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Abstract— For socially assistive robots (SAR) to be accepted
into complex and stochastic human environments, it is impor-
tant to account for subtle social norms. In this paper, we propose
a novel approach to socially-aware navigation (SAN) which
garnered an immense interest in the Human-Robot Interaction
(HRI) community. We use a multi-objective optimization tool
called the Pareto Concavity Elimination Transformation (PaC-
cET) to capture the non-linear human navigation behavior, a
novel contribution to the community. We use autonomously
sensed distance-based features that captures the social norms
and associated social costs for a given trajectory point towards
the goal. Rather than use a finely-tuned linear combination
of these costs, we use PaCcET to select an optimized future
trajectory point, associated with a non-linear combination of
the costs. Existing research in this domain concentrates on
geometric reasoning, model-based, and learning approaches,
which have their own pros and cons. This approach is distinct
from prior work in this area. We showed in a simulation
that the PaCcET based trajectory planner not only is able to
avoid collisions and reach the intended destination in static and
dynamic environments but also considers a human’s personal
space in the trajectory selection process.

I. INTRODUCTION

Recent technological advancements in sensing and com-

putation have stimulated a greater interest in the application

of autonomous agents to real-world interaction. In particular,

researchers and commercial interests have experimented us-

ing such mobile robots to provide assistive services such as

guiding and carrying luggage in complex, pedestrian dense

environments (shopping malls, airports, and other public

places) [1]. One such example is the work conducted by

Shi et. al [2], where an autonomous robot was used to dis-

tribute flyers at a shopping mall. Robot domains, especially

socially assistive robotics (SAR), benefit from navigation;

such movement extends the reachable service area of the

robot [3]. However, navigation, if not performed properly,

can cause negative social reactions [4].

Socially Aware Navigation (SAN) utilizes space, distance,

and movement as a spatial communication medium. For
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human-human interaction, humans understand spatial com-

munication and navigate in such a way that social norms

are obeyed. For HRI to match this human-human interaction

property, the spatial communication between a human and a

robot should not be neglected; it should be utilized to achieve

human-friendly navigation [5]. An effective robot’s actions,

including actions involving spatial communication, must be

suitable for a given social circumstance. Hence, utilizing

spatial communication between a robot and a human is very

important for assistive robots.

Proxemics [6], social rules for interpersonal distance, is an

important aspect of navigation; researchers interested in SAN

are investigating methods to integrate the rules of proxemics

into robot navigation behavior. Kruse et. al [7] authored an

extensive review of methods like hard-coded rules, geomet-

ric reasoning, Model-based Inverse Reinforcement Learning

(IRL) that tried incorporating the rules of proxemics.

A current review of existing approaches show the follow-

ing limitations:

1) Some of the approaches depend on exocentric sensing

hence, limiting the robot’s services to a particular

environment.

2) The environment/scenario is a singleton, i.e., Only a

hallway, a room, etc is considered or only an approach

behavior, or a passing behavior is considered.

3) Planners are optimized for single or few objectives

with a linear combination or weighted sum.

Our prior work [5] presented an approach utilizing a

spatial model over distance-based features to generate tra-

jectories that are socially appropriate, which was validated

with human partners. Limitations 1 and 2 were addressed in

our recent work [8], [9], where a Gaussian Mixture Model

(GMM) based approach was used to select an appropriate

trajectory for an autonomously sensed social scenario. An

egocentric laser-based sensing method was used to calculate

distance based features that were used in sensing the social

scenario. In this work, we propose a novel multi-objective

optimization approach for a socially-aware navigation plan-

ner.

Linear methods for socially-aware navigation may be

inadequate for a number of reasons:

• Navigation rarely involves optimizing for a single ob-

jective. For example, humans optimize for path length,

execution time and most importantly, social norms while

walking from one place to the other.

• The human environment is too complicated for linear

approaches to effectively approximate. For example,







something. The same approach as in the previous cost

function is taken in Equation 2. By taking a closer look at

just the heading difference and how that might affect the path

distance or goal distance it becomes less clear if there is only

the linear relationship between the four. For example, if there

is an obstacle in the robot’s path, it will try and minimize

goal distance by changing its heading, thus increasing the

cost heading feature cost. This in turn also increases the path

distance cost, though this may or may not be linear.

cost(vx, vy, vθ) = α(∆path) + β(∆goal) + γ(∆heading)

+ δ(∆occ)
(2)

Building upon the prior work done in this area, we include

a socially-aware navigation feature such as interpersonal

distance (ID). As a way to dissuade the robot from getting

too close to a human a cost function was developed to

penalize the robot at an exponential rate as the interpersonal

distance decreases as seen in Equation 3. Although we

could penalize the robot based on this at all times, it really

isn’t necessary if the interpersonal distance is so large that

it wouldn’t be considered a socially inappropriate distance.

