapped to source features of a bicycle. Second,
alignment at higher levels of a deep representation can fail
to model aspects of low-level appearance variance which
are crucial for the end visual task.

Generative pixel-level domain adaptation models perform
similar distribution alignment—not in feature space but
rather in raw pixel space—translating source data to the
“style” of a target domain. Recent methods can learn to
translate images given only unsupervised data from both
domains (Bousmalis et al., 2017b; Shrivastava et al., 2017;
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Liu et al., 2017). Such image-space models have only been
shown to work for small image sizes and limited domain
shifts. A more recent approach (Bousmalis et al., 2017a)
was applied to larger images, but in a controlled environment
with visually simple images for robotic applications. Image
to Image translation techniques, such as CycleGAN (Zhu
et al., 2017), have produced visually appealing results which
preserve local content in natural scenes, but are not designed
with an end task in mind and so may not always preserve
semantics. For example, a model adapting from digits taken
from Google Street View to handwritten digits can learn to
make a printed 8 look like a hand-written 1.

We propose Cycle-Consistent Adversarial Domain Adap-
tation (CyCADA), which adapts representations at both
the pixel-level and feature-level while enforcing semantic
consistency. We enforce both structural and semantic con-
sistency during adaptation using a cycle-consistency loss (ie.
the source should match the source mapped to target mapped
back to source) and semantics losses based on a particular
visual recognition task. The semantics losses both guide
the overall representation to be discriminative and enforce
semantic consistency before and after mapping between do-
mains. Our approach offers a unified domain adversarial
learning model which combines the interpretability and low
level structural consistency of prior image-level approaches
(Liu & Tuzel, 2016a; Bousmalis et al., 2017b; Shrivastava
et al., 2017; Zhu et al., 2017; Liu et al., 2017) together with
the regularization and strong empirical performance of prior
feature-level approaches (Ganin & Lempitsky, 2015; Tzeng
et al., 2017), as illustrated in Table 1.

We apply our CyCADA model to the task of digit recogni-
tion across domains and the task of semantic segmentation
of urban scenes across domains. Experiments show that
our model achieves state of the art results on digit adapta-
tion, cross-season adaptation in synthetic data, and on the
challenging synthetic-to-real scenario. In the latter case,
it improves per-pixel accuracy from 54% to 83%, nearly
closing the gap to the target-trained model and providing
16% relative improvement over current state-of-the-art.

We demonstrate that enforcing both semantic (task-specific)
consistency and cycle consistency between input and styl-
ized images prevents label flipping on the large shift be-
tween SVHN and MNIST (example, prevents a SVHN 9
from being mapped into an MNIST 2). On our semantic
segmentation tasks (GTA to CityScapes) we did not observe
label flipping to be a major source of error, even without the
semantic consistency loss, but found cycle consistency to
be critical. Because of this, and due to memory constraints,
we focus on cycle consistency to preserve structure during
transfer for the segmentation tasks. Overall, our experi-
ments confirm that domain adaptation can benefit greatly
from a combination of pixel and representation transforma-

Pixel Feature Semantic Cycle
Loss Loss Consistent Consistent

CycleGAN (Zhu et al., 2017) X X
Feature Adapt† X X
Pixel Adapt‡ X X
CyCADA X X X X

Table 1: Our model, CyCADA, may use pixel, feature,
and semantic information during adaptation while learning
an invertible mapping through cycle consistency. †(Ganin
& Lempitsky, 2015; Tzeng et al., 2017), ‡(Taigman et al.,
2017a; Bousmalis et al., 2017b; Liu et al., 2017)

tions, with the joint adaptation model achieving the highest
performance across a range of visual recognition tasks.

2. Cycle-Consistent Adversarial Domain

Adaption

We consider the problem of unsupervised adaptation, where
we are provided source dataXS , source labels YS , and target
data XT , but no target labels. The goal is to learn a model
fT that correctly predicts the label for the target data XT .

Pretrain Source TaskModel. We begin by simply learning
a source model fS that can perform the task on the source
data. For K-way classification with a cross-entropy loss,
this corresponds to

Ltask(fS , XS , YS) = (1)

� E(xs,ys)⇠(XS ,YS)

KX

k=1

[k=ys] log
⇣
�(f (k)

S (xs))
⌘

where � denotes the softmax function. However, while
the learned model fS will perform well on the source data,
typically domain shift between the source and target domain
leads to reduced performance when evaluating on target
data.

