DexLego: Reassembleable Bytecode Extraction for
Aiding Static Analysis

Zhenyu Ning and Fengwei Zhang

COMPASS Lab, Wayne State University
{zhenyu.ning, fengwei} @wayne.edu

Abstract—The scale of Android applications in the market
is growing rapidly. To efficiently detect the malicious behavior
in these applications, an array of static analysis tools are
proposed. However, static analysis tools suffer from code hiding
techniques like packing, dynamic loading, self modifying, and
reflection. In this paper, we thus present DEXLEGO, a novel
system that performs a reassembleable bytecode extraction for
aiding static analysis tools to reveal the malicious behavior of
Android applications. DEXLEGO leverages just-in-time collection
to extract data and bytecode from an application at runtime, and
reassembles them to a new Dalvik Executable (DEX) file offline.
The experiments on DroidBench and real-world applications
show that DEXLEGO correctly reconstructs the behavior of
an application in the reassembled DEX file, and significantly
improves analysis result of the existing static analysis systems.

I. INTRODUCTION

With the rapid proliferation of malware attacks on mobile
devices, understanding their malicious behavior plays a critical
role in crafting effective defense. Static analysis tools are
used to analyze malware and investigate their malicious activi-
ties [1]-[5]. However, malware writers can hide the malicious
behavior by using an array of obfuscation techniques. The
annual report from AVL team [6] shows that the number of
Android packed applications has increased more than nine
times, while about one third of them are packed malware. Typ-
ically, static analysis tools identify the malicious behavior of
an application by investigating bytecode in Dalvik Executable
(DEX) files. The packing technology replaces the original
DEX file with a shell DEX file and dynamically releases
the original DEX file at runtime. Additionally, the original
DEX file is encrypted until its execution. While the free use
of public packing platforms [7]-[12] provides a convenient
and reliable protection for applications, the challenge of facing
packed malware is rising. Static analysis tools are completely
unarmed to the packed malware as they can only fetch the
shell DEX file but not the encrypted original DEX file.

To address this problem, several unpacking systems are
introduced recently [13], [14]. However, these systems are
far from solving the problem completely. For instance, they
assume that there is a point when all original code is unpacked
in memory (i.e., a clear boundary or transition between the
packer’s code and the original code). However, the malware
writers can pack code with advanced techniques that interleave
the packing and unpacking processes. Moreover, recent studies
show that sophisticated adversaries, known as self-modifying

malware [15], [16], can modify the bytecode and other con-
tents in a DEX file at runtime.

To further understand the self-modifying malware, consider
Code 1 as an example. In Line 14, the native method,
bytecodeTamper, modifies the bytecode of Lines 11 and
13. Note that the method bytecodeTamper is executed
twice and performs different modifications to the two Lines
during each iteration. There is a taint flow in Code 1, but
the state-of-the-art static analysis tools [1]-[5] cannot detect
it. Moreover, existing method-level unpacking systems [13],
[14] are unable to reveal this taint flow because they cannot
differentiate the actual executed code from the fake code (i.e.,
modified code like Lines 11 and 13 to hide taint flows), and
we will discuss the details in Section IV-A.

Unlike the static analysis tools, the dynamic analysis
tools [17]-[21] do not suffer from packing techniques. How-
ever, they have their own drawbacks. The automatic dynamic
taint flow analysis tools [17], [18], [21] cannot handle implicit
taint flows while static analysis tools [4], [5] can solve them.
Moreover, the huge performance overhead makes it difficult
to implement a complicated analysis mechanism, so there is
a trade-off between the accuracy and performance. Meantime,
the code coverage problem also threatens the accuracy of the
dynamic analysis tools [19]-[21].

In this paper, we present DEXLEGO, a novel program
transformation system that reveals the hidden code in An-
droid applications to analyzable pattern via instruction-level
extracting and reassembling. DEXLEGO collects bytecode and
data when they are executed and accessed, and reassembles
the collected result into a valid DEX file for static analysis
tools. Since we extract all executed instructions, our system
is able to uncover the malicious behavior of the packed
applications or malware with self-modifying code. One of the
key challenges in DEXLEGO is to reassemble the instructions
into a valid and accurate DEX file. Hence, we design a
novel reassembling approach to construct the entire executed
control flows including self-modifying code. Additionally, we
implement the first prototype of force execution on Android
and use it as our code coverage improvement module.

Moreover, our system helps static analysis tools improve
the analysis accuracy on reflection-involved samples. The Java
reflection obscures the control flows of the application by
replacing the direct function call or field access with a call
to the reflection library functions which take the name string

I package com.test;

public class Main extends Activity {
4 private static final String PHONE = "800-123-456";
protected void onCreate (Bundle savedInstanceState) {
//
advancedLeak () ;
8 }

10 public void advancedLeak () {

1 String a = getSensitiveData(); // source
12 for (int i = 0; 1 < 2; ++i) {

13 normal (a);

14 bytecodeTamper (i) ;

15 }

16 }

.

