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Abstract

Despite the considerable success enjoyed by ma-
chine learning techniques in practice, numerous
studies demonstrated that many approaches are
vulnerable to attacks. An important class of such
attacks involves adversaries changing features at
test time to cause incorrect predictions. Previous
investigations of this problem pit a single learner
against an adversary. However, in many situations
an adversary’s decision is aimed at a collection of
learners, rather than specifically targeted at each
independently. We study the problem of adversar-
ial linear regression with multiple learners. We
approximate the resulting game by exhibiting an
upper bound on learner loss functions, and show
that the resulting game has a unique symmetric
equilibrium. We present an algorithm for comput-
ing this equilibrium, and show through extensive
experiments that equilibrium models are signifi-
cantly more robust than conventional regularized
linear regression.

1. Introduction

Increasing use of machine learning in adversarial settings
has motivated a series of efforts investigating the extent
to which learning approaches can be subverted by mali-
cious parties. An important class of such attacks involves
adversaries changing their behaviors, or features of the en-
vironment, to effect an incorrect prediction. Most previous
efforts study this problem as an interaction between a single
learner and a single attacker (Briickner & Scheffer, 2011;
Dalvi et al., 2004; Li & Vorobeychik, 2014; Zhou et al.,
2012). However, in reality attackers often target a broad
array of potential victim organizations. For example, they
craft generic spam templates and generic malware, and then
disseminate these widely to maximize impact. The resulting
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ecology of attack targets reflects not a single learner, but
many such learners, all making autonomous decisions about
how to detect malicious content, although these decisions
often rely on similar training datasets.

We model the resulting game as an interaction between mul-
tiple learners, who simultaneously learn linear regression
models, and an attacker, who observes the learned mod-
els (as in white-box attacks (Srndic & Laskov, 2014)), and
modifies the original feature vectors at test time in order
to induce incorrect predictions. Crucially, rather than cus-
tomizing the attack to each learner (as in typical models),
the attacker chooses a single attack for all learners. We
term the resulting game a Multi-Learner Stackelberg Game,
to allude to its two stages, with learners jointly acting as
Stackelberg leaders, and the attacker being the follower. Our
first contribution is the formal model of this game. Our sec-
ond contribution is to approximate this game by deriving
upper bounds on the learner loss functions. The resulting
approximation yields a game in which there always exists
a symmetric equilibrium, and this equilibrium is unique.
In addition, we prove that this unique equilibrium can be
computed by solving a convex optimization problem. Our
third contribution is to show that the equilibrium of the ap-
proximate game is robust, both theoretically (by showing it
to be equivalent to a particular robust optimization problem),
and through extensive experiments, which demonstrate it to
be much more robust to attacks than standard regularization
approaches.

Related Work Both attacks on and defenses of machine
learning approaches have been studied within the litera-
ture on adversarial machine learning (Briickner & Scheffer,
2011; Dalvi et al., 2004; Li & Vorobeychik, 2014; Zhou
et al., 2012; Lowd & Meek, 2005). These approaches com-
monly assume a single learner, and consider either the prob-
lem of finding evasions against a fixed model (Dalvi et al.,
2004; Lowd & Meek, 2005; Srndic & Laskov, 2014), or
algorithmic approaches for making learning more robust
to attacks (Russu et al., 2016; Briickner & Scheffer, 2011;
Dalvi et al., 2004; Li & Vorobeychik, 2014; 2015). Most
of these efforts deal specifically with classification learning,
but several consider adversarial tampering with regression
models (Alfeld et al., 2016; Grosshans et al., 2013), although
still within a single-learner and single-attacker framework.
Stevens & Lowd (2013) study the algorithmic problem of
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attacking multiple linear classifiers, but did not consider the
associated game among classifiers.

Our work also has a connection to the literature on secu-
rity games with multiple defenders (Laszka et al., 2016;
Smith et al., 2017; Vorobeychik et al., 2011). The key dis-
tinction with our paper is that in multi-learner games, the
learner strategy space is the space of possible models in a
given model class, whereas prior research has focused on
significantly simpler strategies (such as protecting a finite
collection of attack targets).