Therefore the robot is only penalized if the interpersonal

distance is less than or equal to 1.5 meters.

IDf = e1/ID (3)

Instead of adding this feature’s cost into the previous cost

function, we make the assumption that its relationship with

other features might be nonlinear and therefore gets treated as

its own objective. Since we know that the above cost function

works sufficiently enough from previous work, we can treat

that as its own objective as well. Now instead of optimizing

on just one objective we need to optimize on multiple

objectives, hence our multi-objective approach. As one can

imagine using a multi-objective tool like PaCcET requires

computational time and since this is intended to work in real

time any chance to improve the computation time should

be utilized. In this case treating the first four features used

in the previous cost equation as a single objective not only

speeds up this process, but in turn allows for the possibility

to add even more features to our local trajectory planner.

Using PaCcET to do the multi-objective transformations we

essentially get a new cost function with a PaCcET fitness

denoted by Pf , which was modeled under the assumption of

nonlinear relationships between the objectives. Equation 4

shows how Pf is a transformation function dependent on

multiple variables.

Pf = Tf (Obj1, Obj2, ...., Objn) (4)

In this work we are only interested in two objectives.

The first objective is the original cost function, which is

the linear combination of the path distance, goal distance,

heading difference, and occ cost. The second objective is the

interpersonal distance, a social feature. Equation 5 shows the

PaCcET fitness function with our proposed objectives.

Pf = Tf (cost(vx, vy, vθ), IDf ) (5)

B. Trajectory Planning

The robot’s trajectory can be broken into three parts, the

global planner, the local planner, and a low-level collision

detection and avoidance. The global trajectory planner works

by using knowledge of the map to produce an optimal route

given the robots staring position and the goal position. The

global path is created as a high level panning task however,

the global path can be recreated if the robot has to deviate to

far from the current global path. The role of the traditional

local planner is to stay in line with the global path unless

an obstacle makes it so the robot has to deviate from the

global path. The low-level collision detector simply works

by stopping the robot if it gets too close to an object. In this

work we use the traditional global trajectory planner and

low-level collision detector [23] and make adaptations the

local trajectory planner to incorporate interpersonal distance

and PaCcET.

Algorithm 1 shows the main functions of the local trajec-

tory planner how the future trajectory points were stored to

be used with PaCcET. The trajectory planner is called every

time step, which in this case is every 0.1 seconds. Once the

trajectory planner is called the Transform Human State

function is called to compute the human state from the hu-

man reference frame to the robots state from the robots odom

reference frame, which allows the interpersonal distance

corresponding to each possible trajectory to be calculated in

the Generate Trajectory function. Now there are two

methods of calculating the possible trajectories. The first is

assuming that the robot can only move forwards, backwards,

and turn. To produce the possible trajectories for this physical

set up we loop through every combination of a sample of

linear velocities (Vx) and angular velocities (Vθ) to generate

trajectories. Once a trajectory is created, we determine if it

is valid based on the constraints for the first objective. For

example, trajectories that would make the robot hit a wall,

obstacle or human are not considered valid trajectories and

therefore will not be stored in the Store Trajectory

function. By not storing these invalid trajectories the speed

at which PaCcET runs can be improved.

The second method is assuming that the robot is capable

of holonomic movements i.e., the robot can move forwards,

backwards, left, right, and turn. Given these movements,

we again loop through all the possible movements given

the predefined number of Vx samples, Vy samples, and Vθ

samples. Again, if the trajectories are valid they are stored.

Once all the valid trajectories are stored for all possible

movements, the Run PaCcET function runs giving back the

best possible trajectory, (TB), based on its multi-objective

transformation process.

