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Abstract

The problem of assigning tasks to workers is of
long-standing fundamental importance. Examples
of this include the classical problem of assigning
computing tasks to nodes in a distributed com-
puting environment, assigning jobs to robots, and
crowdsourcing. Extensive research into this prob-
lem generally addresses important issues such as
uncertainty and incentives. However, the problem
of adversarial tampering with the task assignment
process has not received as much attention.

We are concerned with a particular adversarial set-
ting where an attacker may target a set of workers
in order to prevent the tasks assigned to these work-
ers from being completed. When all tasks are ho-
mogeneous, we provide an efficient algorithm for
computing the optimal assignment. When tasks are
heterogeneous, we show that the adversarial assign-
ment problem is NP-Hard, and present an algorithm
for solving it approximately. Our theoretical results
are accompanied by extensive experiments show-
ing the effectiveness of our algorithms.

1 Introduction

The problem of allocating a set of tasks among a collec-
tion of workers has been a fundamental research question in
a broad array of domains, including distributed computing,
robotics, and, recently, crowdsourcing [Alistarh et al., 2012;
Stone and Veloso, 1999; Liu and Chen, 2017]. Despite the
extensive interest in the problem, however, there is little prior
work on task assignment in settings where workers may be
attacked. Such adversarial task assignment problems can
arise, for example, when tasks are of high economic or po-
litical consequence, such as in robotic rescue missions fol-
lowing terror activities, or crowdsourcing to determine which
executables are malicious or benign, or which news stories
constitute fake news.

We investigate the adversarial task assignment problem in
which a rational external attacker targets one or more work-
ers after tasks have already been assigned. Equivalently, this
can be viewed as a robust task assignment problem with un-
known uncertainty about worker failures. We formalize the
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interaction between the attacker and requester (defender) as a
Stackelberg game in which the defender first chooses an as-
signment, and the attacker subsequently attacks a set of work-
ers so as to maximize the defender’s losses from the attack.
We seek a strong Stackelberg equilibrium (SSE) of this game
and focus on computing an optimal robust assignment.

Our analysis begins with a setting in which tasks are ho-
mogeneous, that is, all tasks have the same utility for the
defender (e.g., rescue soldiers from a battlefield, or label a
large dataset of images). We characterize the optimal struc-
ture of a robust assignment, and use this insight to develop
an algorithm that extracts this assignment in time linear in
the number of tasks and targets, and quadratic in the number
of workers. We show that this algorithm significantly out-
performs several baselines, and obtains a good solution even
when no adversary is present.

Next, we turn to heterogeneous task settings. This case,
it turns out, is considerably more challenging. Specifically,
we show that it may be beneficial to assign more than a sin-
gle worker to a task. Moreover, even if we impose a restric-
tion that only a single worker can be assigned to a task (op-
timal when tasks are homogeneous), extracting the optimal
assignment is strongly NP-Hard. To overcome this issue, we
propose an integer programming approach for solving the re-
stricted problem, as well as an algorithm for finding an ap-
proximately optimal assignment in the general case. Again,
our experiments show that our approach significantly outper-
forms several baselines.

Related Work The problem of task assignment in adver-
sarial settings has been considered from several perspectives.
One major stream of literature is about robots acting in ad-
versarial environments. Alighanbari and How [2005] con-
sider assigning weapons to targets, somewhat analogous to
our problem, but do not model the decision of the adver-
sary; their model also has rather different semantics than ours.
Robotic soccer is another common adversarial planning prob-
lem, although the focus is typically on coordination among
robots when two opposing teams are engaged in coordination
and planning [Jones et al., 2006].

Another major literature stream which considers adver-
sarial issues is crowdsourcing. One class of problems is a
number of workers to hire [Carvalho er al., 2016], the is-
sue of individual worker incentives in truthfully responding
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to questions [Singla and Krause, 2013], or in the amount
of effort they devote to the task [Tran-Thanh er al., 2014;
Elmalech et al., 2016; Liu and Chen, 20171, rather than ad-
versarial reasoning per se. Another, more directly adversar-
ial setting, considers situations where some workers simply
answer questions in an adversarial way [Ghosh er al., 2011;
Steinhardt et al., 2016]. However, the primary interest in
this work is robust estimation when tasks are assigned ran-
domly or exogenously, rather than task assignment itself.
Similarly, prior research on machine learning when a por-
tion of data is adversarially poisoned [Chen et al., 2011;
Xu et al., 2010; Feng et al., 2014; Chen et al., 2013;
Liu er al., 2017] focuses primarily on the robust estimation
problem, and not task assignment; in addition, it does not
take advantage of structure in the data acquisition process,
where workers, rather than individual data points, are at-
tacked. Other works [Gu et al., 2005; Alon et al., 2015] focus
on the change of the system after the assignment process and
the structure of the social network rather than the assignment
process itself.