2. Model

We investigate the interactions between a collection of
learners ' = {1,2,...,n} and an attacker in regression
problems, modeled as a Multi-Learner Stackelberg Game
(MLSG). At the high level, this game involves two stages:
first, all learners choose (train) their models from data, and
second, the attacker transforms test data (such as features
of the environment, at prediction time) to achieve malicious
goals. Below, we first formalize the model of the learners
and the attacker, and then formally describe the full game.

2.1. Modeling the Players

At training time, a set of training data (X, y) is drawn from
an unknown distribution D. X € R™* is the training
sample and y € R™*! is a vector of values of each data in
X. We let x; € R4 denote the jth instance in the training
sample, associated with a corresponding value y; € R from
y. Hence, X = [X1,....Xp]" and y = [y1,y2, .. Y] ' -
On the other hand, test data can be generated either from
D, the same distribution as the training data, or from D/,
a modification of D generated by an attacker. The nature
of such malicious modifications is described below. We let
B (0 < 8 < 1) represent the probability that a test instance
is drawn from D’ (i.e., the malicious distribution), and 1 — 3
be the probability that it is generated from D.

The action of the ith learner is to select a d x 1 vector 8; as
the parameter of the linear regression function y; = X8,,
where y; is the predicted values for data X. The expected
cost function of the ith learner at test time is then

ci(0i7 D/) = BE(X/ 7y)~D/ [Z(X/ab y)]

)
+ (1= BEx y)~pll(X6;, y)].

where £(y,y) = ||y — y||3. That is, the cost function of a

learner ¢ is a combination of its expected cost from both the

attacker and the honest source.

Every instance (x,y) generated according to D is, with
probability 3, maliciously modified by the attacker into
another, (x',y), as follows. We assume that the attacker
has an instance-specific target z(x), and wishes that the

prediction made by each learner 7 on the modified instance,
7=20, X , is close to this target. We measure this objective
for the attacker by ¢(y,z) = ||y — z||3 for a vector of
predicted and target values y and z, respectively. In addition,
the attacker incurs a cost of transforming a distribution D
into D', denoted by R(D', D).

After a dataset (X', y) is generated in this way by the at-
tacker, it is used simultaneously against all the learners. This
is natural in most real attacks: for example, spam templates
are commonly generated to be used broadly, against many
individuals and organizations, and, similarly, malware exe-
cutables are often produced to be generally effective, rather
than custom made for each target. The expected cost func-
tion of the attacker is then a sum of its total expected cost
for all learners plus the cost of transforming D into D' with
coefficient A > 0:

n
ca{0311.D) = 3 Erx o [((X 6, 2)+AR(D, D).
i=1

2
As is typical, we estimate the cost functions of the learners
and the attacker using training data (X,y), which is also
used to simulate attacks. Consequently, the cost functions
of each learner and the attacker are estimated by

¢i(0;,X) = BUX 0;,y) + (1 - B)I(X0;,y)  (3)

and

ca{0:}121. X)) =D 4(X'0;,2) + AR(X',X)  (4)

i=1

where the attacker’s modification cost is measured by
R(X',X) = ||X — X]||%, the squared Frobenius norm.

2.2. The Multi-Learner Stackerlberg Game

We are now ready to formally define the game between the
n learners and the attacker. The MLSG has two stages: in
the first stage, learners simultaneously select their model
parameters 6;, and in the second stage, the attacker makes
its decision (manipulating X') after observing the learners’
model choices {0, }?_,. We assume that the proposed game
satisfies the following assumptions:

1. The learners have complete information about param-
eters 3, A and z. This is a strong assumption, and we
relax it in our experimental evaluation (Section 6), pro-
viding guidance on how to deal with uncertainty about
these parameters.

2. Each learner has the same action (model parameter)
space @ C R%*! which is nonempty, compact and
convex. The action space of the attacker is R*<.
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3. The columns of the training data X are linearly inde-
pendent.

We use Multi-Learner Stackelberg Equilibrium (MLSE) as
the solution for the MLSG, defined as follows.

