
Scalable Initial State Interdiction for Factored MDPs

Swetasudha Panda and Yevgeniy Vorobeychik

Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN

{swetasudha.panda,yevgeniy.vorobeychik}@vanderbilt.edu

Abstract

We propose a novel Stackelberg game model of
MDP interdiction in which the defender modifies
the initial state of the planner, who then responds
by computing an optimal policy starting with that
state. We first develop a novel approach for MDP
interdiction in factored state space that allows the
defender to modify the initial state. The result-
ing approach can be computationally expensive for
large factored MDPs. To address this, we develop
several interdiction algorithms that leverage vari-
ations of reinforcement learning using both linear
and non-linear function approximation. Finally,
we extend the interdiction framework to consider
a Bayesian interdiction problem in which the inter-
dictor is uncertain about some of the planner’s ini-
tial state features. Extensive experiments demon-
strate the effectiveness of our approaches.

1 Introduction

Stackelberg games have been widely used in recent years to
model the strategic interaction between a defender and an at-
tacker in security problems in a variety of settings [Jain et
al., 2008; Korzhyk et al., 2011; Paruchuri et al., 2008]. Ex-
amples include physical security (such as air marshall assign-
ment and coast guard patrols), sustainability (such as secu-
rity measures to prevent poaching), and computer network
security. Commonly in such models the defender assigns se-
curity resources to targets, and the attacker chooses which
target(s) to attack. However, in many settings the attacker
performs a series of activities to accomplish their malicious
goal. For example, in physical security these may involve
reconnaissance, the choice of equipment to bring, and the
path to take to targets which is taken. A general way to cap-
ture such multi-stage attacks is planning [Boddy et al., 2005;
Obes et al., 2013; Ammann et al., 2002; Ng et al., 2010;
Krautsevich et al., 2012]. The defensive actions in such a
scenario can then be viewed as plan interdiction [Letchford
and Vorobeychik, 2013], whereby a defender deploys protec-
tive measures to compromise the ability of the attacker to suc-
cessfully execute its plan.

Letchford and Vorobeychik [2013] first introduced a Stack-
elberg game framework for plan interdiction, where the de-

fender removes a subset of attack actions and the adversary
computes an optimal attack plan in the restricted action space.
While interdiction of deterministic plans was quite scalable,
the approach scaled poorly when modeling uncertainty with
Markov Decision Processes (MDPs). Panda and Vorobey-
chik [2017] proposed an interdiction algorithm for MDPs
with a factored representation of states. However, even this
approach suffers from significant scalability limitations, par-
ticularly in capturing uncertainty about the attacker.

We propose a novel interdiction model in which the de-
fender modifies the initial state of the attacker. This is
quite general: for example, we can model prior interdiction
approaches by adding action-specific preconditions as state
variables. However, we show that this change enables sig-
nificantly simpler and far more scalable interdiction tech-
niques which rely on single-level integer linear programming,
in contrast to difficult bi-level problems faced in prior art.
We further improve scalability by using model-free reinforce-
ment learning techniques with linear and non-linear action-
value function approximators. In the former, we make use of
a Fourier basis approximation for Boolean functions, develop
methods for iteratively constructing a small subset of basis
functions, and formulate an integer linear program for opti-
mal interdiction. For the latter, we propose two iterative local
search methods, the first optimizing one variable at a time,
and the second using iterative linear approximations. Finally,
we present a natural extension of our interdiction framework
to Bayesian interdiction, in which the defender is uncertain
about parameters of the attacker’s planning problem.

We demonstrate the effectiveness and scalability of our
proposed approaches compared to baseline alternatives on re-
alistic examples from the international planning competition.