Our work has a strong connection to the literature on
Stackelberg security games [Conitzer and Sandholm, 2006;
Korzhyk et al., 2010; Tambe, 2011]. However, the mathe-
matical structure of our problem is quite different. For exam-
ple, we have no protection resources to allocate, and instead,
the defender’s decision is about assigning tasks to potentially
untrusted workers.

2 Model

Consider an environment populated with a single requester
(hereafter denoted by “defender”), a set of n workers, W,
a set of m tasks, 7', and an adversary. Furthermore, each
worker w € W is characterized by a capacity constraint c,,,
which is the maximum number of tasks it can be assigned,
and an individual proficiency or the probability of success-
fully completing a task, denoted by p,,. Worker proficiencies
are assumed to be common knowledge to both the defender
and attacker. Such proficiencies can be learned from expe-
rience [Sheng et al., 2008; Dai et al., 2011; Manino et al.,
2016]; moreover, in many settings, these are provided by the
task assignment (e.g., crowdsourcing) platform, in the form
of a reputation system [Mason and Suri, 2012].

For exposition purposes, we index the workers by inte-
gers ¢ in decreasing order of their proficiency, so that P =
(p1;---,Pn) st. p; > p; Vi < j, and denote the set of k
most proficient workers by W*. Thus, the capacity of worker
1 would be denoted by c¢;. Each task ¢ € T is associated with
a utility u, that the defender obtains if this task is completed
successfully. If the task is not completed successfully, the
defender obtains zero utility from it.

We focus on the common case where the defender faces a
budget constraint of making at most B < m assignments; the
setting with B > m necessitates different algorithmic tech-
niques, and is left for future work. The defender’s fundamen-
tal decision is the assignment of tasks to workers. Formally,
an assignment s specifies a subset of tasks 7”(s) and the set
of workers, W;(s) assigned to each task ¢ € T”(s).

Suppose that multiple workers are assigned to a task ¢, and
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let L;(s) denote the labels returned by workers in Wy(s) for ¢
(for example, these could simply indicate whether a worker
successfully complete the task). Then the defender deter-
mines the final label to assign to ¢ (e.g., whether or not the
task has been successfully completed) according to some de-
terministic mapping d : L:(s) — [ (e.g., majority label), such
that L € {1,...,5 W™l and I € {1,...,5;}. Naturally,
whenever a single worker w is a assigned to a task and re-
turns a label [,,, §(1,,) = l,,. Let ¢; be the (unknown) correct
label corresponding to a task ¢; this could be an actual label,
such as the actual object in the image, or simply a constant 1
if we are only interested in successful completion of the task.
The defender’s expected utility when assigning a set of tasks
T’(s) to workers and obtaining the labels is then

Udef(s) = Z up Pr{d(L¢(s)) = 14}, (1)

teT’(s)

where the probability is with respect to worker proficiencies
(and resulting stochastic realizations of their outcomes).

It is immediate that in our setting if there is no adversary
and no capacity constraints for the workers, all tasks should
be assigned to the worker with the highest p,,. Our focus,
however, is how to optimally assign workers to tasks when
there is an intelligent adversary who may subsequently (to the
assignment) attack a set of workers. In particular, we assume
that there is an adversary (attacker) with the goal of minimiz-
ing the defender’s utility . ; thus, the game is zero-sum. To
this end, the attacker chooses a set of 7 workers to attack, for
example, by deploying a cyber attack against the correspond-
ing computer nodes, physical attacks on search and rescue
robots, or attacks against the devices on which the human
workers performs their tasks. Alternatively, our goal is to
be robust to T-worker failures (e.g., N-7-robustness [Chen et
al., 2014]). We encode the attacker’s strategy by a vector a
where «,, = 1 iff a worker w is attacked (and Zw Qy = T
since 7 workers are attacked). The adversary’s attack takes
place after the tasks have already been assigned to workers,
where the attacker knows the actual assignments of tasks to
workers before deploying the attack, and the consequence of
an attack on a worker w is that all tasks assigned to w fail to
be successfully completed.