Pixel-level Adaptation. To mitigate the effects of domain
shift, we follow previous adversarial adaptation approaches
and learn to map samples across domains such that an ad-
versarial discriminator is unable to distinguish the domains.
By mapping samples into a common space, we enable our
model to learn on source data while still generalizing to
target data.

To this end, we introduce a mapping from source to target
GS!T and train it to produce target samples that fool an
adversarial discriminator DT . Conversely, the adversarial
discriminator attempts to classify the real target data from
the source target data. This corresponds to the loss function

LGAN(GS!T ,DT , XT , XS) = Ext⇠XT [logDT (xt)] (2)
+ Exs⇠XS [log(1�DT (GS!T (xs)))]
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Figure 2: Cycle-consistent adversarial adaptation overview. By directly remapping source training data into the target
domain, we remove the low-level differences between the domains, ensuring that our task model is well-conditioned on
target data. We depict here the image-level adaptation as composed of the pixel GAN loss (green), the source cycle loss
(red), and the source and target semantic consistency losses (black dashed) – used when needed to prevent label flipping.
For clarity the target cycle is omitted. The feature-level adaptation is depicted as the feature GAN loss (orange) and the
source task loss (purple).

This objective ensures that GS!T , given source samples,
produces convincing target samples. In turn, this ability to
directly map samples between domains allows us to learn a
target model fT by minimizing Ltask(fT , GS!T (XS), YS)
(see Figure 2 green portion).

However, while previous approaches that optimized similar
objectives have shown effective results, in practice they can
often be unstable and prone to failure. Although the GAN
loss in Equation 2 ensures that GS!T (xs) for some xs will
resemble data drawn from XT , there is no way to guarantee
that GS!T (xs) preserves the structure or content of the
original sample xs.

In order to encourage the source content to be preserved dur-
ing the conversion process, we impose a cycle-consistency
constraint on our adaptation method (Zhu et al., 2017;
Yi et al., 2017; Kim et al., 2017) (see Figure 2 red por-
tion). To this end, we introduce another mapping from
target to source GT!S and train it according to the same
GAN loss LGAN(GT!S , DS , XS , XT ). We then require
that mapping a source sample from source to target and
back to the source reproduces the original sample, thereby
enforcing cycle-consistency. In other words, we want
GT!S(GS!T (xs)) ⇡ xs and GS!T (GT!S(xt)) ⇡ xt.
This is done by imposing an L1 penalty on the reconstruc-
tion error, which is referred to as the cycle-consistency loss:

Lcyc(GS!T ,GT!S , XS , XT ) = (3)
Exs⇠XS [||GT!S(GS!T (xs))� xs||1]
+ Ext⇠XT [||GS!T (GT!S(xt))� xt||1] .

Additionally, as we have access to source labeled data, we

explicitly encourage high semantic consistency before and
after image translation. This helps to prevent label flipping
described above and illustrated in Figure 4(a). We use the
pretrained source task model fS , as a noisy labeler by which
we encourage an image to be classified in the same way af-
ter translation as it was before translation according to this
classifier. Let us define the predicted label from a fixed clas-
sifier, f , for a given input X as p(f,X) = argmax(f(X)).
Then we can define the semantic consistency before and
after image translation as follows:

Lsem(GS!T ,GT!S , XS , XT , fS) = (4)
Ltask(fS , GT!S(XT ), p(fS , XT ))

+ Ltask(fS , GS!T (XS), p(fS , XS))

See Figure 2 black portion. This can be viewed as analogous
to content losses in style transfer (Gatys et al., 2016) or in
pixel adaptation (Taigman et al., 2017a), where the shared
content to preserve is dictated by the source task model fS .

