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Abstract

Despite the considerable success enjoyed by ma-

chine learning techniques in practice, numerous

studies demonstrated that many approaches are

vulnerable to attacks. An important class of such

attacks involves adversaries changing features at

test time to cause incorrect predictions. Previous

investigations of this problem pit a single learner

against an adversary. However, in many situations

an adversary’s decision is aimed at a collection of

learners, rather than specifically targeted at each

independently. We study the problem of adversar-

ial linear regression with multiple learners. We

approximate the resulting game by exhibiting an

upper bound on learner loss functions, and show

that the resulting game has a unique symmetric

equilibrium. We present an algorithm for comput-

ing this equilibrium, and show through extensive

experiments that equilibrium models are signifi-

cantly more robust than conventional regularized

linear regression.

1. Introduction

Increasing use of machine learning in adversarial settings

has motivated a series of efforts investigating the extent

to which learning approaches can be subverted by mali-

cious parties. An important class of such attacks involves

adversaries changing their behaviors, or features of the en-

vironment, to effect an incorrect prediction. Most previous

efforts study this problem as an interaction between a single

learner and a single attacker (Brückner & Scheffer, 2011;

Dalvi et al., 2004; Li & Vorobeychik, 2014; Zhou et al.,

2012). However, in reality attackers often target a broad

array of potential victim organizations. For example, they

craft generic spam templates and generic malware, and then

disseminate these widely to maximize impact. The resulting
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ecology of attack targets reflects not a single learner, but

many such learners, all making autonomous decisions about

how to detect malicious content, although these decisions

often rely on similar training datasets.

We model the resulting game as an interaction between mul-

tiple learners, who simultaneously learn linear regression

models, and an attacker, who observes the learned mod-

els (as in white-box attacks (Šrndic & Laskov, 2014)), and

modifies the original feature vectors at test time in order

to induce incorrect predictions. Crucially, rather than cus-

tomizing the attack to each learner (as in typical models),

the attacker chooses a single attack for all learners. We

term the resulting game a Multi-Learner Stackelberg Game,

to allude to its two stages, with learners jointly acting as

Stackelberg leaders, and the attacker being the follower. Our

first contribution is the formal model of this game. Our sec-

ond contribution is to approximate this game by deriving

upper bounds on the learner loss functions. The resulting

approximation yields a game in which there always exists

a symmetric equilibrium, and this equilibrium is unique.

In addition, we prove that this unique equilibrium can be

computed by solving a convex optimization problem. Our

third contribution is to show that the equilibrium of the ap-

proximate game is robust, both theoretically (by showing it

to be equivalent to a particular robust optimization problem),

and through extensive experiments, which demonstrate it to

be much more robust to attacks than standard regularization

approaches.

Related Work Both attacks on and defenses of machine

learning approaches have been studied within the litera-

ture on adversarial machine learning (Brückner & Scheffer,

2011; Dalvi et al., 2004; Li & Vorobeychik, 2014; Zhou

et al., 2012; Lowd & Meek, 2005). These approaches com-

monly assume a single learner, and consider either the prob-

lem of finding evasions against a fixed model (Dalvi et al.,

2004; Lowd & Meek, 2005; Šrndic & Laskov, 2014), or

algorithmic approaches for making learning more robust

to attacks (Russu et al., 2016; Brückner & Scheffer, 2011;

Dalvi et al., 2004; Li & Vorobeychik, 2014; 2015). Most

of these efforts deal specifically with classification learning,

but several consider adversarial tampering with regression

models (Alfeld et al., 2016; Grosshans et al., 2013), although

still within a single-learner and single-attacker framework.

Stevens & Lowd (2013) study the algorithmic problem of
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attacking multiple linear classifiers, but did not consider the

associated game among classifiers.

Our work also has a connection to the literature on secu-

rity games with multiple defenders (Laszka et al., 2016;

Smith et al., 2017; Vorobeychik et al., 2011). The key dis-

tinction with our paper is that in multi-learner games, the

learner strategy space is the space of possible models in a

given model class, whereas prior research has focused on

significantly simpler strategies (such as protecting a finite

collection of attack targets).