Clearly, when an attacker is present, the policy of assign-
ing all tasks to the most competent worker (when there are no
capacity constraints) will yield zero utility for the defender,
as the attacker will simply attack the worker to whom all the
tasks are assigned. The challenge of how to split the tasks
up among workers, trading off quality with robustness to at-
tacks, is the subject of our inqury. Formally, we aim to com-
pute a strong Stackelberg equilibrium of the game between
the defender (leader), who chooses a task-to-worker assign-
ment policy, and the attacker (follower), who attacks a single
worker [Stackelberg, 1952].

3 Homogeneous Tasks

We start by considering tasks which are homogeneous, that
is, uy = uy for any two tasks ¢, t’. Without loss of generality,
suppose that all u; = 1. Note that since all tasks share the
same utility, if B < m, the defender is indifferent regarding
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the identity of tasks being assigned. Further, it is immediate
that we never wish to waste budget, since assigning a worker
always results in non-negative marginal utility. Consequently,
we can simply randomly subsample B tasks from the set of
all tasks, and consider the problem with m = B.

We overload the notation and use s = {s1,..., s, } to de-
note the number of tasks allocated to each worker. Although
the space of deterministic assignments is large, we now ob-
serve several properties of optimal assignments which allow
us to devise an efficient algorithm for this problem.

Proposition 1. Suppose that tasks are homogeneous. For any
assignment s there is a weakly utility-improving assignment
s’ for the defender which assigns each task to a single worker.

Proof. Consider an assignment s and the corresponding best
response by the attacker, «, in which a worker w is at-
tacked. Let a task ¢ be assigned to a set of workers W; with
|Ws| = k > 2. Then there must be another task ¢’ which is
unassigned. Now consider a worker w € Wj. Since utility
is additive, we can consider just the marginal utility of any
worker w’ to the defender and attacker; denote this by .
Let T, be the set of tasks assigned to a worker w’ under
s. Letuy = D e uM | where ul, = u; Pr{§(L:(s)) =
t} — ug Pr{d(L¢(s) \ L}") = ¢} is the marginal utility of
worker of w towards a task ¢. Clearly, u,, < ug, since the
attacker is playing a best response.

Suppose that we reassign w from ¢ to ¢'. If w = w, the
attacker will still attack w (since the utility of w to the attacker
can only increase), and the defender is indifferent. If w #
w, there are two cases: (a) the attacker still attacks w after
the change, and (b) the attacker now switches to attack w.
Suppose the attacker still attacks w. The defender’s net gain
1S Py — ufy{ > 0. If, instead, the attacker now attacks w, the
defender’s net gain is ug — Uy > 0. O

Consequently, we can restrict the set of assignments to
those which assign a single worker per task; we denote this
restricted set of assignments by .S. Given a assignment s € S
and the attack strategy «, the defender’s expected utility is:

udef(57a) = Z Swp'w(l - aw) 2)

weWw

Next, we show that there is always an optimal assignment that
assigns tasks to the & most proficient workers, for some k.

Proposition 2. In an optimal assignment s, suppose that s; >
0 for i > 1. Then there must be an optimal assignment in
which s;_1 > 0.

Proof. Consider an optimal assignment s and the attacker’s
best response « in which W is the set of workers being at-
tacked. Now, consider moving 1 task from ¢ to ¢ — 1. We de-
note the updated set of workers attacked (due to this change)
as W’. Suppose that 7 € W, that is, the worker 7 was initially
attacked. If ¢ — 1 € W, there are two potions: 1) i € W’
(i.e., % is still being attacked) and hence the net gain to the
defender does not change, and 2) ¢ ¢ ¥/ and hence the net
gain to the defender is p; (|T;| — 1) > 0. If s — 1 ¢ W, the
net gain is p;_1 > 0. Suppose that i ¢ W. If i — 1 is now
attacked, the net gain is py,(|T| — 1) > 0 (where w € W

and w ¢ W'). Otherwise (i.e., i — 1 ¢ W), the net gain is
pi-1 —pi 2 0. ]