2 Preliminaries

MDPs and Factored MDPs A discounted infinite-horizon
MDP is defined as a tuple M = (X, A,R, P, γ) where X

is a finite set of |X| states; A is a finite set of actions; R is
a reward function R : X × A 7→ R, in which R(x, a) is
the reward obtained by the agent in state x after taking ac-
tion a; P is a Markovian transition model where P (x′|x, a)
is the probability of moving from state x to x

′, after taking
action a; and γ ∈ [0, 1) is the discount factor which expo-
nentially discounts future rewards. Such MDPs always admit
an optimal stationary deterministic policy, which is a map-
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ping π : X 7→ A, where π(x) is the action the agent takes
at state x [Puterman, 1994]. Each policy is associated with
a value function Vπ(x): the discounted cumulative value ob-
tained by starting at state x and following policy π. Formally,

Vπ(x) = Eπ[
∑∞

t=0 γ
tR(Xt, π(Xt))

∣

∣x
(0) = x], where X

(t)

represents the state after t steps.
The optimal policy π∗ can be computed as the greedy pol-

icy with respect to the optimal value function V∗, π∗ =
argmaxa[R(x, a) + γ

∑

x′ P (x′|x, a)V∗(x′)]. The optimal
action-value function Q∗(x, a) is the expected utility of tak-
ing action a in state x and following the optimal policy there-
after. The discounted reward MDP is a natural model for se-
curity, since attackers prefer to achieve their goals (positive
rewards) earlier, and incur costs (negative rewards) later. Ad-
ditionally, the attack which takes too many steps has far more
opportunities to fail in practice.

Factored MDPs exploit structure for compact representa-
tion. The set of states is described by a set of m random state
variables X = {X1, . . . , Xm}. The transition model is repre-
sented as the product of local factors by using a DBN and the
reward function as the sum of a set of localized reward func-
tions. A factored (linear) value function ([Koller and Parr,
1999]) V is a linear function over a set of basis functions

B = {φ1, . . . , φk}, such that V(x) =
∑k

j=1 wjφj(x) for

some coefficients w, where the scope of each φi is restricted
to some subset of variables. The constant basis with empty
scope is always included for feasibility. The approximate LP
is given by Guestrin et al. [2003]:

minimize
∑

j

αjwj , subject to (1a)

∀a,maxx{R
a(x) +

∑

j

wj [γg
a
j (x)− φj(x)]} ≤ 0 (1b)

where Ra(x) is the factored reward, αj =
∑

x
α(x)φj(x)

for some state relevance parameters α(x) > 0 with
∑

x
α(x) = 1, and gaj (x) =

∑

x′ P (x′|x, a)φj(x
′) is the

factored expected future value.

Learning the Value Function with Function Approxima-
tion In model-free reinforcement learning (RL) algorithms
(e.g., Q-learning [Watkins and Dayan, 1992; Sutton and
Barto, 1998]), the agent interacts with the environment in
a sequence of actions with the goal of maximizing future
rewards. The value function is directly approximated us-
ing the Bellman equation as an iterative update Q′(xt, a) =
E[r + γmaxa′Q(xt+1, a′)|x, a]. To incorporate generaliza-
tion, linear and non-linear function approximation are com-
monly used [Sutton and Barto, 1998]. Recently, popular RL
with deep neural networks algorithms store the agent’s data
in memory and sample random batches for learning (experi-
ence replay) to deal with correlated data, non-stationary dis-
tributions, and convergence issues in learning with neural net-
works [Mnih et al., 2013].

3 MDP State Interdiction

We model MDP interdiction as a Stackelberg (two-stage, one-
shot) game with two players: defender and attacker. The de-
fender is the Stackelberg leader, choosing an optimal inter-

diction policy. In our model, and unlike prior work, the de-
fender transforms a given initial state of the MDP, x0 (which
represents an initial or default configuration) into a new start
state, x′

0 of the attacker’s MDP. Note that this model is quite
general. For example, we can capture removing an action by
adding to it a binary precondition such that the action is not
applicable when this precondition is false; removing this ac-
tion is then equivalent to negating this precondition in x

′
0

The attacker is the follower, and computes an MDP pol-
icy beginning with the start state x

′
0 chosen by the defender.