2. Model

We investigate the interactions between a collection of

learners N = {1, 2, ..., n} and an attacker in regression

problems, modeled as a Multi-Learner Stackelberg Game

(MLSG). At the high level, this game involves two stages:

first, all learners choose (train) their models from data, and

second, the attacker transforms test data (such as features

of the environment, at prediction time) to achieve malicious

goals. Below, we first formalize the model of the learners

and the attacker, and then formally describe the full game.

2.1. Modeling the Players

At training time, a set of training data (X,y) is drawn from

an unknown distribution D. X 2 R
m⇥d is the training

sample and y 2 R
m⇥1 is a vector of values of each data in

X. We let xj 2 R
d⇥1 denote the jth instance in the training

sample, associated with a corresponding value yj 2 R from

y. Hence, X = [x1, ...,xm]> and y = [y1, y2, ..., ym]>.

On the other hand, test data can be generated either from

D, the same distribution as the training data, or from D
0

,

a modification of D generated by an attacker. The nature

of such malicious modifications is described below. We let

� (0  �  1) represent the probability that a test instance

is drawn from D
0

(i.e., the malicious distribution), and 1��

be the probability that it is generated from D.

The action of the ith learner is to select a d⇥ 1 vector θi as

the parameter of the linear regression function ŷi = Xθi,

where ŷi is the predicted values for data X. The expected

cost function of the ith learner at test time is then

ci(θi,D
0

) = �E(X0
,y)⇠D0 [`(X

0

θi,y)]

+ (1� �)E(X,y)⇠D[`(Xθi,y)].
(1)

where `(ŷ,y) = ||ŷ � y||22. That is, the cost function of a

learner i is a combination of its expected cost from both the

attacker and the honest source.

Every instance (x, y) generated according to D is, with

probability �, maliciously modified by the attacker into

another, (x0, y), as follows. We assume that the attacker

has an instance-specific target z(x), and wishes that the

prediction made by each learner i on the modified instance,

ŷ = θ>
i x

0

, is close to this target. We measure this objective

for the attacker by `(ŷ, z) = ||ŷ � z||22 for a vector of

predicted and target values ŷ and z, respectively. In addition,

the attacker incurs a cost of transforming a distribution D
into D

0

, denoted by R(D
0

,D).

After a dataset (X
0

,y) is generated in this way by the at-

tacker, it is used simultaneously against all the learners. This

is natural in most real attacks: for example, spam templates

are commonly generated to be used broadly, against many

individuals and organizations, and, similarly, malware exe-

cutables are often produced to be generally effective, rather

than custom made for each target. The expected cost func-

tion of the attacker is then a sum of its total expected cost

for all learners plus the cost of transforming D into D
0

with

coefficient � > 0:

ca({θi}
n
i=1,D

0

) =

nX

i=1

E(X0
,y)⇠D0 [`(X

0

θi, z)]+�R(D
0

,D).

(2)

As is typical, we estimate the cost functions of the learners

and the attacker using training data (X,y), which is also

used to simulate attacks. Consequently, the cost functions

of each learner and the attacker are estimated by

ci(θi,X
0

) = �`(X
0

θi,y) + (1� �)`(Xθi,y) (3)

and

ca({θi}
n
i=1,X

0

) =

nX

i=1

`(X
0

θi, z) + �R(X
0

,X) (4)

where the attacker’s modification cost is measured by

R(X
0

,X) = ||X
0 �X||2F , the squared Frobenius norm.

2.2. The Multi-Learner Stackerlberg Game

We are now ready to formally define the game between the

n learners and the attacker. The MLSG has two stages: in

the first stage, learners simultaneously select their model

parameters θi, and in the second stage, the attacker makes

its decision (manipulating X
0

) after observing the learners’

model choices {θi}
n
i=1. We assume that the proposed game

satisfies the following assumptions:

1. The learners have complete information about param-

eters �, � and z. This is a strong assumption, and we

relax it in our experimental evaluation (Section 6), pro-

viding guidance on how to deal with uncertainty about

these parameters.

2. Each learner has the same action (model parameter)

space Θ ✓ R
d⇥1 which is nonempty, compact and

convex. The action space of the attacker is Rm⇥d.
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3. The columns of the training data X are linearly inde-

pendent.