Definition 1 (Multi-Learner Stackelberg Equilibrium
(MLSE)). An action profile ({0} }7_,,X*) is an MLSE if it
satisfies
0 = argmin ¢;(0;, X*(0)),Vi e N
0,cO

X*(0) = argmin c,({6;}7_,,X ).
X' ermxd

%)
s.t.

where @ = {0, }"_, constitutes the joint actions of the learn-
ers.

At the high level, the MLSE is a blend between a Nash
equilibrium (among all learners) and a Stackelberg equi-
librium (between the learners and the attacker), in which
the attacker plays a best response to the observed models
0 chosen by the learners, and given this behavior by the
attacker, all learners’ models 8; are mutually optimal.

The following lemma characterizes the best response of the
attacker to arbitrary model choices {6;}7"_; by the learners.

Lemma 1 (Best Response of the Attacker). Given {6;}7_,,
the best response of the attacker is

X*=(AX+z) 6/)AI+> 6:0])7.  (6)

i=1 =1

Proof. We derive the best response of the attacker by using
the first order condition. The details are included in the
supplementary material. O

Lemma 1 shows that the best response of the attacker, X*,
has a closed form solution, as a function of learner model
parameters {0;}7 ;. Let 6_; = {0,},;, then ¢;(6;, X*)
in Eq. (5) can be rewritten as

ci(0i,0-;) = BUX"(0:,0-,)0;,y) + (1 — B){(XE;,y).
@)
Using Eq. (7), we can then define a Multi-Learner Nash

Game (MLNG):

Definition 2 (Multi-Learner Nash Game (MLNG)). A static
game, denoted as (N, O, (c;)) is a Multi-Learner Nash
Game if

1. The set of players is the set of learners N,

2. the cost function of each learner i is ¢;(0;, 0 _;) defined
in Eq. (7),

3. all learners simultaneously select 8; € 6.

We can then define Multi-Learner Nash Equilibrium
(MLNE) of the game (N, ©, (¢;)):

Definition 3 (Multi-Learner Nash Equilibrium (MLNE)).
An action profile 0* = {0}, is a Multi-Learner Nash
Equilibrium of the MLNG (N, ©, (¢;)) if it is the solution
of the following set of coupled optimization problem:

min ci(0;,0_;),Yi e N. (8)

Combining the results above, the following result is imme-
diate.

Theorem 1. An action profile ({05 }_,, X*) is an MLSE of
the multi-learner Stackelberg game if and only if {07}, is
a MLNE of the multi-learner Nash game (N, O, (c;)), with
X* defined in Eq. (6) for 0; = 0} ,Vi € N.

Theorem 1 shows that we can reduce the original (n + 1)-
player Stackelberg game to an n-player simultaneous-move
game (N, @, (c;)). In the remaining sections, we focus on
analyzing the Nash equilibrium of this multi-learner Nash
game.

3. Theoretical Analysis

In this section, we analyze the game (A, @, (¢;)). As pre-
sented in Eq. (6), there is an inverse of a complicated matrix
to compute the best response of the attacker. Hence, the
cost function ¢;(0;,0_;) shown in Eq. (7) is intractable.
To address this challenge, we first derive a new game,
(N, O, (¢;)) with tractable cost function for its players, to
approximate (N, ©, (¢;)). Afterward, we analyze existence
and uniqueness of the Nash Equilibirum of (N, ©, (¢;)).

3.1. Approximation of (N, @, (¢;))

We start our analysis by computing (AL + 7", 0,0, )1
presented in Eq. (6). Let matrix A,, = A\I + 2?21 61»092T ,
and A_; = \I + Zj;éi 0]0]T Then, A,, = A_; + 9191
Similarly, let matrix B,, = AX +z > 0,/ ,and B_; =
AX +2), 6, ., which implies that B, = B_; + 26
The best response of the attacker can then be rewritten as
X* =B, A !. We then obtain the following results.