In many settings of interest, such as cybersecurity, the state
variable domains are finite and relatively small (indeed, prior
work has modeled it using deterministic planning [Boddy et
al., 2005]), and we can therefore represent the associated
planning problems as MDPs with binary variables. Conse-
quently, we henceforth assume that the state space is com-
prised of a collection of binary variables.

Formally, the MDP state interdiction problem (MDPSI)
is defined by an MDP M = {X, A,R(x, a), γ}, where
X, A,R(x, a), γ are the state space, action space, reward
function, and the discount factor of an infinite-horizon dis-
counted MDP which the attacker is solving, as well as the
defender’s reward function RD(x, a) and interdiction costs
ρ(x′

0,x0) =
∑

i ρi|x
′
i0 − xi0| of modifying an initial state

x0 into x
′
0, where ρi is the cost of modifying variable i. Note

that this cost can also capture inability to modify specific state
variables (the corresponding cost is then infinite).

We assume that the game is zero-sum (modulo interdiction
costs), so that RD(x, a) = −R(x, a). Define V(x0, π) as the
attacker’s value function for a policy π starting at state x0 in
MDP M. Let Π be the set of deterministic stationary policies
of the MDP. The defender then solves

min
x
′

0
∈X

V(x′
0, π

∗) + ρ(x′
0,x0),

where π∗ ∈ argmaxπ∈Π V(x0, π) is the optimal policy of
M. The key bottleneck is the exponential state space in the
attacker MDP. We propose reasonable approximations for the
attacker’s value function and scalable algorithms to compute
it using a) factored MDP solution approaches and b) rein-
forcement learning. The key observation is that the optimal
policy is independent of the interdiction decision, since the
solution to an MDP is a function of an arbitrary state; to put
it differently, the attacker’s optimal policy is already a func-
tion of the defender’s choice of the start state, by virtue of it
solving an MDP. This is a key to significantly cleaner opti-
mization problems for MDP interdiction below compared to
prior art, as well as associated scalability gains.

4 Integer Linear Program for Approximately

Optimal Interdiction

As a first approach, we use a linear approximation of the at-
tacker’s value function, and leverage a linear programming
approach for approximate planning in factored MDPs. In
addition, we make use of a Fourier representation of func-
tions over a Boolean hypercube as the basis. In particular,
any function f : {0, 1}m → R can be uniquely represented

as f(x) =
∑

j:Sj⊆{1,...,m} f̂(Sj)φj(x), where φj is a parity
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function over the subset Sj of variables [O’Donnell, 2008]:

φj(x) =
∏

i∈Sj

(−1)xi =

{

+1, if
∑

i∈Sj
xi mod 2 = 0.

−1, if
∑

i∈Sj
xi mod 2 = 1.

(2)

We define a factored value function over a set B =
{φ1, . . . , φ|B|} of Fourier boolean basis functions: V(x) =
∑|B|

j wjφj(x). The exact Fourier representation has 2m

bases where m is the number of state variables. However,
prior work has developed an approach to select a small sub-
set of these for a sufficiently good value function approxima-
tion [Panda and Vorobeychik, 2017].

Since the optimal policy, as well as the associated value
function, is independent of interdiction strategy, we can pre-
compute the approximate value function with an associated
basis using techniques from prior art (e.g., [Guestrin et al.,
2003; Panda and Vorobeychik, 2017]). In the interdiction
problem, the weights wj in the value function are then fixed,
and the goal is to optimize over the initial state x0 and, conse-
quently, the associated basis function values φj(x0). We now
develop an integer linear program (ILP) for computing the
optimal choice of the initial state x0 given a value function

V(x) =
∑|B|

j wjφj(x) over a pre-computed Fourier basis B.

Let bj denote a binary vector of length m, indicating
the variables included in basis φj . Then, for a given x0,
∑

i

bijxi0 =
∑

i∈Sj
xi0 in the Fourier representation (2),

which is an integer. Then, for some positive integer hj and a
binary kj ,

∑

i

bijxi0 = 2hj+kj , and is odd if kj = 1 and even

otherwise. If this sum is even, the corresponding basis value
φj = +1, and φj = −1 otherwise, which we can calculate
by φj = 1− 2kj .