Feature-level Adaptation. We have thus far described an
adaptation method which combines cycle consistency, se-
mantic consistency, and adversarial objectives to produce a
final target model. As a pixel-level method, the adversarial
objective consists of a discriminator which distinguishes
between two image sets, e.g. transformed source and real
target image. Note that we could also consider a feature-
level method which discriminates between the features or
semantics from two image sets as viewed under a task net-
work. This would amount to an additional feature level
GAN loss (see Figure 2 orange portion):

LGAN(fT , Dfeat, fS(GS!T (XS)), XT ). (5)
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Model MNIST ! USPS USPS !MNIST SVHN!MNIST

Source only 82.2 ± 0.8 69.6 ± 3.8 67.1 ± 0.6
DANN (Ganin et al., 2016) - - 73.6
DTN (Taigman et al., 2017a) - - 84.4
CoGAN (Liu & Tuzel, 2016b) 91.2 89.1 -
ADDA (Tzeng et al., 2017) 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8
PixelDA (Bousmalis et al., 2017b) 95.9 - -
UNIT (Liu et al., 2017) 95.9 93.6 90.5

⇤

CyCADA (Ours) 95.6 ± 0.2 96.5 ± 0.1 90.4 ± 0.4

Target Fully Supervised 96.3 ± 0.1 99.2 ± 0.1 99.2 ±0.1

Table 2: Unsupervised domain adaptation across digit

datasets. Our model is competitive with or outperforms
state-of-the-art models for each shift. For the difficult shift
of SVHN to MNIST we also note that feature space adapta-
tion provides additional benefit beyond the pixel-only adap-
tation. ⇤UNIT trains with the extended SVHN (>500K
images vs ours 72K).

Taken together, these loss functions form our complete ob-
jective:

LCyCADA(fT , XS , XT , YS , GS!T , GT!S , DS , DT ) (6)
= Ltask(fT , GS!T (XS), YS)

+ LGAN(GS!T , DT , XT , XS)

+ LGAN(GT!S , DS , XS , XT )

+ LGAN(fT , Dfeat, fS(GS!T (XS)), XT )

+ Lcyc(GS!T , GT!S , XS , XT )

+ Lsem(GS!T , GT!S , XS , XT , fS).

This ultimately corresponds to solving for a target model
fT according to the optimization problem

f⇤
T = argmin

fT

min
GS!T
GT!S

max
DS ,DT

LCyCADA (7)

We have proposed a method for unsupervised adaptation
which views prior adversarial objectives as operating at the
pixel or feature level and generalizes to a method which
may benefit from both approaches. In addition, we combine
cycle-consistency together with semantic transformation
constraints to regularize the mapping from one domain to
another. In the next section, we apply CyCADA to both digit
classification and to semantic segmentation, implementing
GS and GT as a pixel-to-pixel convnet, fS and fT as a
convnet classifier or a Fully-Convolutional Net (FCN), and
DS , DT , and Dfeat as a convnet with binary outputs.

3. Experiments

We evaluate CyCADA on several unsupervised adaptation
scenarios. We first focus on adaptation for digit classifi-
cation using the MNIST (LeCun et al., 1998), USPS, and
Street View House Numbers (SVHN) (Netzer et al., 2011)
datasets. After which we present results for the task of se-
mantic image segmentation, using the GTA (Richter et al.,

(a) Source only Model (b) CyCADA model

Figure 3: Confusion matrices for the SVHN ! MNIST
experiment before and after adaptation.

Model Accuracy (%)

Source only 67.1
CyCADA - no feat adapt, no semantic loss 70.3
CyCADA - no feat adapt 71.2
CyCADA - no cycle consistency 75.7
CyCADA - no pixel adapt 83.8
CyCADA (Full) 90.4

Target Fully Supervised 99.2

Table 3: Ablation of CyCADA on SVHN!MNIST Do-

main Shift. We show that each component of our method,
joint feature and pixel space adaptation, with semantic and
cycle losses during pixel adaptation, contributes to the over-
all performance.

2016) and CityScapes (Cordts et al., 2016) datasets, see
Appendix A.1.2 for an additional experiment with the SYN-
THIA (Ros et al., 2016a) dataset.

3.1. Digit Adaptation

We evaluate our method across the adaptation shifts of USPS
to MNIST, MNIST to USPS, and SVHN to MNIST. We
train our model using the training sets, MNIST - 60,000 im-
ages, USPS - 7,291 images, standard SVHN train - 73,257
images. Evaluation is reported on the standard test sets:
MNIST - 10,000 images, USPS - 2,007 images. We re-
port classification accuracy for each shift compared to prior
work and relevant baselines in Table 2 and find that our
method outperforms competing approaches on average. The
classifier for our method for all digit shifts uses a variant
of the LeNet architecture (see Supplemental A.1.1 for full
implementation details). Note, for the relatively easy shift
of MNIST to USPS our method performs comparably with
state-of-the-art approaches. In the reverse direction, when
adapting from USPS images to MNIST, which involves a
fraction of the supervised digit labeled data, our method
outperforms competing approaches. For SVHN to MNIST
our method outperforms all other deep distribution align-
ment approaches except for UNIT (Liu et al., 2017), but
the reported performance in UNIT uses the extended train-
ing set of >500,000 images from SVHN whereas we report
performance using the standard set of only 73,257 images.
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(a) Without Semantic Loss (b) Without Cycle Loss