18 public void normal (String param) {

19 // do something normal

20 }

public void sink (String param) {

2 // send param through text message.

24 SmsManager.getDefault () .sendTextMessage (PHONE, null,
param, null, null); // sink

}

/% While 1 = 0:
28 * modify Line 11 to String a = "non-sensitive data"
29 * modify Line 13 to sink(a)
30 * While i = 1:

* modify Line 11 to String a = getSensitiveData ()

* modify Line 13 to normal (a) =/
public void native bytecodeTamper (int 1);

Code 1: An Example of Self-Modifying Code.

of the function or field as parameter. Previous reflection solu-
tions [22] and static analysis tools [1]-[3] on Android assume
that the name strings of the reflectively invoked method and its
declaring class are reachable. However, the name string can be
encrypted in some cases [23] and the advanced malware could
even use reflective method calls without involving any string
parameter [24]. A solution on traditional Java platform [25]
requires load-time instrumentation which is not supported in
Android [1]. Thus, DEXLEGO implements a similar idea in
Android and replaces the reflective call with direct call.

We evaluate DEXLEGO on real-world packed applications
and DroidBench [24]. The evaluation result shows DEXLEGO
successfully unpack and reconstruct the behavior of the ap-
plications. The F-measures (i.e., analysis accuracy) of Flow-
Droid [1], DroidSafe [3], and HornDroid [2] on DroidBench
increase 33.3%, 31.1%, and 23.6%, respectively. Moreover,
static analysis tools with the help of DEXLEGO provide
a better accuracy than existing dynamic analysis systems
TaindDroid [17] and TaindART [18]. The code coverage
experiments on open source samples from F-Droid [26] show
that our force execution module helps to improve the coverage
of dynamic analysis and increases the coverage of state-of-the-
art fuzzing tool, Sapienz [27], from 32% to 82%. The main
contributions of this work include:

¢ We present DEXLEGO, a novel system that automatically
transforms the hidden code in the Android applications
to analyzable pattern. Our novel approach leverages
tree structures to collect data/bytecode at runtime, and
reassemble collected information back to DEX files,
which makes the hidden code including packed or self-

modifying one analyzable for current static analysis tools.
To the best of our knowledge, this is the first system
to reassemble the instruction-level tracing result of Java
bytecode back to an executable file, and we consider this
is the key contribution of this work.

« DEXLEGO mitigates the inaccuracy of static analysis
tools on the reflection-involved samples by transforming
the reflective method call to direct call regardless how
the adversary uses it; it also improves the code coverage
of dynamic analysis via our force execution module
and. Moreover, DEXLEGO can be easily applied to Java
application on x86 platforms and advances the traditional
taint flow analysis.

¢ We implement a prototype of DEXLEGO in Android
Runtime and evaluate the system in a real Android device.
The experiment result shows that DEXLEGO successfully
unpacks and reconstructs the hidden behavior of the real-
world packed applications. By testing our system with
state-of-the-art static analysis tools on DroidBench, we
demonstrate that DEXLEGO improves the F-Measures
of static analysis tools by more than 23%. Moreover,
the comparison with existing dynamic analysis tools
shows that DEXLEGO-assisted approach provides a more
accurate result.

e The source code of DEXLEGO is publicly available at
goo.gl/jpRvqu.

II. BACKGROUND
A. Dalvik and Android Runtime

Dalvik is a special Java virtual machine running in the
Android system. It is used to interpret Android specified
bytecode format since the first release of Android. To improve
the performance, Google has introduced Just-In-Time (JIT)
compilation and Ahead-Of-Time (AOT) compilation since An-
droid 2.2 and Android 4.4, respectively. The JIT compilation
continually compiles frequently executed bytecode slices into
the machine code. As an upgrade, the AOT compilation com-
piles most bytecode in the application into the machine code
during the installation. Dalvik equipped with AOT compilation
is renamed to Android Runtime (ART). Since Android 5.0,
Dalvik has been completely replaced by ART.

In both Dalvik and ART, the bytecode is organized in
units of methods. The minimum code unit for JIT and AOT
compilation is a method, indicating that a single method
cannot contain both bytecode and machine code. Methods
such as constructors and abstract methods require the bytecode
interpreter even in ART. Moreover, a single method or the
entire ART can be configured to run in the interpreter mode.

B. Android Java Bytecode

The Java bytecode in Android is chained by instructions.
Each instruction contains an opcode and arguments related
to the opcode. The opcodes are different from the ones in
regular Java bytecode and the bit-length of an instruction
varies according to the opcode. In the interpreter, instructions
are listed in an array of 16-bit (2 bytes) units. An instruction

Code Coverage
Improvement

Module
Target
Application

Just-in-Time
Modified Collecting Collected
" Android Runtime Files

Offline
Reassembling

< <-

Replacing original v
DEX file

Feed Revealed Reassembled
Application DEX

Fig. 1: Overview of DEXLEGO.