We can now present an assignment algorithm for optimal
assignment (Algorithm 1) which has complexity O(n?mr).
The intuition behind the algorithm is to consider each worker
1 as a potential target of an attack, and then compute the best
assignment subject to a constraint that ¢ is attacked (i.e., that
p;is; > pjs; for all other workers j # ¢). Subject to this
constraint, we consider all possible numbers of tasks that can
be assigned to ¢, and then assign as many tasks as possible
to the other workers in order of their proficiency (where the
7 workers that contribute the most to the defender’s utility
are attacked). The only special case (Steps 7-10) is when
assigning the last worker. In this case, it may be beneficial
to alternate the last two workers’ assignments to result in a
more beneficial overall assignment. Optimality follows from
the fact that we exhaustively search possible targets and allo-
cation policies to these, and assign as many tasks as possible
to the most effective workers.!

Algorithm 1 Homogeneous assignment

input: The set of workers W, and their proficiencies P
return: The optimal policy s*

I: Upas < 0

2: forie {1,...,n} do

3: fors; €{l,...,¢;} do

4: Tz — szpuB —m—S;

5: for j€{1,...,n}\i do

6: s; %min({%siJ,B,cj),BeB—sj

7: ifj <nAB+1< min({pﬁlsiJ —1,¢j41) then
8: s’es,s}esjfl

9: if wges (s, ) < ugef(s’,a’) 4+ pji1 then
10: Sj(—Sj—l,B(—B—ﬁ-l

11: Tj < S;Dj

12: Sort T in ascending order

13: util <= > _1 Ty

14: if util > U q, then

15: Uz — Util, s* < s

16: return s*

4 Heterogeneous Tasks

It turns out that the more general problem in which utilities
are heterogeneous is considerably more challenging than the
case of homogeneous allocation. First, we show that even if
the tasks’ utilities are slightly different, it may be beneficial
to assign the same task to multiple workers. Consider the
case of an environment populated with 2 workers and 2 tasks.
WLOG, we order the tasks by their utility, i.e., u;, > uy,. Re-
gardless of the workers’ proficiencies, assigning one worker
per task will result in an expected utility of min(p;u, , pjue,).

'A detailed proof of Algorithm 1’s optimality is available at:
https://arxiv.org/abs/1804.11221
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On the other hand, assigning both workers to ¢; will result in
an expected utility of min(p;uy, , p;jus, ) which is promised
to be equal or higher. Aside from the considerably greater
complexity challenge associated with solving problems with
heterogeneous utilities suggested by this example, there is the
additional challenge of incorporating (non-linear) decision
rules into the optimization problem to resolving disagreement
among workers, should it arise.

We begin by showing that if B < m, there is an optimal as-
signment in which only the B tasks associated with the high-
est utility are included.

Proposition 3. Suppose that tasks are heterogeneous. For
any assignment s there is a weakly utility-improving (i.e., re-
sults in the same or higher utility) assignment s’ for the de-
fender which only assigns tasks from the set of tasks with the
B highest utilities.

Proof. For readability, we assume that tasks are ordered
based on their utility in decreasing order (i.e., u; > u;, Vi <
7), and that a single worker is assigned per task; generaliza-
tion is straightforward. Consider an assignment s and the
corresponding best response by the attacker, «, in which the
set of workers W is attacked. Let a task ¢; be s.t. ¢ > B.
Then there must be another task ¢;, s.t. j < B, which is
unassigned. Now consider a worker w € W;,. Since utility
is additive, we can consider just the marginal utility of any
worker w’ to the defender and attacker; denote this by w,,.
Let T, be the set of tasks assigned to a worker w’ under s.
Let uy = > e, uM., where ul, is the marginal utility of
worker of w towards a task . -
Suppose that we reassign w from ¢; to ;. If w € W,
the attacker will still attack w (since the utility of w to the
attacker can only increase), and the defender is indifferent. If
w ¢ w, there are two cases: (a) the attacker still attacks W
after the change, and (b) the attacker now switches to attack
w. Suppose the attacker still attacks W. The defender’s net
gain is p,,u; — uf}‘ff > 0. If, instead, the attacker now attacks
w, the defender’s net gain is .y — Uy > 0. Where w’ is the
worker that is not being attacked anymore. O

This allows us to restrict attention to the B highest-utility
tasks, and assume that m = B.

We now show that the defender’s assignment problem, de-
noted Heterogeneous tasks assignment (HTA), is NP-Hard
even if we restrict the strategies to assign only a single worker
per task.