In order to run a multi-objective tool like PaCcET each

objective’s fitness needs to be calculated. Algorithm 2



Algorithm 1: Local Trajectory Planner

Algorithm. The trajectory planner generates multiple

trajectories (T ) given a number of Vx samples and Vθ

samples and calculates the independent cost for each

feature. The cost for each feature is based on the robots

sensing of the human’s state (Hs) and the robot’s state

(Rs). At the end of a time step the best trajectory (TB)
is returned.

Input: Vx samples, Vθ samples, Hs, Rs

Output: Best Trajectory

1 for Each time step do

2 Transform Human State(Hs,Rs)

3 for Each Vx do

4 T → Generate Trajectory(T, Hs)

5 if valid trajectory then

6 Store Trajectory(T )

7 for Each Vθ do

8 T → Generate Trajectory(T, Hs)

9 if Valid Trajectory then

10 Store Trajectory(T )

11 if Holonomic Robot then

12 T → Generate Trajectory(T, Hs)

13 if Valid Trajectory then

14 Store Trajectory(T )

15 Run PaCcET(T)

16 Return ⇐⇒(TB)

details the Generate Trajectory function from

Algorithm 1. The first function that needs to be performed

is the Calculate State function as the robot’s

position and velocity are used to determining the fitness

values for the objectives. Using the state information

the Compute Path Dist, Compute Goal Dist,

Compute Occ Cost, and Compute Heading Diff

functions are used to calculate the fitness values

associated with the four pieces of the first objective.

Using those fitness values the first objective’s fitness

is calculated by the Compute Cost function. In this

work the interpersonal distance is also considered as

its own objective and therefore is calculate in the

Calculate Interpersonal Distance function.

Once all the objectives have their fitness values, the

trajectory is sent back to the local trajectory planner

algorithm.

C. Integrating PaCcET

At the end of Algorithm 2, all the valid trajectories

have been stored along with their objective fitness scores

in a vector of type trajectory. Algorithm 3 details the

main functions for determining a single fitness value from

multiple objectives. In order to run PaCcET the objectives

for each trajectory must be stored in a vector of type double

which is done in the Store Objectives function. Before

Algorithm 2: Generate Trajectory

Algorithm. The generate trajectory function take

in a instance of a trajectory (T ) and the human’s state

(Hs) to compute the cost function for each feature. The

trajectory (T ) is then returned to the local trajectory

planner.

Input: T , Hs

Output: T

1 S → Calculate State(T )

2 path dist → Compute Path Dist(S)

3 goal dist → Compute Goal Dist(S)

4 occ cost → Compute Occ Cost(S)

5 heading diff → Compute Heading Diff(S)

6 cost → Compute Cost()

7 ID → Calculate Interpersonal Distance(Hs, S)

8 Return ⇐⇒ Trajectory(T )

running PaCcET’s main functions an instance of PaCcET

must be created. Next the solution space and Pareto front

are created by giving each trajectory to the Pareto Check

function. Now that the Pareto front and its geometry has

been calculated, PaCcET can transform the solution space

and give a single fitness value for each trajectory in the

Compute PaCcET Fitness function. Once each trajec-

tory has their PaCcET fitness they are sorted from best to

worst in the Sort Trajectories function, which allows

to not only to easily ascertain the best trajectory but is also

useful for debugging purposes. Algorithm 3 concludes by

returning the best trajectory to the local trajectory planner

algorithm.

Algorithm 3: PaCcET Alogrithm. PaCcET (P )

,takes in the vector of valid possible trajectories T

to compute the multi-objective space and the PaCcET

fitness (Pf ) for each trajectory.

Input: T

Output: TB
1 for Each trajectory do

2 Store Objectives(T )

3 P → Initialize PaCcET()

4 for Each trajectory do

5 Pareto Check(T )

6 for Each trajectory do

7 Pf → Compute PaCcET Fitness(T )

8 Sort Trajectories(T)

9 Return ⇐⇒(TB)

V. VALIDATION

When using a multi-objective tool like PaCcET, two key

validations play a role in our experimental design: first, does

using PaCcET yield local trajectories that get to the goal in an

efficient manner; second, is there a clear distinction that the





robot made sure to avoid a collision with the simulated

human however did not consider any social distance. This

will be the case for the other experiments as well since the

traditional planner does not consider interpersonal distance

into its cost function. The PaCcET-based planner did con-

sider interpersonal distance and therefore the robot deviated

from a more straight lined path as a way to satisfy the second

objective. Once the threshold for the interpersonal distance

was no loner an issue the robot only needed to minimize

the first objective therefore returning to a straight-line path.