Lemma 2. A, and A_; satisfy

1. A, and A _; are invertible, and the corresponding in-
vertible matrices, A, and A:}, are positive definite.

—1 T —1

-1 __ -1 _ AZ;0:6; AZ;
2.A =AT; TreTA e,

3.0]AT}0, < 1o]6,

Proof. The proof is included in the supplementary docu-
ment. 0
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Lemma 2 allows us to relax £(X*(6;,0_;)6;,y) as follows:

Lemma 3.
U(X*(0:,0-:)8;,y) < {(B_;A”;0;,y)
1
+ ﬁ”z - yl3(66:)%. 9
Proof. Firstly, by using Sherman-Morrison formula we
have
X*0; = B,A,'0;

A"100] A"}
= (B_,; 0N (AL - =Lt —t)g,
z0] A~;0, - B_,A";0,0] A"},
14+6A"}6;

=B_;A}6; +

(B_;, +20])A~}0;
T 1+6]A e,
B,A"}0;
T1+67A”le;

Then,

B,A}6;
B,A}0,—y—60]A"l0;y 9
= 1+6] Ao, Il
<|B.AZO: —y — 0] AT 0y|I3
=[|(B-i +26])AZ;6; —y — 6] AZ;0:y]|3
=[|BLiAT}0: —y + (z— )0 AZ!6i]5
<UB_;AZ;6;,y) + ||z — y][3(6] AZ;6,)°

0(X*8;,y) = || ~yli3

By using Lemma 2, we have (6 A~;6,)? < (6,6;)?
which completes the proof. O

Note thatin Eq. (9), B_; and A _; only depend on {6} ;.
Hence, the RHS of Eq. (9) is a strictly convex function with
respect to 6;. Lemma 3 shows that £(X*(0;,60_,)0;,y) can
be relaxed by moving 6; out of X*(8;,0_;) and adding a
regularizer (6, 6;)? with its coefficient ”2173”3 Motivated
by this method, we iteratively relax ¢(X*(0;,60_;)0;,y)
by adding corresponding regularizers. We now identify a
tractable upper bound function for ¢;(6;,0_;).

Theorem 2.
ci(0;,0_;) < ¢(0;,0_;)
B n
=((X6;,y) + FHZ -yl 2(9;91)2 + €

j=1

(10)

where € is a positive constant and € < +00.

Proof. We prove by extending the results in Lemma 3 and it-
eratively relaxing the cost function. The details are included
in the supplementary material. O

As represented in Eq. (10), &(0;,0_;) is strictly convex
with respect to 8; and 0,;(Vj # i). We then use the game
(N, O, (&)) as an approximation of (N, @, (c;)). Let

¢i(0;,0_;) = i(0;,0_;) — €
5 n
=U(X0;,y) + FHZ -yll3 > (6] 6:)7,

j=1

(1)

then (N, O, (¢;)) has the same Nash equilibrium with
(N, 0, (c;)) if one exists, as adding or deleting a constant
term does not affect the optimal solution. Hence, we use
(N, 0, (¢;)) to approximate (N, @, (¢;)), and analyze the
Nash equilibrium of (A, ©, (¢;)) in the remaining sections.

3.2. Existence of Nash Equilibrium

As introduced in Section 2, each learner has identical action
spaces, and they are trained with the same dataset. We
exploit this symmetry to analyze the existence of a Nash
equilibrium of the approximation game (N, ©, (¢;)).

We first define a Symmetric Game (Cheng et al., 2004):

Definition 4 (Symmetric Game). An n-player game is sym-
metric if the players have the same action space, and their
cost functions ¢;(0;,0_;) satisfy

Ci(0i76,i) = cj(0j,0,j),Vz’,j eN (12)
lf@l = Oj and 9_1' = 0_]‘.

In a symmetric game (N, ©, (¢;)) it is natural to consider a
Symmetric Equilibrium:

Definition 5 (Symmetric Equilibrium). An action profile
{0}, of (N, O, (¢;)) is a symmetric equilibrium if it is
a Nash equilibrium and 0; = 05,¥i,j € N.

We now show that our approximate game is symmetric, and
always has a symmetric Nash equilibrium.

Theorem 3 (Existence of Nash Equilibrium). (N, ©, (¢;))
is a symmetric game and it has at least one symmetric
equilibrium.