Figure 4: Ablation: Effect of Semantic or Cycle Con-

sistency. Each triple contains the SVHN image (left), the
image translated into MNIST style (middle), and the image
reconstructed back into SVHN (right). (a) Without semantic
loss, both the GAN and cycle constraints are satisfied (trans-
lated image matches MNIST style and reconstructed image
matches original), but the image translated to the target do-
main lacks the proper semantics. (b) Without cycle loss,
the reconstruction is not satisfied and though the semantic
consistency leads to some successful semantic translations
(top) there are still cases of label flipping (bottom).

To further understand the types of mistakes which are im-
proved upon and those which still persist after adaptation,
we present the confusion matrices before and after our ap-
proach for the digit experiment of SVHN to MNIST (Fig-
ure 3). Before adaptation we see common confusions are 0s
with 2s, 4s, and 7s. 6 with 4, 8 with 3, and 9 with 4. After
adaptation all errors are reduced, but we still find that 7s are
confused with 1s and 0s with 2s. These errors make some
sense as with hand written digits, these digits sometimes re-
semble one another. It remains an open question to produce
a model which may overcome these types of errors between
highly similar classes.

Next, we perform a sequence of ablation studies on the
three parts of our model. Table 3 reports the quantitative
performance gain on the SVHN!MNIST domain shift for
removing each piece of the model, demonstrating the im-
portance of including each component. We also discuss and
show qualitative comparisons below.

Ablation: Pixel vs Feature Level Transfer. We begin by
evaluating the contribution of the pixel space and feature
space transfer. We find that in the case of the small domain
shifts between USPS and MNIST, the pixel space adapta-
tion by which we train a classifier using images translated
using CycleGAN (Zhu et al., 2017), performs very well, out-
performing or comparable to prior adaptation approaches.
Feature level adaptation offers a small benefit in this case of
a small pixel shift. However, for the more difficult shift of
SVHN to MNIST, we find that feature level adaptation out-
performs the pixel level adaptation, and importantly, both
may be combined to produce an overall model which out-
performs all competing methods.

Ablation: No Semantic Consistency. We experiment with-

out the addition of our semantic consistency loss and find
that the standard unsupervised CycleGAN approach di-
verged when training SVHN to MNIST often suffering from
random label flipping. Figure 4(a) demonstrates two exam-
ples where cycle constraints alone fail to produce the desired
behavior for our end task. An SVHN image is mapped to a
convincing MNIST style image and back to a SVHN image
with correct semantics. However, the MNIST-like image
has mismatched semantics. Our proposed approach uses the
source labels to train a weak classification model which can
be used to enforce semantic consistency before and after
translation, resolving this issue.

Ablation: No Cycle Consistency. We study the importance
of the cycle consistency loss. First note that without this
loss there is no reconstruction guarantee, thus in Figure 4(b)
we see that the translation back to SVHN fails. In addition,
we find that while the semantic loss does encourage correct
semantics it relies on the weak source labeler and thus label
flipping still occurs (see right image triple).

3.2. Semantic Segmentation Adaptation

Next, we evaluate CyCADA on semantic segmentation. The
task is to assign a semantic label to each pixel in the input
image, e.g. road, building, etc. We limit our evaluation to
the unsupervised adaptation setting, where labels are only
available in the source domain, but we are evaluated solely
on our performance in the target domain.

For each experiment, we use report three metrics of overall
performance. Let nij be the number of pixels of class i
predicted as class j, let ti =

P
j nij be the total number

of pixels of class i, and let N be the number of classes.
Our three evaluation metrics are, mean intersection-over-
union (mIoU), frequency weighted intersection-over-union
(fwIoU), and pixel accuracy, which are defined as follows:
mIoU= 1

N ·
P

i nii

ti+
P

j nji�nii
, fwIoU= 1P

k tk
·

P
i nii

ti+
P

j nji�nii
,

pixel acc. =
P

i niiP
i ti

.