We use Multi-Learner Stackelberg Equilibrium (MLSE) as

the solution for the MLSG, defined as follows.

Definition 1 (Multi-Learner Stackelberg Equilibrium

(MLSE)). An action profile ({θ⇤
i }

n
i=1,X

⇤) is an MLSE if it

satisfies

θ⇤
i = argmin

θi2Θ

ci(θi,X
⇤(θ)), 8i 2 N

s.t. X⇤(θ) = argmin
X

0
2Rm⇥d

ca({θi}
n
i=1,X

0

).
(5)

where θ = {θi}
n
i=1 constitutes the joint actions of the learn-

ers.

At the high level, the MLSE is a blend between a Nash

equilibrium (among all learners) and a Stackelberg equi-

librium (between the learners and the attacker), in which

the attacker plays a best response to the observed models

θ chosen by the learners, and given this behavior by the

attacker, all learners’ models θi are mutually optimal.

The following lemma characterizes the best response of the

attacker to arbitrary model choices {θi}
n
i=1 by the learners.

Lemma 1 (Best Response of the Attacker). Given {θi}
n
i=1,

the best response of the attacker is

X⇤ = (�X+ z

nX

i=1

θ>
i )(�I+

nX

i=1

θiθ
>
i )

�1. (6)

Proof. We derive the best response of the attacker by using

the first order condition. The details are included in the

supplementary material.

Lemma 1 shows that the best response of the attacker, X⇤,

has a closed form solution, as a function of learner model

parameters {θi}
n
i=1. Let θ�i = {θj}j 6=i, then ci(θi,X

⇤)
in Eq. (5) can be rewritten as

ci(θi,θ�i) = �`(X⇤(θi,θ�i)θi,y) + (1� �)`(Xθi,y).
(7)

Using Eq. (7), we can then define a Multi-Learner Nash

Game (MLNG):

Definition 2 (Multi-Learner Nash Game (MLNG)). A static

game, denoted as hN ,Θ, (ci)i is a Multi-Learner Nash

Game if

1. The set of players is the set of learners N ,

2. the cost function of each learner i is ci(θi,θ�i) defined

in Eq. (7),

3. all learners simultaneously select θi 2 Θ.

We can then define Multi-Learner Nash Equilibrium

(MLNE) of the game hN ,Θ, (ci)i:
Definition 3 (Multi-Learner Nash Equilibrium (MLNE)).

An action profile θ⇤ = {θ⇤
i }

n
i=1 is a Multi-Learner Nash

Equilibrium of the MLNG hN ,Θ, (ci)i if it is the solution

of the following set of coupled optimization problem:

min
θi2Θ

ci(θi,θ�i), 8i 2 N . (8)

Combining the results above, the following result is imme-

diate.

Theorem 1. An action profile ({θ⇤
i }

n
i=1,X

⇤) is an MLSE of

the multi-learner Stackelberg game if and only if {θ⇤
i }

n
i=1 is

a MLNE of the multi-learner Nash game hN ,Θ, (ci)i, with

X⇤ defined in Eq. (6) for θi = θ⇤
i , 8i 2 N .

Theorem 1 shows that we can reduce the original (n+ 1)-
player Stackelberg game to an n-player simultaneous-move

game hN ,Θ, (ci)i. In the remaining sections, we focus on

analyzing the Nash equilibrium of this multi-learner Nash

game.

3. Theoretical Analysis

In this section, we analyze the game hN ,Θ, (ci)i. As pre-

sented in Eq. (6), there is an inverse of a complicated matrix

to compute the best response of the attacker. Hence, the

cost function ci(θi,θ�i) shown in Eq. (7) is intractable.

To address this challenge, we first derive a new game,

hN ,Θ, (eci)i with tractable cost function for its players, to

approximate hN ,Θ, (ci)i. Afterward, we analyze existence

and uniqueness of the Nash Equilibirum of hN ,Θ, (eci)i.

3.1. Approximation of hN ,Θ, (ci)i
We start our analysis by computing (�I +

Pn

i=1 θiθ
>
i )

�1

presented in Eq. (6). Let matrix An = �I +
Pn

i=1 θiθ
>
i ,

and A�i = �I+
P

j 6=i θjθ
>
j . Then, An = A�i + θiθ

>
i
.