We introduce binary variables ci1 and ci2 for each state
variable xi to compute the interdiction cost ρ(x′

0,x0). Putting
everything together, we obtain the following ILP to compute
the optimal interdiction:

minimize
x′

0
∈X,φ,k,h,c

|B|
∑

j=1

wjφj +
∑

i

ρi(ci1 + ci2)

subject to
∑

i

bijx
′
i0 = 2hj + kj , ∀j (3a)

φj = 1− 2kj , ∀j (3b)

ci1 − ci2 = x
′
i0 − xi0, ∀i (3c)

x
′
i0, kj , ci1, ci2 ∈ {0, 1}, hj ∈ Z+

Thus, the full interdiction approach involves two steps:

1. [B,w] =approxMDP(M),

2. Solve ILP (3) given the approximate optimal value func-

tion V(x) =
∑|B|

j wjφj(x).

The key bottleneck in this approach is Step 1, where the
difficulty of solving the factored MDP grows exponentially in
the number of interdependencies among state variables. An
alternative approach is to use model-free reinforcement learn-
ing, which can scale significantly better when we use function
approximation to represent the action-value function. How-
ever, this introduces new technical challenges, which we de-
scribe and address next.

5 Interdiction Using RL with Linear

Action-Value Functions
In this section, we propose an alternative approach in which
the attacker directly learns the action-value Q-function given
states and actions, using a variation of the traditional Q-
learning algorithm [Sutton and Barto, 1998]. Just as we used
a Fourier approximation of the value function earlier, we now
use this basis to approximate the optimal Q-function:

Q(x, a;w) =

|B|
∑

j=1

w
a
j φj(x). (4)

In order to perform interdiction, we now face two new techni-
cal challenges: first, since the Fourier basis is exponential, we
need to adapt the learning algorithm to iteratively construct an
effective small basis representation, and second, we need to
adapt the interdiction approach to work with the Q-function,
rather than the value function.

We begin with the adapted Q-learning algorithm that em-
beds an iterative Fourier basis construction, which proceeds
as follows. The attacker starts at a random state and chooses
an action a using an ε-greedy strategy. The ε parameter de-
cays each iteration enabling more exploitation with time. The
observation {xt, at, rt,xt+1} at each iteration is stored in a
set D. For computational speed and higher data efficiency,
we use a batch gradient descent update over a randomly sam-

pled subset D̂ ⊂ D collected over past iterations (similar to
experience replay in [Mnih et al., 2013]).

Unlike the baseline approach, addition of any new basis
function is equally computationally expensive, irrespective of
the interdependencies between variables in the particular ba-
sis function. We incorporate basis function selection in learn-
ing as follows. We start with an initial set B = B0 of ba-
sis functions (e.g., all single-variable bases and the constant
basis). During the learning iterations, we add a new basis
function to the set B if it significantly reduces the squared

error objective over the samples s = (x, a, r,x′) ∈ D̂,
(Q′(x, a;w) − Q(x, a;w))2, compared to the current basis
set, where Q′(x, a;w) = r + γmaxaQ(x′, a;w).

For any basis φj in the current basis set, the gradient de-
scent weight update with learning rate η for the weight wa

j of

this basis (over a single observation) is:

w
a
j ← w

a
j + η(r + γmaxaQ(x′

, a;w)−

|B|
∑

j=1

w
a
j φj(x))φj(x).

Now, consider a basis φn not present in the current approx-
imation. In this case, the current weight wa

n = 0 and the

gradient update summed over the samples s ∈ D̂ is then

I = η
∑

s∈D̂

(Q′(x, a;w)−Q(x, a;w))φn(x).