Proof. As described above, the players of (N, 0, (¢;))
use the same action space and complete information of
others. Hence, the cost function ¢; is symmetric, mak-
ing (N, 0, (¢;)) a symmetric game. As (N, O, (¢;)) has
nonempty, compact and convex action space, and the cost
function ¢; is continuous in {6;}?_, and convex in ;, ac-
cording to Theorem 3 in Cheng et al. (2004), (N, O, (¢;))
has at least one symmetric Nash equilibrium. O
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3.3. Uniqueness of Nash Equilibrium

While we showed that the approximate game always admits
a symmetric Nash equilibrium, it leaves open the possibility
that there may be multiple symmetric equilibria, as well as
equilibria which are not symmetric. We now demonstrate
that this game in fact has a unique equilibrium (which must
therefore be symmetric).

Theorem 4 (Uniqueness of Nash Equilibrium).
(N,©,(¢;)) has a unique Nash equilibrium, and
this unique NE is symmetric.

Proof. We have known that (N, @, (¢;)) has at least one
NE, and each learner has an nonempty, compact and con-
vex action space ®. Hence, we can apply Theorem 2
and Theorem 6 of Rosen (1965). That is, for some fixed
{ri}?(0 < r; < 1,51, r; = 1), if the matrix in Eq. (13)
is positive definite, then (A, @, (¢;)) has a unique NE.

71 Ve, 6,¢1(0) 71V, 0,c1(0)

Jr(0) = : :
ranmglEn(H) TanmgnEn(e)
(13)
We firstletr; =ro = ... =1, = % and decompose Jr(0)
as follows,

o112
o) =2p P2V s i ae

where P and Q are block diagonal matrices such that P;; =
XTX, Pij =0 Q; = 40101T + GZTGZI and Qij =0,
Vi,7 € N,j # i. S and T are block symmetric matrices
such that S“ = 0:011, Sij = OZTGJI, T” = Zj;ﬁi 0]0;
and T;; = 0,0, ,Vi,j € N,j #i.

Next, we prove that P is positive definite, and Q, S and T
are positive semi-definite. Hence, Jr(0) is positive definite,
which indicates that (N, @, (¢;)) has a unique NE. As The-
orem 3 points out, the game has at least one symmetric NE.
Therefore, the NE is unique and must be symmetric. Due to
space limitation the details of this proof are included in the
supplementary material. O

4. Computing the Equilibrium

Having shown that (N, ©, (¢;)) has a unique symmetric
Nash equilibrium, we now consider computing its solu-
tion. We exploit the symmetry of the game which enables
to reduce the search space of the game to only symmet-
ric solutions. Particularly, we derive the symmetric Nash
equilibrium of (N, @, (¢;)) by solving a single convex opti-
mization problem. We obtain the following result.
Theorem 5. Let

B(n+1)

oz 17— yIE(070)% (15

f(8) = 6(X6,y) +

Then, the unique symmetric NE of (N, 0, (¢;)), {0},
can be derived by solving the following convex optimization
problem

géig f(8) (16)

and then letting 0} = 0*,Vi € N, where 0% is the solution
of Eq. (16).

Proof. We prove this theorem by characterizing the first-
order optimality conditions of each learner’s minimization
problem in Eq. (8) with c; being replaced with its approxi-
mation ¢;. Let {6}, be the NE, then it satisfies

(n—0;) Ve, ci(0:,07,) >0,YnecONic N (17)

where Vg,¢;(0F,0* ) is the gradient of ¢;(0;,0_;) with

respect to 6; and is evaluated at {0} }_;. Then, Eq. (17) is

equivalent to the equations as follows:
(n—67)"Ve,01(67,0%,) > 0, € O,
07 =0;,Yj e N\ {1}

The reasons are: first, any solution of Eq. (17) satisfies

Eq. (18), as {@;}!, is symmetric; Second, any solu-

tion of Eq. (18) also satisfies Eq. (17). By definition of

symmetric game, if 87 = 67, then Vg,c1(07,0%,) =

Ve,c;(07,0" ;), and we have

(n—6;)"Ve,;(07,0%;).¥n € ©,Yj € N'\ {1}
Hence, Eq. (17) and Eq. (18) are equivalent. Eq. (18) can
be further rewritten as
(n—67) Ve, c1(67,0%,)
We then let
F(67) = Vo, c1(07,602,)