Similarly, let matrix Bn = �X+ z
Pn

i=1 θ
>
i , and B�i =

�X + z
P

j 6=i θ
>
j , which implies that Bn = B�i + zθ>

i

The best response of the attacker can then be rewritten as

X⇤ = BnA
�1
n . We then obtain the following results.

Lemma 2. An and A�i satisfy

1. An and A�i are invertible, and the corresponding in-

vertible matrices, A�1
n and A�1

�i , are positive definite.

2. A�1
n = A�1

�i �
A

�1

�i
θiθ

>

i A
�1

�i

1+θ>

i
A

�1

�i
θi

.

3. θ>
i A

�1
�iθi  1

λ
θ>
i
θi.

Proof. The proof is included in the supplementary docu-

ment.
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Lemma 2 allows us to relax `(X⇤(θi,θ�i)θi,y) as follows:

Lemma 3.

`(X⇤(θi,θ�i)θi,y)  `(B�iA
�1
�iθi,y)

+
1

�2
||z� y||22(θ

>
i θi)

2. (9)

Proof. Firstly, by using Sherman-Morrison formula we

have

X⇤θi = BnA
�1
n θi

= (B�i + zθ>
i )(A

�1
�i �

A�1
�iθiθ

>
i A

�1
�i

1 + θ>
i A

�1
�iθi

)θi

= B�iA
�1
�iθi +

zθ>
i A

�1
�iθi �B�iA

�1
�iθiθ

>
i A

�1
�iθi

1 + θ>
i A

�1
�iθi

=
(B�i + zθ>

i )A
�1
�iθi

1 + θ>
i A

�1
�iθi

=
BnA

�1
�iθi

1 + θ>
i A

�1
�iθi

.

Then,

`(X⇤θi,y) = ||
BnA

�1
�iθi

1 + θ>
i A

�1
�iθi

� y||22

= ||
BnA

�1
�iθi � y � θ>

i A
�1
�iθiy

1 + θ>
i A

�1
�iθi

||22

 ||BnA
�1
�iθi � y � θ>

i A
�1
�iθiy||

2
2

= ||(B�i + zθ>
i )A

�1
�iθi � y � θ>

i A
�1
�iθiy||

2
2

= ||B�iA
�1
�iθi � y + (z� y)θ>

i A
�1
�iθi||

2
2

 `(B�iA
�1
�iθi,y) + ||z� y||22(θ

>
i A

�1
�iθi)

2

By using Lemma 2, we have (θ>
i A

�1
�iθi)

2  1
λ2 (θ

>
i θi)

2

which completes the proof.

Note that in Eq. (9), B�i and A�i only depend on {θj}j 6=i.

Hence, the RHS of Eq. (9) is a strictly convex function with

respect to θi. Lemma 3 shows that `(X⇤(θi,θ�i)θi,y) can

be relaxed by moving θi out of X⇤(θi,θ�i) and adding a

regularizer (θ>
i θi)

2 with its coefficient
||z�y||2

2

λ2 . Motivated

by this method, we iteratively relax `(X⇤(θi,θ�i)θi,y)
by adding corresponding regularizers. We now identify a

tractable upper bound function for ci(θi,θ�i).

Theorem 2.

ci(θi,θ�i)  c̄i(θi,θ�i)

= `(Xθi,y) +
�

�2
||z� y||22

nX

j=1

(θ>
j θi)

2 + ✏,

(10)

where ✏ is a positive constant and ✏ < +1.

Proof. We prove by extending the results in Lemma 3 and it-

eratively relaxing the cost function. The details are included

in the supplementary material.

As represented in Eq. (10), c̄i(θi,θ�i) is strictly convex

with respect to θi and θj(8j 6= i). We then use the game

hN ,Θ, (c̄i)i as an approximation of hN ,Θ, (ci)i. Let

eci(θi,θ�i) = c̄i(θi,θ�i)� ✏

= `(Xθi,y) +
�

�2
||z� y||22

nX

j=1

(θ>
j θi)

2,

(11)

then hN ,Θ, (eci)i has the same Nash equilibrium with

hN ,Θ, (c̄i)i if one exists, as adding or deleting a constant

term does not affect the optimal solution. Hence, we use

hN ,Θ, (eci)i to approximate hN ,Θ, (ci)i, and analyze the

Nash equilibrium of hN ,Θ, (eci)i in the remaining sections.