Our goal is to find a basis φn(x) to add to B that maximizes
|I|, which measures the relative impact on the quality of the
Q-function approximation. We then add this basis if |I| is
above a predefined threshold. The following MILP computes
the Boolean basis vector b corresponding to the new basis
function with the largest marginal impact |I| on Q-function

approximation, given samples sj : (xj , aj , rj ,xj+1) ∈ D̂:

maximize
b,h,k,φ,q,δ

δ1 + δ2
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subject to δ1 − δ2 =
∑

sj∈D̂

(Q′(xj
, a

j ;w)−Q(xj
, a

j ;w))φj

(5a)

0 ≤ δ1 ≤ Lq (5b)

0 ≤ δ2 ≤ L(1− q) (5c)
∑

i

bix
j
i = 2hj + kj , ∀x

j ∈ D̂ (5d)

φj = 1− 2kj , ∀x
j ∈ D̂ (5e)

∑

i

bi ≥ 1 (5f)

bi, kj , q ∈ {0, 1}, hj ∈ Z+, δ1, δ2 ≥ 0.

δ1 and δ2 compute the linearized objective |I| (L is a large
number). Constraints (5d) and (5e) compute the φj values
as in ILP (3). Constraint (5f) ensures that the ILP does not
select the constant basis function. To keep the basis set from
becoming too large, we periodically monitor the weights and
remove any basis functions with normalized weights below a
predefined threshold.

Given this approximation, we can now extend the inter-
diction LP 3 for the defender’s optimal initial state x

′
0 to

the following mixed integer program (recall that V(x) =
maxaQ(x, a;w)):

minimize
x′

0
∈X,v,φ,k,h,c

v +
∑

i

ρi(ci1 + ci2)

subject to v ≥

|B|
∑

j=1

w
a
j φj , ∀a (6a)

∑

i

bijx
′
i0 = 2hj + kj , ∀j (6b)

φj = 1− 2kj , ∀j (6c)

ci1 − ci2 = x
′
i0 − xi0, ∀i (6d)

x
′
i0, kj , ci1, ci2 ∈ {0, 1}, hj ∈ Z+

The full algorithm is outlined in Algorithm 1.

Algorithm 1 Interdiction using Linear Action-Value Func-
tion Learning

Initialize weights w to 0, randomly initialize state, ε = ε0
for iterations t in 1, . . . , T do

Select ε-greedy action at

Store st = (xt, at, rt,xt+1) in D

for each sj in a random sampled D̂ ⊂ D do
Features: [φ1(x

j), . . . , φ|B|(x
j)]

Target: rj + γmaxa′Q(xj+1, a′;w)

Gradient descent and w update on D̂, ε = ε0e
−t

Every t̂ iterations solve MILP (5), update basis set B

Solve interdiction MILP (6) using basis set B and weights
w return x

′
0

While this approach allows direct model-free learning and
significantly more scalable interdiction (see the experiments
section), the performance still relies on the subset of basis
functions chosen for the approximation. We next extend the
framework to allow for non-linear Q-function approximation.

6 Interdiction with Non-Linear Function

Approximation

We now generalize the model-free interdiction framework to
incorporate non-linear Q-function approximation, such as us-
ing neural network-based Q-functions. Let Q(x, a; θ) denote
the corresponding approximate Q-function, with parameters
θ (e.g., corresponding to neural network weights).

For interdiction with a non-linear Q-function, we can no
longer directly use the ILP approaches above. We instead
propose two local search methods.

Our first approach is a greedy local search in the state space
(Algorithm 2). The intuition behind the approach is to change
one variable at a time, and accepting the change only if it
improves the defender’s utility. The process continues either
for a fixed number of iterations, or until convergence.

Algorithm 2 Non-Linear Value Function Learning and
Greedy Local Search

Start at a randomly chosen state x
′
0

Compute U = maxa′Q(x′
0, a

′; θ) + ρ(x′
0,x0)

for iterations in 1, . . . , T do
Change one state variable at random to get x̄
if maxa′Q(x̄, a′; θ) + ρ(x̄,x0) < U then

U = maxa′Q(x̄, a′; θ) + ρ(x̄,x0)
x
′
0 = x̄

return x
′
0

We observe that this local search method can be slow for a
large state space. To improve efficiency of state space explo-
ration, we propose an alternative local search approach which
iteratively linearizes the Q-function using a Taylor series ap-
proximation, and solves an ILP similar to that in previous
sections using the linearized function. Specifically, we start
the search with a random modification of the initial state, and
obtain a linear approximation of the Q-function in the vicinity
of this state. The attacker’s objective is now a linear function
of the state. We then formulate an ILP to compute a state
that minimizes this objective. The search then continues by
updating the linear approximation around this local solution.