(18)

0;=..=0:; > 0,Yn € O. (19)

0;=..=0;
28(n+1)

=2X (X607 —y) + 2

|z — yl[36; " 6;6;.
(20)

Then, F'(07) = Vg, f(07) where f(-) is defined in Eq. (15).
Hence, we have

(n—67) Ve, f(67) >0,¥n € O, 1)

This means that 67 is the solution of the optimization prob-
lem in Eq.(16) which finally completes the proof. O

A deeper look at Eq. (15) reveals that the Nash equilibrium
can be obtained by each learner independently, without
knowing others’ actions. This means that the Nash equi-
librium can be computed in a distributed manner while
the convergence is still guaranteed. Hence, our proposed
approach is highly scalable, as increasing the number of
learners does not impact the complexity of finding the Nash
equilibrium. We investigate the robustness of this equilib-
rium both using theoretical analysis and experiments in the
remaining sections.
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5. Robustness Analysis

We now draw a connection between the multi-learner equi-
librium in the adversarial setting, derived above, and ro-
bustness, in the spirit of the analysis by Xu et al. (2009).
Specifically, we prove the equivalence between Eq. (16) and
arobust linear regression problem where data is maliciously
corrupted by some disturbance A. Formally, a robust linear
regression solves the following problem:

(X +20)0]3, (22)

pro ey -

where the uncertainty setif = {A € R™*4|ATA =G :
1Gij| < cl6:6;] Vi, j}, with ¢ = 285D |1z — y||2. Note

22
that @ is a vector and 6; is the i-th element of 6.

From a game-theoretic point of view, in training phase
the defender is simulating an attacker. The attacker maxi-
mizes the training error by adding disturbance to X. The
magnitude of the disturbance is controlled by a parame-
ter ¢ = %Hz —yl||3. Consequently, the robustness
of Eq. (22) is guaranteed if and only if the magnitude re-
flects the uncertainty interval. This sheds some light on how
to choose A, 5 and z in practice. One strategy is to over-
estimate the attacker’s strength, which amounts to choosing
small values of ), large values of 3 and exaggerated target z.
The intuition of this strategy is to enlarge the uncertainty set
S0 as to cover potential adversarial behavior. In Experiments
section we will show this strategy works well in practice.
Another insight from Eq. (22) is that the fundamental reason
MLSG is robust is because it proactively takes adversarial
behavior into account.

Theorem 6. The optimal solution 0* of the problem in
Eq. (16) is an optimal solution to the robust optimization
problem in Eq. (22).

Proof. Fix 68*, we show that

2
max |ly — (X + A)8"||; = [ly — X673 + (67" 6")".

AeU
The left-hand side can be expanded as:

max ||y — (X + A)6"[3

Ael
= —X0* — A6*||2
max [y II2
< _ Xa* 2 Ae* 2
< max ||y 12 + max [| 2872
=max ||y — X6*||3 + max 6*7 AT NG
N} N}
(substitute ATA = G)
=|ly — X653 + max 67 Go*

Jj—

d 1
=|ly — X6* H2+maXZ\9*| G“-Q-QZ 0705 G

j=11i=1

d j—1
<|ly — X6~ |\2+c2|9* +2e> 03 (0;05)?
j=11i=1
d 2
=lly = X0"[[3 +¢(>_ 16;]%)
=1

2
=[ly — X6"|3 + (6" 6")".

Now we define A* = [\/cfju, - - ,/cOk
the i-th element of 8* and u is defined as:

y—X6" ‘ .
u—{llyX"Hz ify # X6 23)

u], where 6 is

any vector with unit L norm, otherwise

Then we have:

|2
max [ly — (X + 2)67;
>|ly - (X +27)67|[3
=lly - X0° — A%07|[3
d
=|ly — X6* — c|071%ul|?
ly > el Pul o
(u is in the same direction as y — X0 )
d
=|ly = X6"([5+ | > _ vel6; [*ull3
i=1
2
=|ly — X6*[|3 + c(6°70")
O

6. Experiments

As previously discussed, a dataset is represented by (X,y),
where X is the feature matrix and y is the vector of la-
bels. We use (x;,y;) to denote the j-th instance and its
corresponding label. The dataset is equally divided into
a training set (Xiuin, Yurain) and a testing set (Xiest, Yiest)-
We conducted experiments on three datasets: Wine Quality
(redwine),PDF malware (PDF), and Boston Housing Market
(boston). The number of learners is set to 5. Due to space
limitation the experimental results for the boston dataset are
included in supplement.