Proposition 4. HTA is strongly NP-Hard even when we as-
sign only one worker per task.

Proof. We prove the proposition by reducing the deci-
sion version of the Bin packing problem (BP), which is a
strongly NP-complete problem, to the decision version of
the HTA problem. In the BP problem we are given a set
{01,09,...,0, } of m objects of sizes {v1,va,..., v} and a
set of n containers {C1, Cs, ..., Cy, }, each of size v, and we
need to decide if all the objects can be fitted into the given
containers. Our transformation maps the set of m objects
to a set of m + 1 tasks T = {t1,%2, ..., timr1} With utilities
{v1,v2, ..., Um, 7} and the set of n containers to a set of n+ 1

workers W = {wy,ws, ..., wnp11}. We consider the private
case where all the workers have the same proficiency p (i.e.
Pw = p,Yw € W). The decision version of the HTA prob-
lem asks if there exists an assignment of the m + 1 tasks to
the n + 1 workers that achieves a utility of at least pV/, where
V = Zy;l Vi.

If we started with a YES instance of the BP problem, then
there exists an assignment A that fits all m objects into the
n containers. Consider the following assignment of tasks to
workers in the HTA problem. If A(0;) = C};, we assign task
t; to worker w;. Also, we assign task ¢,,,41 (with utility ) to
worker w,, 1. Note that no worker can achieve an individual
utility greater than p~y, which is achieved by worker w, 1.
Thus, the utility of the overall task assignmentis >\~ | pv; +
py — py = pV, meaning that our transformation produced a
YES instance of the HTA problem.

Now suppose that we ended up with a YES instance of
the HTA problem. Then there exists a task assignment B
such that the sum of utilities (VV*) minus the adversarial
harm (v*) is at least pV (i.e. V* —~* > pV). Note that
V*=>"i=1"pv; + py = pV + pv (each task is assigned
to some worker). This implies pV + py — v* > pV and
~*/p < ~. Thus the utility sum (before performance p is
applied) of the tasks assigned to any single worker cannot
exceed ~y. This could only happen if task ¢,,4; (with util-
ity ) was the only task assigned to the corresponding player.
WLOG let that worker be w,, 1. All other tasks must have
been assigned to workers {wq, wa, ..., wy }. It is easy to see
that this implies a feasible assignment of objects to containers
in the BP problem - if B(t;) = w;, for 1 < j < m, then we
place object o; in container C;. Thus the transformation must
have started off with a YES instance of the BP problem. [

‘We now propose an algorithm which computes an approxi-
mately optimal assignment. We begin by supposing that only
one worker can be assigned per task (we relax this shortly).
In this case, the optimal attack can be computed using the
following linear integer program:

max Z [’ Z SwtUtPw (3a)

weW teT

s.t.: Z Qy =T (3b)
weWw
ay, € {0,1}. (3c)

The objective (3a) aims to maximize the effect of the attack
(i.e., the utility of the targets). Constraint (3b) ensures that
the adversary attacks exactly 7 workers. First, note that the
extreme points of the constraint set are integral, which means
we can relax the integrality constraint to v, € [0, 1]. In order
to plug this optimization into the defender’s optimal assign-
ment problem, we convert this relaxed program to its dual
form:

i 4
rf\nﬂn AT + ; Buw (4a)
St A+ By > pw Z Swills VW (4b)

teT
8>0. (40)
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Thus, the optimal assignment can be computed using the fol-
lowing linear integer program:

max w wtly — 5
Jnax, Puw Y Switl — 7 (Sa)
weWw teT
st.iy = AT+ > B (5b)
w
A+ Bu =D Swrttpu, Y € W (5¢)
teT
> su=m (5d)
weW teT
> sut=1VteT (Se)
D sut < cuw,Vw €W (5f)
t
swt € {0,1}. (52

The objective (5a) aims to maximize the defender’s expected
utility given the adversary’s attack (second term). Constraint
(5b and 5c) validates that the adversary’s targets are the work-
ers who contribute the most to the defender’s expected utility
and Constraint (5d) ensures that each allocation assigns all
the possible tasks among the different workers. Finally, Con-
straint (5e) ensures that only one worker is assigned for each
task and Constraint (5f) ensures that no worker is assigned
with more tasks than it can perform.