To illustrate, we derive the algorithm in the context of a
neural network with a single fully connected hidden layer,
and a separate output for each action. The input , hidden
and output layers have m, |H| and |A| units respectively. The
hidden layer uses a rectified linear unit activation function.
The output layer has a linear activation (since it predicts the
action-value function which is basically unconstrained). Let
θh and θo denote the weights associated with the hidden and
the output layer respectively. With the above network archi-
tecture, the decision function is given by:

Q(x, a) =

|H|
∑

j

max

[

0,
m
∑

i

θhijxi

]

θoja (7)

The first order Taylor series approximation of a multi-variable
scalar-valued function is given by f(x + δx) = f(x) +
∑

i
∂f(x)
∂xi

δxi. The linear approximation of the Q-function
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around x based on our neural network architecture

Q̂(x′
0, a) = Q(x, a)+

∑

i

∑

j

{

θhijθ
o
ja(x

′
i0 − xi) if

∑

i θ
h
ijxi ≥ 0

0 if
∑

i θ
h
ijxi < 0

(8)

Given this local linear approximation, we can compute the
optimal interdiction using the following ILP:

minimize
x′

0
∈X,v,c

v +
∑

i

ρi(ci1 + ci2)

subject to v ≥ Q̂(x′
0, a), ∀a (9a)

ci1 − ci2 = x
′
i0 − xi0, ∀i (9b)

x
′
i0, ci1, ci2 ∈ {0, 1} (9c)

The full search algorithm is outlined in Algorithm 3.

Algorithm 3 Interdiction with Local Linear Approximation

Start at a randomly chosen state x
′
0

for iterations in 1, . . . , T do
Compute the linear approximation as in Equation (8)
Solve the ILP 9 to update x

′
0

return x
′
0

Finally, we describe two additional techniques that we used
to stabilize the learning algorithm. First, at every step of train-
ing, the weights θ are updated. These constantly changing
weights are used as targets in future iterations. The value es-
timations can thus, easily spiral out of control and destabilize
learning. To alleviate this problem we use a second network
to generate the target Q values and update its weights (to the
primary network’s weights) relatively less frequently [Lilli-
crap et al., 2015]. Second, if the mean square error is rel-
atively large for a sample, it can cause large changes to the
network and destabilize it (the loss function is used in back-
propagation for updating the weights). We use the Huber loss
function to constrain this error [Mnih et al., 2015].

7 Bayesian Interdiction Problem

Thus far, we had assumed that the interdiction game has com-
plete information: both the defender and attacker know one
another’s utility functions and actions, as well as the initial
state x0 that is being modified by the defender. Of course,
in reality the defender is not privy to much of this informa-
tion. We very generically model this uncertainty by parti-
tioning the state variables X in the MDP into three groups:
X = (XD, XA, XR) where XD is the set of design vari-
ables that the defender can modify, XA is the set of variables
known only to the attacker (but not the defender), and XR is
the rest of the state variables (known to both players, but not
modifiable by the defender). In particular, this uncertainty
about the part of the initial state XA may capture relevant ac-
cess that the attacker possesses, or which actions are available
to them (for example, by having these state variables model
preconditions of relevant actions).

Let XA be the set of all possible attacker types (i.e., initial
attack states). The interdiction problem can be directly ex-
tended, with the defender solving the following minimization

problem:

min xD

[

ExA∈XA

(

V(xD,xA,xR)
)

+ ρ(xD,x0)
]

(10)

We can approximate this problem by replacing the expecta-
tion over a large set XA with a sample average over a collec-
tion of samples of xA according to the probability distribution
over attacker types.