Cycle-consistent adversarial adaptation is general and can
be applied at any layer of a network. Since optimizing the
full CyCADA objective in Equation 6 end-to-end is memory-
intensive in practice, we train our model in stages. First, we
perform image-space adaptation and map our source data
into the target domain. Next, using the adapted source data
with the original source labels, we learn a task model that
is suited to operating on target data. Finally, we perform
another round of adaptation between the adapted source
data and the target data in feature-space, using one of the
intermediate layers of the task model. Additionally, we do
not use the semantic loss for the segmentation experiments
as it would require loading generators, discriminators, and
an additional semantic segmenter into memory all at once
for two images. We did not have the required memory for
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(a) Test Image (b) Source Prediction (c) CyCADA Prediction (d) Ground Truth

Figure 5: GTA5 to CityScapes Semantic Segmentation. Each test CityScapes image (a) along with the corresponding
predictions from the source only model (b) and our CyCADA model (c) are shown and may be compared against the ground
truth annotation (d).
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Source only A 26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9 41.9 54.0
FCN-wld (Hoffman et al., 2016) A 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1 - -
CDA (Zhang et al., 2017b) A 26.4 22.0 74.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 27.8 - -
FCTN (Zhang et al., 2017a) A 72.2 28.4 74.9 18.3 10.8 24.0 25.3 17.9 80.1 36.7 61.1 44.7 0.0 74.5 8.9 1.5 0.0 0.0 0.0 30.5 - -
CyCADA (Ours) A 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4 73.8 83.6

Oracle - Target Supervised A 96.4 74.5 87.1 35.3 37.8 36.4 46.9 60.1 89.0 54.3 89.8 65.6 35.9 89.4 38.6 64.1 38.6 40.5 65.1 60.3 87.6 93.1

Source only B 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7 47.4 62.5
CyCADA (Ours) B 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 72.4 82.3

Oracle - Target Supervised B 97.3 79.8 88.6 32.5 48.2 56.3 63.6 73.3 89.0 58.9 93.0 78.2 55.2 92.2 45.0 67.3 39.6 49.9 73.6 67.4 89.6 94.3

Table 4: Adaptation between GTA5 and Cityscapes, showing IoU for each class and mean IoU, freq-weighted IoU and pixel
accuracy. CyCADA significantly outperforms baselines, nearly closing the gap to the target-trained oracle on pixel accuracy.
We compare our model using two base semantic segmentation architectures (A) VGG16-FCN8s (Long et al., 2015) base
network and (B) DRN-26 (Yu et al., 2017).

(a) GTA5 (b) GTA5 ! Cityscapes (c) CityScapes (d) CityScapes! GTA5

Figure 6: GTA5 to CityScapes Image Translation. Example images from the GTA5 (a) and Cityscapes (c) datasets,
alongside their image-space conversions to the opposite domain, (b) and (d), respectively. Our model achieves highly
realistic domain conversions.
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this at the time of submission, but leave it to future work to
deploy model parallelism or experiment with larger GPU
memory.

To demonstrate our method’s applicability to real-world
adaptation scenarios, we also evaluate our model in a chal-
lenging synthetic-to-real adaptation setting. For our syn-
thetic source domain, we use the GTA5 dataset (Richter
et al., 2016) extracted from the game Grand Theft Auto
V, which contains 24966 images. We consider adaptation
from GTA5 to the real-world Cityscapes dataset (Cordts
et al., 2016), from which we used 19998 images without
annotation for training and 500 images for validation. Both
of these datasets are evaluated on the same set of 19 classes,
allowing for straightforward adaptation between the two do-
mains. For an additional experiment evaluating cross-season
adaptation in synthetic environments see the Appendix A.2.

Image-space adaptation also affords us the ability to visu-
ally inspect the results of the adaptation method. This is
a distinct advantage over opaque feature-space adaptation
methods, especially in truly unsupervised settings—without
labels, there is no way to empirically evaluate the adapted
model, and thus no way to verify that adaptation is improv-
ing task performance. Visually confirming that the con-
versions between source and target images are reasonable,
while not a guarantee of improved task performance, can
serve as a sanity check to ensure that adaptation is not com-
pletely diverging. This process is diagrammed in Figure 2.
For implementation details please see Appendix A.1.2.