Next, we propose a greedy algorithm that attempts to in-
crementally improve utility by shifting workers among tasks,
now allowing multiple workers to be assigned to a task.
Whenever more than one worker is assigned to a given task,
the defender has to choose a deterministic mapping ¢ to de-
termine the outcome. We consider a very broad class of
weighted majority functions for this purpose (natural if suc-
cessful completion of a task means that the worker returned
the correct label). In this mapping, each worker w is as-
signed a weight 6,,,, and the final label is set according to the
weighted majority rule, i.e., 6(Li) = sgn(}_,cw, s) Owlw)-

In order to approximate the defender’s expected utility, we
use the sample average approximation (SAA) [Kleywegt et
al., 2002] for solving stochastic optimization problems by
using Monte-Carlo simulation. Using this approach, the de-
fender’s utility can be approximated by:

<§: H{SgnszW/ Swtewcwtk:}>

Uaef (Cr, W) =Y g

teT

K
k=1

(6)
where C'i is a set of K matrices, each of size n over m.
Each cell C,, is a randomly sample based on p,, represents
whether or not the worker w successfully completed the task.
That is, Cyix = 1 if worker w successfully completed task
t, and Cy,;; = 0 otherwise. In a similar manner, s,,; = 1 if
worker w is assigned to task ¢, and s,,; = 0 otherwise.
Algorithm 2 formally describes the computation of this as-
signment. Given an optimal assignment extracted using the
mixed-integer linear program in Equation (5), we iteratively
alternate over all tasks in ascending order based on their util-
ity. For each task, we reassign the worker associated with
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this task to the most beneficial task. If this reassignment im-
proves the defender’s utility, we label it as beneficial (Steps
9 and 10). Finally, we commit to the reassignment that will
maximize the defender’s utility (Step 12).

Algorithm 2 Heterogeneous assignment

input: The set of workers W, and their proficiencies P
return: The heuristic deterministic allocation

1: Extract the optimal 1-worker allocation using Equation 5
2: util < udef(C'K, Oé)
3 forte{1,...,m} do

4: forwe{l,...,n}do

5: t=t

6: if s,,; = 1 then

7 fort' € {m,...,t+ 1} do

8 Swtr = 1, 84t = 0, Update av
9 if uge (Cre, ) > util then
10: t =t', util < uges(Ck, )
11: Swt! = 0, Swt = 1

12: St =0,5,7=1

13: return s

S Experiments

We now experimentally demonstrate the effectiveness of our
proposed approaches. Workers’ proficiencies are sampled us-
ing two distributions: a uniform distribution over the [0.5, 1]
interval and an exponential distribution with o = 0.25 where
proficiencies are truncated to be in this interval for the lat-
ter. We compare our adversarial assignment algorithms to
three natural baselines: Split-k and two versions of Monte-
Carlo (involving random assignment of tasks to workers).
Specifically, for the Split-k£ method, we divide tasks equally
among the top k workers.> For the Monte-Carlo approach,
we consider a simple variant which randomly distributes tasks
among all the workers, denoted by Monte-Carlo, and a vari-
ant of this which randomly distributes the tasks among the top
[ %] workers, denoted by Top Monte-Carlo. In both cases, the
assigned worker for each task is picked uniformly at random.

Homogeneous Tasks We begin by considering homoge-
neous tasks. For each experiment, we take an average of
5,000 sample runs.

Figure 1 presents the results comparing our algorithm to
baselines for 50 workers and tasks. As the figure shows, our
algorithm outperforms the baselines, and the gap becomes
particularly pronounced as the number of targets increases.
Moreover, there doesn’t appear to be a qualitative difference
between uniform and exponential distribution in this regard.

It is natural that we must trade off robustness with perfor-
mance of robust algorithms in non-adversarial settings. We
therefore conclude the homogeneous analysis by analyzing
the loss incurred by allowing for robustness, compared to a
solution which is optimal in non-adversarial settings. We vary

>The remainder is assigned in an iterative way from the least
proficient worker to the most proficient one.
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Expected utility

s e 7 4 s e
Targets Targets

(a) Uniform distribution (b) Exponential distribution

Figure 1: Homogeneous tasks: comparison to baseline methods.

[CIMonte-Carlo
[C—ITop Monte-Carlo

Expected utility
Expected utility

Targets Targets

(a) Uniform distribution (b) Exponential distribution

Figure 2: Heterogeneous tasks: comparison to baseline methods.
the number of workers from 2 to 50, and fix the number of

tasks at 100 and the number of targets optimized against at
t=1.