The Wine Quality dataset (Cortez et al., 2009) contains 1599
instances and each instance has 11 features. Those features
are physicochemical and sensory measurements for wine.
The response variables are quality scores ranging from 0
to 10, where 10 represents for best quality and O for least
quality. The PDF malware dataset consists of 18658 PDF
files collected from the internet. We employed an open-
sourced tool mimicus' to extract 135 real-valued features

"https://github.com/srndic/mimicus
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from PDF files (Srndic & Laskov, 2014). We then applied
peepdf? to score each PDF between 0 and 10, with a higher
score indicating greater likelihood of being malicious.

Throughout, we abbreviate our proposed approach as MLSG,
and compare it to three other algorithms: ordinary least
squares (OLS) regression, as well as Lasso, and Ridge
regression (Ridge). Lasso and Ridge are ordinary least
square with L; and L, regularizations. In our evalua-
tion, we simulate the attacker for different values of /3
(the probability that a given instance is maliciously ma-
nipulated). The specific attack targets z vary depending
on the dataset; we discuss these below. For our evalua-
tion, we compute model parameters (for the equilibrium, in
the case of MLSG) on training data. We then use test data
to compute optimal attacks, characterized by Eq. (6). Let
Xt be the test feature matrix after adversarial manipula-
tion, y, the associated predicted labels on manipulated
test data, s predicted labels on untainted test data, and
Veest the ground truth labels for test data. We use root ex-
pected mean square error (RMSE) as an evaluation met-
ric, where the expectation is with respect to the probability
[ of a particular instance being maliciously manipulated:

B)(y‘es‘*}'wsm)T(Sﬁesﬁy‘es‘) , where

B()A'ég[*Y!est)T()A'{g[*Y!es!)*F(l*
N
N is the size of the test data.

The redwine dataset: Recall that the response variables
in redwine dataset are quality scores ranging from 0O to 10.
We simulated an attacker whose target is to increase the
overall scores of testing data. In practice this could corre-
spond to the scenario that wine sellers try to manipulate
the evaluation of third-party organizations. We formally
define the attacker’s target as z = y + A, where y is the
ground-truth response variables and A is a real-valued vec-
tor representing the difference between the attacker’s target
and the ground-truth. Since the maximum score is 10, any
element of z that is greater than 10 is clipped to 10. We
define A to be homogeneous (all elements are the same);
generalization to heterogeneous values is direct. The mean
and standard deviation of y are p,, = 5.64 and o, = 0.81.
We let A = 50, x 1, where 1 is a vector with all elements
equal to one. The intuition for this definition is to simulate
the generating process of adversarial data. Specifically, by
setting the attacker’s target to an unrealistic value (i.e. in
current case outside the 3o, of p,.), the generated adversar-
ial data X is supposed to be intrinsically different from X.
For ease of exposition we use the term defender to refer to
MLSG.

Remember that in Eq.(11) there are three hyper-parameters
in the defender’s loss function: A, 3, and z. A is the regular-
ization coefficient in the attacker’s loss function shown in
Eq.(4). Itis negatively proportional to the attacker’s strength.

*https://github.com/rohit-dua/peePDF

B is the probability of a test data being malicious. z is the
predication targets of the attacker. In practice these three
hyper-parameters are externally set by the attacker. In the
first experiment below we assume the defender knows the
values of these three hyper-parameters, which corresponds
to the best case. The result is shown in Figure 1. Each bar
is averaged over 50 runs, where at each run we randomly
sampled training and test data. The regularization parame-
ters of Lasso and Ridge were selected by cross-validation.
Figure 1 demonstrates that MLSG approximate equilibrium
solution is significantly more robust than conventional linear
regression learning, with and without regularization.
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Figure 1. RMSE of y’ and y on redwine dataset. The defender
knows A, (3, and z.