An important observation here is that the value function
can be learned as a function of the full initial state, whether
or not observed by the defender. Consequently, the proposed
interdiction approaches discussed earlier can be extended di-
rectly to solve the above problem by introducing the variables
and constraints specific to the sampled attacker types. In the
case of neural networks, we can also extend the local search
algorithms 2 and 3 by averaging over the attacker types at
each search step.

8 Experiments

We evaluate our MDP interdiction algorithms on several in-
stances of three problem domains from the international plan-
ning competition (IPC 2014): a) sysadmin b) academic advis-
ing and c) wildfire. While these examples have limited con-
nection to security, they provide the most meaningful eval-
uation in terms of effectiveness and scalability. Previous
work in security-related multi-stage attacks consider toy ex-
amples which would not provide appropriate evaluation. The
most relevant prior work is Panda and Vorobeychik [2017],
and offers a state-of-the-art solution to the problem. How-
ever, it considers action interdiction, rather than state interdic-
tion. More significantly, we demonstrate that our baseline ap-
proach, which is closest to this work, has comparable running
time on larger MDP instances (actually, tends to be faster).
We use discount factor γ = 0.9 and set all interdiction costs
ρi = 1. We denote the factored MDP interdiction as baseline
(BI), and the linear and the non-linear interdiction approaches
as LI, NLI1 and NLI2 respectively. We train the learning al-
gorithms with ε0 = 1, η = 0.01 and the RMSProp optimizer

for the neural networks. The batch size |D̂| increases from
40 to 400 with problem size. The experiments were run on
a 2.4GHz hyperthreaded 8-core Ubuntu Linux machine with
16 GB RAM, with CPLEX version 12.51 for MILP instances
and TensorFlow for learning algorithms [Abadi et al., 2016].

8.1 MDP State Interdiction

First, we compare our interdiction approaches (optimized in-
dependently) on the sysadmin domain with m = 10 − 60
state variables and 11 to 61 actions. Each state variable cor-
responds to a machine and indicates whether it is working or
has failed. We consider two possibilities for the initial state
x0: a) all machines work and b) alternate machines work. In
addition, we compare against the following cases, a) no inter-
diction (NI): when the initial state x0 is not modified, and b)
random interdiction (RI): when the defender modifies the ini-
tial state randomly to x

′
0. The runtime and utility (defender’s

gains - interdiction costs) comparisons shown in (Figure 1)
demonstrate that the proposed interdiction approaches signif-
icantly improve the defender’s utility compared to the base-
lines (recall that lower is better). The defender utility is simi-
lar for BI,LI,NLI1,NLI2 in the experiments (for a given MDP
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domain). The utility differs significantly in case of NI and
RI because these do not perform any optimization for inter-
diction and merely serve as baselines. In addition, we ob-
serve that the value function learning approaches scale much
better than the baseline approach without compromising so-
lution quality, and NLI2 tends to have the best scalability.
This is primarily because these do not explicitly solve the
MDP. In case of MDPs with higher order interdependencies
in the transition model, scalability becomes a major bottle-
neck even with the approximate solution approaches with a
limited number of basis functions.
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Figure 1: Comparison between the proposed interdiction approaches
on the sysadmin domain in terms of utility (from two different start-
ing states, left and center) and runtime (right).

Next, we evaluate our approaches on 10 problem instances
of the academic advising domain. The problem size increases
with problem number from 10 to 30 courses (m = 20 to 60
state variables, 10 to 30 actions). For each problem size,
there are two instances, corresponding to different program
requirements and course prerequisites. The first (odd num-
bered) problem instance is simpler (fewer prerequisites per
course). The second (even numbered) instance is more com-
plicated, with a larger number of prerequisites per course
(larger number of connections in the underlying DBN). Prob-
lem 10 has the largest problem size with 30 courses, 11
program requirements, 3 prerequisites for most courses and
4 prerequisites for 8 courses. The two initial states corre-
spond to selection of a) all courses and b) alternate courses.
As demonstrated in Figure 2, we observe a similar trend as
before: effectiveness of optimized interdiction and superior
scalability in case of the learning-based approaches.
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Figure 2: Comparison between the proposed interdiction approaches
on the academic advising domain in terms of utility (different start-
ing states, left and center) and runtime (right).