[Workers | 5 | 10 | 15 | 20 | 25 | 30 [ 35 | 40 | 45 | 50 |
[ Exp. loss | 24.9% | 174% | 1527% | 13.2% | 11.6% | 8.6% | 5.8% | 5.8% | 6.5% | 4.6% |

Table 1: Expected loss of using adversarial assignment in non-
adversarial settings.

Table 1 shows the expected loss of using adversarial task
assignment in a non-adversarial settings. With only 5 work-
ers, we pay a steep price (just under 25%), but as the number
of workers increases, the loss shrinks; with 50 workers, we
only lose 4.6% compared to optimal non-robust assignment.

Heterogeneous Tasks We used CPLEX version 12.51 to
solve the integer linear program above.

First, we analyze how the heterogeneous assignment given
in mixed-integer linear program (MILP) (5) performs com-
pared to the baselines when task utilities are sampled from
UJ0, 1] and worker proficiencies are samples from U[0.5, 1].
We use similar baseline methods to the ones used in studying
homogeneous task assignment.

Figure 2 depicts the expected utility for the defender when
using each of the methods in an environment populated with
15 tasks and 10 workers where the number of targets the ad-
versary attacks varies between 1 and 5 over 3, 000 runs. As is
evident from the figure, even the baseline mixed-integer lin-
ear program (which assumes a single worker is assigned per
task) significantly outperforms the baselines, with the differ-
ence growing as we increase the number of workers attacked.

Next, we evaluate how much more we gain by using Algo-
rithm 2 after computing an initial assignment using MILP (5).
In these experimets we use a natural weighted majority deci-
sion rule with 8,, = p,, (i.e., workers’ proficiencies), and set
K = 2500. We consider two uniform distributions for this
study: U[0, 1] and U0, 100]. Each marginal improvement is
averaged over 3,000 runs.
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Dist. Tasks n=2 n=3 n=4 | n=5 [ n=6 ]
U[o,1] 3 57.08% | 37.10%

Ul[0,1] 4 26.47% 9.88% 9.17%

U[0,1] 5 22.03% 3.83% 3.39% | 3.46%

U[o,1] 6 19.98% 2% 1.79% | 1.93% | 1.66% ‘
U[0,100] 3 56.9% 37.92%

UJ[0,100] 4 28.69% 9.59% 8.86%

U[0,100] 5 20.02% 3.59% 3.51% | 3.49%

U[0,100] 6 17.41% 1.59% 1.71% | 1.64% | 1.77% ‘

Table 2: Average improvement using Algorithm 2; 7 = 1.

Dist. Tasks n=3 n=4 [ n=5 [ n=6 |
00,11 3 [ 1115.41%
Ul[0,1] 4 46.27% 49.75%
UJ[0,1] 5 19.52% 16.01% | 21.68%
UJ[0,1] 6 9.88% 7.49% 10.9% 12.18% ]
UJ[0,100] 3 1130.13%
UJ[0,100] 4 58.23% 64.45%
U[0,100] 5 17.97% 14.62% | 21.21%
UJ[0,100] 6 8.62% 7.05% 9.83% 11.51% ]

Table 3: Average improvement using Algorithm 2; 7 = 2.

The results are shown in Tables 2 and 3. We can see that
there are cases where assigning multiple workers per task can
offer a significant benefit. However, as the problem size in-
creases, this benefit significantly attenuates, and it may suf-
fice to just rely on the assignment obtained from the MILP.

6 Conclusion

We consider the problem of assigning tasks to workers when
workers can be attacked, and their ability to successfully com-
plete assigned tasks compromised. We show that the optimal
assignment problem (in the sense of Stackelberg equilibrium
commitment), when the attack takes place after the tasks have
been assigned to workers, can be found in pseudo-polynomial
time. Furthermore, when tasks are heterogeneous, we show
that the problem is more challenging, as it could be optimal
to assign multiple workers to the same task. Even if we con-
strain the assignment such that only one worker is assigned
per task, extracting the optimal assignment becomes strongly
NP-Hard (we exhibit an integer linear program for the lat-
ter problem). Finally, we provide with an algorithm of con-
verting this constraint assignment to one that allows multiple
workers per task (and hence approximate optimal allocation).
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