3.2. Existence of Nash Equilibrium

As introduced in Section 2, each learner has identical action

spaces, and they are trained with the same dataset. We

exploit this symmetry to analyze the existence of a Nash

equilibrium of the approximation game hN ,Θ, (eci)i.
We first define a Symmetric Game (Cheng et al., 2004):

Definition 4 (Symmetric Game). An n-player game is sym-

metric if the players have the same action space, and their

cost functions ci(θi,θ�i) satisfy

ci(θi,θ�i) = cj(θj ,θ�j), 8i, j 2 N (12)

if θi = θj and θ�i = θ�j .

In a symmetric game hN ,Θ, (eci)i it is natural to consider a

Symmetric Equilibrium:

Definition 5 (Symmetric Equilibrium). An action profile

{θ⇤
i }

n
i=1 of hN ,Θ, (eci)i is a symmetric equilibrium if it is

a Nash equilibrium and θ⇤
i = θ⇤

j , 8i, j 2 N .

We now show that our approximate game is symmetric, and

always has a symmetric Nash equilibrium.

Theorem 3 (Existence of Nash Equilibrium). hN ,Θ, (eci)i
is a symmetric game and it has at least one symmetric

equilibrium.

Proof. As described above, the players of hN ,Θ, (eci)i
use the same action space and complete information of

others. Hence, the cost function ci is symmetric, mak-

ing hN ,Θ, (eci)i a symmetric game. As hN ,Θ, (eci)i has

nonempty, compact and convex action space, and the cost

function eci is continuous in {θi}
n
i=1 and convex in θi, ac-

cording to Theorem 3 in Cheng et al. (2004), hN ,Θ, (eci)i
has at least one symmetric Nash equilibrium.
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3.3. Uniqueness of Nash Equilibrium

While we showed that the approximate game always admits

a symmetric Nash equilibrium, it leaves open the possibility

that there may be multiple symmetric equilibria, as well as

equilibria which are not symmetric. We now demonstrate

that this game in fact has a unique equilibrium (which must

therefore be symmetric).

Theorem 4 (Uniqueness of Nash Equilibrium).

hN ,Θ, (eci)i has a unique Nash equilibrium, and

this unique NE is symmetric.

Proof. We have known that hN ,Θ, (eci)i has at least one

NE, and each learner has an nonempty, compact and con-

vex action space Θ. Hence, we can apply Theorem 2

and Theorem 6 of Rosen (1965). That is, for some fixed

{ri}
n
i (0 < ri < 1,

Pn

i=1 ri = 1), if the matrix in Eq. (13)

is positive definite, then hN ,Θ, (eci)i has a unique NE.

Jr(θ) =

2
64

r1rθ1,θ1
ec1(θ) . . . r1rθ1,θn

ec1(θ)
...

...

rnrθn,θ1
ecn(θ) . . . rnrθn,θn

ecn(θ)

3
75

(13)

We first let r1 = r2 = ... = rn = 1
n

and decompose Jr(θ)
as follows,

Jr(θ) =
2

n
P+

2�||z� y||22
�2n

(Q+ S+T), (14)

where P and Q are block diagonal matrices such that Pii =
X>X, Pij = 0, Qii = 4θiθ

>
i + θ>

i θiI and Qij = 0,

8i, j 2 N , j 6= i. S and T are block symmetric matrices

such that Sii = θ>
i θiI, Sij = θ>

i θjI, Tii =
P

j 6=i θjθ
>
j

and Tij = θjθ
>
i , 8i, j 2 N , j 6= i.

Next, we prove that P is positive definite, and Q, S and T

are positive semi-definite. Hence, Jr(θ) is positive definite,

which indicates that hN ,Θ, (eci)i has a unique NE. As The-

orem 3 points out, the game has at least one symmetric NE.

Therefore, the NE is unique and must be symmetric. Due to

space limitation the details of this proof are included in the

supplementary material.