3.2.1. SYNTHETIC TO REAL ADAPTATION

To evaluate our method’s applicability to real-world adap-
tation settings, we investigate adaptation from synthetic to
real-world imagery. The results of this evaluation are pre-
sented in Table 4, ablation in Table 5, with qualitative results
shown in Figure 5. We experiment with two different base
architectures: the commonly used VGG16-FCN8s (Long
et al., 2015) architecture as well as the state-of-the-art DRN-
26 (Yu et al., 2017) architecture. Once again, CyCADA
achieves state-of-the-art results, recovering approximately
40% of the performance lost to domain shift. CyCADA also
improves or maintains performance on all 19 classes. Exam-
ination of fwIoU and pixel accuracy as well as individual
class IoUs reveals that our method performs well on most of
the common classes. Although some classes such as train
and bicycle see little or no improvement, we note that those
classes are poorly represented in the GTA5 data, making
recognition very difficult. We compare our model against
Shrivastava et al. (2017) for this setting, but found this ap-
proach did not converge and resulted in worse performance
than the source only model (see Appendix for full details).

We visualize the results of image-space adaptation between
GTA5 and Cityscapes in Figure 6. The most obvious differ-

GTA5! Cityscapes

Architecture mIoU fwIoU Pixel acc.

Source only A 17.9 41.9 54.0
CyCADA feat-only A 29.2 71.5 82.5
CyCADA pixel-only no cycle A 19.8 55.7 70.5
CyCADA pixel-only A 34.8 73.1 82.8
CyCADA (Full) A 35.4 73.8 83.6

Oracle - Target Supervised A 60.3 87.6 93.1

Source only B 21.7 47.4 62.5
CyCADA feat-only B 31.7 67.4 78.4
CyCADA pixel-only no cycle B 19.7 54.5 69.9
CyCADA pixel-only B 37.0 63.8 75.4
CyCADA (Full) B 39.5 72.4 82.3

Oracle - Target Supervised B 67.4 89.6 94.3

Table 5: Ablation of our method, CyCADA on the GTA5
to Cityscapes adaptation. We compare our model using
two base semantic segmentation architectures (A) VGG16-
FCN8s (Long et al., 2015) base network and (B) DRN-
26 (Yu et al., 2017).

ence between the original images and the adapted images
is the saturation levels—the GTA5 imagery is much more
vivid than the Cityscapes imagery, so adaptation adjusts
the colors to compensate. We also observe texture changes,
which are perhaps most apparent in the road: in-game, the
roads appear rough with many blemishes, but Cityscapes
roads tend to be fairly uniform in appearance, so in convert-
ing from GTA5 to Cityscapes, our model removes most of
the texture. Somewhat amusingly, our model has a tendency
to add a hood ornament to the bottom of the image, which,
while likely irrelevant to the segmentation task, serves as a
further indication that image-space adaptation is producing
reasonable results.

4. Related Work

The problem of visual domain adaptation was introduced
along with a pairwise metric transform solution by Saenko
et al. (2010) and was further popularized by the broad study
of visual dataset bias (Torralba & Efros, 2011). Early deep
adaptive works focused on feature space alignment through
minimizing the distance between first or second order fea-
ture space statistics of the source and target (Tzeng et al.,
2014; Long & Wang, 2015). These latent distribution align-
ment approaches were further improved through the use of
domain adversarial objectives whereby a domain classifier
is trained to distinguish between the source and target rep-
resentations while the domain representation is learned so
as to maximize the error of the domain classifier. The rep-
resentation is optimized using the standard minimax objec-
tive (Ganin & Lempitsky, 2015), the symmetric confusion
objective (Tzeng et al., 2015), or the inverted label objec-
tive (Tzeng et al., 2017). Each of these objectives is related
to the literature on generative adversarial networks (Goodfel-



CyCADA: Cycle-Consistent Adversarial Domain Adaptation

low et al., 2014) and follow-up work for improved training
procedures for these networks (Salimans et al., 2016b; Ar-
jovsky et al., 2017).