Finally, we evaluate on 6 problem instances of the wildfire
domain. The problem is defined on a grid and the size in-
creases with problem number from n = 3 to 5 (m = 2×n2 =
18 to 50 state variables, 36 to 100 actions). For each grid size,
there are two instances, corresponding to different neighbour-
hood configurations and targets (cells on the grid that need to
be protected). The first (odd numbered) problem instance has

fewer targets than the second (even numbered) instance. In
this case, we scale down the original rewards by a factor of
100 to ensure better convergence of the learning algorithms.
The results are shown in Figure 3, and are broadly consistent
with previous observations.
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Figure 3: Comparison between the proposed interdiction approaches
on the wildfire domain in terms of utility (different starting states,
left and center) and runtime (right).

8.2 Bayesian Interdiction

Our final set of experiments deals with Bayesian interdiction.
As a baseline, we consider interdiction of a worst-case attack.
We obtain the initial state corresponding to this attacker by
maximizing the approximate value function. The defender’s
problem is then given by min xD [maxV(xD,xA,xR) +
ρ(xD,x0)].

In each of the domain examples considered, we divide the
state variables as X = (XD, XA, XR), with 40%, 40% and
20% relative proportions. We randomly sample 500 assign-
ments to the attacker’s variables, with equal probability. In
each case, we plot the difference in the defender’s utility, be-
tween the baseline and the Bayesian cases. The results in the
Figures 4, 5 and 6 exhibit a large decrease in utility (of the
attacker), that is, a large benefit to the defender from consid-
ering Bayesian, rather than baseline, interdiction. While the
runtime does increase somewhat, this increase is small com-
pared to the time it takes to solve the MDP.

10 20 30 40 50 60

Number of state variables

10

20

30

40

50

D
e
c
re

a
s
e
 i
n
 U

ti
li
ty BI

LI

NLI1

NLI2

10 20 30 40 50 60

Number of state variables

20

40

60

80

D
e
c
re

a
s
e
 i
n
 U

ti
li
ty BI

LI

NLI1

NLI2

10 20 30 40 50 60

Number of state variables

103

104

R
u
n
ti

m
e
 i
n
 s

e
c
o
n
d
s

BI

LI

NLI1

NLI2

Figure 4: Improvement in the defender’s utility using Bayesian in-
terdiction in the sysadmin domain (different starting states, left and
center) and interdiction runtime (right).

9 Conclusions

We presented a novel interdiction model in which the de-
fender constrains the initial state of the attacker. We proposed
scalable interdiction techniques with single-level integer lin-
ear programming, compared to difficult bi-level problems dis-
cussed in previous work. We further improved scalability by
using model-free reinforcement learning techniques with lin-
ear and non-linear action-value function approximators. We
extended the interdiction framework to Bayesian interdiction.
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Figure 5: Improvement in the defender’s utility using Bayesian in-
terdiction in the academic advising domain (different starting states,
left and center) and interdiction runtime (right).

1 2 3 4 5 6

Problem Number

30

40

50

60

70

80

90

D
e
c
re

a
s
e
 i
n
 U

ti
li
ty BI

LI

NLI1

NLI2

1 2 3 4 5 6

Problem Number

40

60

80

100

D
e
c
re

a
s
e
 i
n
 U

ti
li
ty BI

LI

NLI1

NLI2

1 2 3 4 5 6

Problem Number

103

104

105

R
u
n
ti

m
e
 i
n
 s

e
c
o
n
d
s

BI

LI

NLI1

NLI2

Figure 6: Improvement in the defender’s utility using Bayesian in-
terdiction in the wildfire domain (different starting states, left and
center) and interdiction runtime (right).

Finally, we evaluated the effectiveness of our proposed ap-
proaches on several realistic MDP problem instances.
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