In the second experiment we relaxed the assumption that
the defender knows A, 3 and z, and instead simulated the
practical scenario that the defender obtains estimates for
these (for example, from historical attack data), but the
estimates have error. We denote by A=05and 3 =08
the defender’s estimates of the true A and 3.> Remember
that 3 is the probability of an instance being malicious and
A is negatively proportional to the attacker’s strength. So
the estimation characterizes a pessimistic defender that is
expecting very strong attacks. We experimented with two
kinds of estimation about z: 1) the defender overestimates
z: Zz =y + t1, where ¢ is a random variable sampled from
a uniform distribution over [50,, 10]; and 2) the defender
underestimates z: z = y + t1, where ¢ is sampled from
[0, 50,]. Due to space limitations we only present the results
for the latter; the former can be found in the supplementary
materials. In Figure 2 the y-axis represents the actual values
of )\, and the x-axis represents the actual values of 3. The
color bar on the right of each figure visualizes the average
RMSE. Each cell is averaged over 50 runs. The result shows
that even if there is a discrepancy between the defender’s

3We tried alternative values of A and B, and the results are con-
sistent. Due to space limitations we include them in supplemental
materials.
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estimation and the actual adversarial behavior, MLSG is
consistently more robust than the other approaches.
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Figure 2. The average RMSE across different values of actual A
and /3 on redwine dataset. Upper Left: MLSG; Upper Right: Lasso;
Lower Left: Ridge; Lower Right: OLS.

The PDF dataset: The response variables of this dataset
are malicious scores ranging between 0 and 10. The mean
and standard deviation of y are p, = 5.56 and o, = 2.66.
Instead of letting the A be non-negative as in previous two
datasets, the attacker’s target is to descrease the scores of
malicious PDFs. Consequently, we define A = —20, x 1 o4,
where M is the set of indices of malicious PDF and 1
is a vector with only those elements indexed by M being
one and others being zero. Our experiments were conducted
on a subset (3000 malicious PDF and 3000 benign PDF)
randomly sampled from the original dataset. We evenly
divided the subset into training and testing sets. We applied
PCA to reduce dimensionality of the data and selected the
top-10 principal components as features. The result for best
case is displayed in Figure 3. Notice that when 5 = 0,
MLSG is less robust than Lasso. This is to be expected, as
B = 0 corresponds to non-adversarial data.

Similarly as before we relaxed the assumption that the de-
fender knows )\, 8 and z and let the defender’s estimation
of the true A and S be A = 1.5and B = 0.5. We also
experimented with both overestimation and underestima-
tion of z. The defender’s estimation is 2 = y — t1 4. For
overestimation setting ¢ is sampled from [20,, 30,], and for
underestimation setting it is sampled from [o,, 20,]. The
result for underestimated z is showed in Figure 4. Notice
that in the upper left plot of Figure 4 the area inside the
blue rectangle corresponds to those cases where A and B are
overestimated and they are more robust than the remaining
underestimated cases. Similar patterns can be observed in
Figure 2. This further supports our claim that it is advanta-
geous to overestimate adversarial behavior.
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Figure 3. RMSE of y’ and y on PDF dataset. The defender knows
A, B, and z.
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Figure 4. The average RMSE across different values of actual A
and 5 on PDF dataset. Upper Left: MLSG; Upper Right: Lasso;
Lower Left: Ridge; Lower Right: OLS.

7. Conclusion

We study the problem of linear regression in adversarial
settings involving multiple learners learning from the same
or similar data. In our model, learners first simultaneously
decide on their models (i.e., learn), and an attacker then
modifies test instances to cause predictions to err towards
the attacker’s target. We first derive an upper bound on
the cost functions of all learners, and the resulting approx-
imate game. We then show that this game has a unique
symmetric equilibrium, and present an approach for com-
puting this equilibrium by solving a convex optimization
problem. Finally, we show that the equilibrium is robust,
both theoretically, and through an extensive experimental
evaluation.
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