The feature-space adaptation methods described above focus
on modifications to the discriminative representation space.
In contrast, other recent methods have sought adaptation in
the pixel-space using various generative approaches. One
advantage of pixel-space adaptation, as we have shown, is
that the result may be more human interpretable, since an
image from one domain can now be visualized in a new
domain. CoGANs (Liu & Tuzel, 2016a) jointly learn a
source and target representation through explicit weight
sharing of certain layers while each source and target has
a unique generative adversarial objective. Ghifary et al.
(2016) uses an additional reconstruction objective in the
target domain to encourage alignment in the unsupervised
adaptation setting.

In contrast, another approach is to directly convert the target
image into a source style image (or visa versa), largely based
on Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014). Researchers have successfully applied GANs
to various applications such as image generation (Denton
et al., 2015; Radford et al., 2015; Zhao et al., 2016), image
editing (Zhu et al., 2016) and feature learning (Salimans
et al., 2016a; Donahue et al., 2017). Recent work (Isola
et al., 2016; Sangkloy et al., 2016; Karacan et al., 2016)
adopt conditional GANs (Mirza & Osindero, 2014) for these
image-to-image translation problems (Isola et al., 2016), but
they require input-output image pairs for training, which is
in general not available in domain adaptation problems.

There also exist lines of work where such training pairs
are not given. Yoo et al. (2016) learns a source to target
encoder-decoder along with a generative adversarial objec-
tive on the reconstruction which is is applied for predicting
the clothing people are wearing. The Domain Transfer Net-
work (Taigman et al., 2017b) trains a generator to transform
a source image into a target image by enforcing consistency
in the embedding space. Shrivastava et al. (2017) instead
uses an L1 reconstruction loss to force the generated target
images to be similar to their original source images.This
works well for limited domain shifts where the domains
are similar in pixel-space, but can be too limiting for set-
tings with larger domain shifts. Liu et al. (2017) considers
learning unique encoders which reach a shared latent space
and can be reconstructed into the same domnain or trans-
lated into the other domain. Manually defined sharing of
certain layers are used to encourage consistency between
the two domain models. Bousmalis et al. (2017b) use a con-
tent similarity loss to ensure the generated target image is
similar to the original source image; however, this requires
prior knowledge about which parts of the image stay the
same across domains (e.g. foreground). Our method does

not require pre-defining what content is shared between do-
mains and instead simply translates images back to their
original domains while ensuring that they remain identi-
cal to their original versions. BiGAN/ALI (Donahue et al.,
2017; Dumoulin et al., 2016) take an approach of simulta-
neously learning the transformations between the pixel and
the latent space. Cycle-consistent Adversarial Networks
(CycleGAN) (Zhu et al., 2017) produced compelling image
translation results such as generating photorealistic images
from impressionism paintings or transforming horses into
zebras at high resolution using the cycle-consistency loss.
This loss was simultaneously proposed by Yi et al. (2017)
and Kim et al. (2017) to great effect as well. Our motivation
comes from such findings about the effectiveness of the
cycle-consistency loss.

An approach to adaptation which is complementary to this
work involves seeking to produce approximate labels for the
target domain and incorporate those into the training set for
supervised learning (Haeusser et al., 2017).

Few works have explicitly studied visual domain adapta-
tion for the semantic segmentation task. Adaptation across
weather conditions in simple road scenes was first studied
by Levinkov & Fritz (2013). More recently, a convolu-
tional domain adversarial based approached was proposed
for more general drive cam scenes and for adaptation from
simulated to real environments (Hoffman et al., 2016). Ros
et al. (2016b) learns a multi-source model through concate-
nating all available labeled data and learning a single large
model and then transfers to a sparsely labeled target do-
main through distillation (Hinton et al., 2015). Chen et al.
(2017) use an adversarial objective to align both global and
class-specific statistics, while mining additional temporal
data from street view datasets to learn a static object prior.
Zhang et al. (2017b) instead perform segmentation adapta-
tion by aligning label distributions both globally and across
superpixels in an image.

5. Conclusion

We proposed an unsupervised domain adversarial learning
method that unifies cycle-consistent image translation ad-
versarial models with adversarial adaptation methods. Cy-
CADA offers the interpretability of image-space adaptation,
by visualizing the intermediate output of our method, while
producing a discriminative and task relevant model through
semantic consistency and representation space adaptation.
We experimentally validated our model on a variety of adap-
tation tasks including digit adaptation and synthetic to real
adaptation for semantic segmentation of driving scenes. We
presented extensive ablations of our method demonstrating
the importance of each component of our method, where
the combination results in a state-of-the-art approach.
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