It’s worth noting that in all the experiments conducted the

robot also considered a wall as an obstacle and was required

to disregard trajectories that would lead to a collision with

the wall, which is why the robot did not deviate from global

trajectory even more.

B. Experiment 2

The second experiment was developed to mimic a passing

scenario where the robot has a set goal but needs to pass by

a simulated human who is traveling much slower in the same

direction. Figure 4 shows that with the traditional trajectory

planner it merely made sure that a collision would not take

place as it tried to minimize its cost function. The PaCcET-

based planner clearly deviated from its global trajectory in

order to consider the interpersonal distance objective, then

return to the global trajectory once the once threshold for

the interpersonal distance was no loner an issue.

C. Experiment 3

Similar to the previous experiment, the third experiment

involves both the simulated human and robot moving how-

ever, in this case the simulated human is now moving at

a normal walking speed in the opposite direction of the

robot. The robot and simulated human pass close to one

another but not close enough to cause a collision. Figure 5

shows that the traditional trajectory planner altered its path

ever so slightly to ensure that a collision would not happen,

where the PaCcET based trajectory planner not only ensured

that a collision would not take place but also considered

interpersonal distance and provided the simulated human

with additional space while passing.

D. Experiment 4

The previous experiments show that when using a

PaCcET-based trajectory planner interpersonal distance can

be considered when selecting a local trajectory in static

and dynamic conditions when a collision is not imminent;

however, the case of a collision that will occur unless

either the simulated human or the robot moves out of the

way also needs to be considered. This experiment considers

a simulated human not paying attention or unwilling to

change their course and walking directly towards the robot.

Figure 6 shows that the traditional trajectory planner was

successful at avoiding the collision as expected however,

did so along with minimizing its cost function as much as

possible which caused the robot to get very close to the

simulated human. When using the PaCcET based trajectory

planner the robot not only avoided the collision but also

gave the simulated human additional space as to satisfy the

interpersonal distance objective. It is worth noting that once

the interpersonal distance threshold was no longer an issue

the robot for a short time used its holonomic movement as

a way to quickly minimize the heading difference portion of

the original cost function objective.

VI. DISCUSSION AND FUTURE WORK

From the results in the previous section, it is clear that our

proposed planner behaved more consistently with an agent

that considers the social factor specified, when compared

to a traditional planner. The PaCcET navigation planning

attributes, such as path length and time to reach the goal

are slightly greater than that of the traditional planner. This

means that the proposed approach generated trajectories that

were sub-optimal in the sense of efficient path planning

however, more optimal from a social aspect. The PaCcET

navigation planner generated trajectories that are not only

safe (for both the agents and environment) but also consid-

ered the personal space for the simulated human partner.

By utilizing egocentric sensing, our proposed planner

achieved socially acceptable trajectories that are optimized

for various objectives, which also includes interpersonal dis-

tance. All this was tested in simulation using a 2D simulator

called Stage on a machine with an Intel 6th-generation i7

processor @3.4 GHz, 32 GB of RAM. The PR2 robot in the

simulation is identical to the real PR2 in terms of navigation

capabilities and sensing. Implementing it on the PR2 in a

real-world setting such as hallways, open spaces, etc, and

measuring both qualitative and quantitative metrics is our

next step. In future work, we plan on collecting data with

regards to the performance of the planner, i.e. time, path

length, distance maintained from a human, etc, and compare

this to the traditional planner [23] or an openly available IRL

SAN planner [17]. We will also compare the social aspects

of the PaCcET planner to the traditional planner or an openly

available IRL SAN planner.

VII. CONCLUSION

We presented a novel approach to socially-aware naviga-

tion and showed in simulation that the trajectories generated

by this approach are better in comparison with a traditional

planner. This new planner optimizes not only for shortest

distance and other traditional planning performance metrics,

but also includes a social factor, interpersonal distance.

As more socially assistive robots are deployed in human

environments, navigation planners should account for the

uncertain human environments that demand social norms to

be followed. Unlike other approaches, our proposed approach

doesn’t need any training data or an expert that can teach

the robot how to navigate in a socially appropriate way. It is

also important to note that our approach utilizes a non-linear

optimization tool, PaCcET, over multiple cardinal objectives

to come up with a trajectory that is best suited for the

considered objectives.
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