4. Computing the Equilibrium

Having shown that hN ,Θ, (eci)i has a unique symmetric

Nash equilibrium, we now consider computing its solu-

tion. We exploit the symmetry of the game which enables

to reduce the search space of the game to only symmet-

ric solutions. Particularly, we derive the symmetric Nash

equilibrium of hN ,Θ, (eci)i by solving a single convex opti-

mization problem. We obtain the following result.

Theorem 5. Let

f(θ) = `(Xθ,y) +
�(n+ 1)

2�2
||z� y||22(θ

>θ)2, (15)

Then, the unique symmetric NE of hN ,Θ, (eci)i, {θ⇤
i }

n
i=1,

can be derived by solving the following convex optimization

problem

min
θ2Θ

f(θ) (16)

and then letting θ⇤
i = θ⇤, 8i 2 N , where θ⇤ is the solution

of Eq. (16).

Proof. We prove this theorem by characterizing the first-

order optimality conditions of each learner’s minimization

problem in Eq. (8) with ci being replaced with its approxi-

mation eci. Let {θ⇤
i }

n
i=1 be the NE, then it satisfies

(η � θ⇤
i )

>rθi
eci(θ⇤

i ,θ
⇤
�i) � 0, 8η 2 Θ, 8i 2 N (17)

where rθi
eci(θ⇤

i ,θ
⇤
�i) is the gradient of eci(θi,θ�i) with

respect to θi and is evaluated at {θ⇤
i }

n
i=1. Then, Eq. (17) is

equivalent to the equations as follows:
(
(η � θ⇤

1)
>rθ1

ec1(θ⇤
1 ,θ

⇤
�1) � 0, 8η 2 Θ,

θ⇤
1 = θ⇤

j , 8j 2 N \ {1}
(18)

The reasons are: first, any solution of Eq. (17) satisfies

Eq. (18), as {θ⇤
i }

n
i=1 is symmetric; Second, any solu-

tion of Eq. (18) also satisfies Eq. (17). By definition of

symmetric game, if θ⇤
1 = θ⇤

j , then rθ1
ec1(θ⇤

1 ,θ
⇤
�1) =

rθj
ecj(θ⇤

j ,θ
⇤
�j), and we have

(η � θ⇤
j )

>rθj
ecj(θ⇤

j ,θ
⇤
�j), 8η 2 Θ, 8j 2 N \ {1}

Hence, Eq. (17) and Eq. (18) are equivalent. Eq. (18) can

be further rewritten as

(η � θ⇤
1)

>rθ1
ec1(θ⇤

1 ,θ
⇤
�1)|θ⇤

1
=...=θ⇤

n
� 0, 8η 2 Θ. (19)

We then let

F (θ⇤
1) = rθ1

ec1(θ⇤
1 ,θ

⇤
�1)|θ⇤

1
=...=θ⇤

n

= 2X>(Xθ⇤
1 � y) +

2�(n+ 1)

�2
||z� y||22θ

⇤
1
>
θ⇤
1θ

⇤
1 .

(20)

Then, F (θ⇤
1) = rθ1

f(θ⇤
1) where f(·) is defined in Eq. (15).

Hence, we have

(η � θ⇤
1)

>rθ1
f(θ⇤

1) � 0, 8η 2 Θ, (21)

This means that θ⇤
1 is the solution of the optimization prob-

lem in Eq.(16) which finally completes the proof.

A deeper look at Eq. (15) reveals that the Nash equilibrium

can be obtained by each learner independently, without

knowing others’ actions. This means that the Nash equi-

librium can be computed in a distributed manner while

the convergence is still guaranteed. Hence, our proposed

approach is highly scalable, as increasing the number of

learners does not impact the complexity of finding the Nash

equilibrium. We investigate the robustness of this equilib-

rium both using theoretical analysis and experiments in the

remaining sections.
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5. Robustness Analysis

We now draw a connection between the multi-learner equi-

librium in the adversarial setting, derived above, and ro-

bustness, in the spirit of the analysis by Xu et al. (2009).

Specifically, we prove the equivalence between Eq. (16) and

a robust linear regression problem where data is maliciously

corrupted by some disturbance 4. Formally, a robust linear

regression solves the following problem:

min
θ2Θ

max
42U

||y � (X+4)θ||22, (22)

where the uncertainty set U = {4 2 R
m⇥d |4T

4 = G :

|Gij |  c|✓i✓j | 8i, j}, with c = β(n+1)
2λ2 ||z� y||22. Note

that θ is a vector and ✓i is the i-th element of θ.

From a game-theoretic point of view, in training phase

the defender is simulating an attacker. The attacker maxi-

mizes the training error by adding disturbance to X. The

magnitude of the disturbance is controlled by a parame-

ter c = β(n+1)
2λ2 ||z� y||22. Consequently, the robustness

of Eq. (22) is guaranteed if and only if the magnitude re-

flects the uncertainty interval. This sheds some light on how

to choose �, � and z in practice. One strategy is to over-

estimate the attacker’s strength, which amounts to choosing

small values of �, large values of � and exaggerated target z.

The intuition of this strategy is to enlarge the uncertainty set

so as to cover potential adversarial behavior. In Experiments

section we will show this strategy works well in practice.

Another insight from Eq. (22) is that the fundamental reason

MLSG is robust is because it proactively takes adversarial

behavior into account.

Theorem 6. The optimal solution θ⇤ of the problem in

Eq. (16) is an optimal solution to the robust optimization

problem in Eq. (22).

Proof. Fix θ⇤, we show that

max
42U

||y � (X+4)θ⇤||22 = ||y �Xθ⇤||22 + c(θ⇤Tθ⇤)
2
.

The left-hand side can be expanded as:

max
42U

||y � (X+4)θ⇤||22

=max
42U

||y �Xθ⇤ �4θ⇤||22

max
42U

||y �Xθ⇤||22 + max
42U

||4θ⇤||22

=max
42U

||y �Xθ⇤||22 + max
42U

θ⇤T
4

T
4θ⇤

(substitute 4
T
4 = G)

=||y �Xθ⇤||22 +max
G

θ⇤TGθ⇤

=||y �Xθ⇤||22 +max
G

dX

i=1

|✓⇤i |
2
Gii + 2

dX

j=1

j�1X

i=1

✓⇤i ✓
⇤
jGij

||y �Xθ⇤||22 + c

dX

i=1

|✓⇤i |
4
+ 2c

dX

j=1

j�1X

i=1

(✓⇤i ✓
⇤
j )

2

=||y �Xθ⇤||22 + c
� dX

i=1

|✓⇤i |
2
�2

=||y �Xθ⇤||22 + c(θ⇤Tθ⇤)
2
.

Now we define 4
⇤ = [

p
c✓⇤1u, · · · ,

p
c✓⇤nu], where ✓⇤i is

the i-th element of θ⇤ and u is defined as:

u ,

(
y�Xθ

⇤

||y�Xθ⇤||2
, if y 6= Xθ⇤

any vector with unit L2 norm, otherwise
(23)

Then we have:

max
42U

ky � (X+4)θ⇤k22

�||y � (X+4
⇤)θ⇤||22

=||y �Xθ⇤ �4
⇤θ⇤||22

=||y �Xθ⇤ �
dX

i=1

p
c|✓⇤i |

2u||22

(u is in the same direction as y �Xθ⇤ )

=||y �Xθ⇤||22 + ||
dX

i=1

p
c|✓⇤i |

2u||22

=||y �Xθ⇤||22 + c(θ⇤Tθ⇤)
2

(24)

6. Experiments

As previously discussed, a dataset is represented by (X,y),
where X is the feature matrix and y is the vector of la-

bels. We use (xj ,yj) to denote the j-th instance and its

corresponding label. The dataset is equally divided into

a training set (Xtrain,ytrain) and a testing set (Xtest,ytest).
We conducted experiments on three datasets: Wine Quality

(redwine),PDF malware (PDF), and Boston Housing Market

(boston). The number of learners is set to 5. Due to space

limitation the experimental results for the boston dataset are

included in supplement.

The Wine Quality dataset (Cortez et al., 2009) contains 1599

instances and each instance has 11 features. Those features

are physicochemical and sensory measurements for wine.

The response variables are quality scores ranging from 0

to 10, where 10 represents for best quality and 0 for least

quality. The PDF malware dataset consists of 18658 PDF

files collected from the internet. We employed an open-

sourced tool mimicus1 to extract 135 real-valued features

1https://github.com/srndic/mimicus
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