Static
Analysis Tools

occupies at least one unit with a maximum number of units
up to five.

III. SYSTEM OVERVIEW

As Figure 1 shows, instead of directly feed the target
application to static analysis tools, we firstly execute the target
application with DEXLEGO. In executing, we use Just-in-Time
(JIT) collection to extract data/instructions and output them
to files right before used by ART. In the meantime, we use
a code coverage improvement module to increase the code
coverage. Next, we reassemble the collected files to a DEX
file and use the reassembled DEX file to replace the one in
the original APK. Finally, the new APK file is fed to the static
analysis tools. The architecture of DEXLEGO contains three
main components: 1) the collecting component that collects
bytecode and data, 2) the offline reassembling component that
reassembles a new DEX file based on the collection result,
and 3) the code coverage improvement module that helps
DEXLEGO to achieve a high code coverage. Next, we will
discuss the three components respectively.

A. Bytecode and Data Collection

Figure 2 shows the JIT collection we used in DEXLEGO.
During the execution of an application, ART firstly extracts the
DEX file from the original APK file and passes it to the class
linker. The class linker then loads and initializes the classes
in the DEX file, and our JIT collection method collects the
metadata of the class (e.g., super class) at this point. Next,
when a method is invoked, ART extracts its bytecode from
the DEX file, and leverages the interpreter to execute them.
The interpreter fetches the entire bytecode (organizing in a 16-
bit array) of the method and executes the bytecode instructions
one by one. Thus, according to our JIT policy, we collect the
executed instructions of the method and their related objects
(e.g., string) via instruction-level extracting. Note that the
execution of the code in the dynamic loaded DEX file also
follows the same flow.

The state-of-the-art static analysis tools do not accept
machine code as their input. However, ART executes most
methods based on the machine code, and the translation from
the machine code to the bytecode is a challenging task. To
simplify the task, DEXLEGO configures all methods in the
application to be executed by the interpreter.

Collection files
N L class data file
DEX N Inltlal'lzatlon Collecting
fle > in >
class linker static values file
i method data file
Execution Collecting field data file
in
interpreter -
bytecode file
Modified Android Runtime L ™"

Fig. 2: Just-in-Time Collection.

B. DEX File Reassembling

After the collecting, all the output files are reassembled to
a new DEX file offline following the format of a DEX file,
and we replace the DEX file in the original APK file with the
reassembled one. The modified APK file is finally fed to static
analysis tools to study the malicious behavior.

This reassembling is not trivial, and we consider this is
the key contribution of this work. In the DEX file format,
each method contains only one instruction array. However,
due to different control flows (e.g., execution is led to dif-
ferent branches of a branch statement) or self-modifying
code, one method may contain different instruction arrays
in the collection stage. To correctly combine the collected
instructions, we thus design a tree model and a novel collecting
and reassembling mechanism. More details are discussed in
Section IV-A and Section IV-B.

C. Code Coverage Improvement Module

To improve the code coverage of dynamic analysis systems,
there already exists a series of tools or theories like: 1)
Input generators or fuzzing tools [29]-[33], 2) Symbolic or
concolic execution [23], [34]-[38] based systems, 3) Force
execution [39]-[41] based systems. Our code coverage im-
provement module can be one of them or a combination of
them. Note that most of the systems mentioned in 1) and 2)
are implemented in Android, and we can directly use them
to conduct the execution of the target application with little
engineering effort. However, to the best of our knowledge,
the idea of force execution has not been applied on Android
platform. Thus, we implement a prototype of force execution
as a supplement of our code coverage improvement module.

To use force execution in DEXLEGO, we identify the
Uncovered Conditional Branches (UCB) and calculate the path
to each UCB. By monitoring and manipulating the branch
instructions in the interpreter, we force the control flow to
go along the calculated path to reach each UCB.

I'V. DESIGN AND IMPLEMENTATION

We implement DEXLEGO in an LG Nexus 5X with Android
6.0. Based on the Android Open Source Project [42] (AOSP),
we build a customized system image and flash it into the
device by leveraging a third-party recovery system [43].

A DEX file consists of data structures that represent dif-
ferent data types used by the interpreter [44]. DEXLEGO
collects these data structures directly from memory while
they are used by ART at the runtime. Moreover, we leverage
instruction-level tracing to collect executed instructions and
reassemble them back to a method structure. In this section,
we discuss 1) bytecode collection, 2) bytecode reassembling,
3) data collection, and 4) DEX file reassembling separately.
The approaches to handle reflection and force execution are
also discussed in this section.

A. Bytecode Collection

In ART, after the instruction array of a method is passed
to the interpreter, the interpreter executes the instructions
one by one following the control flow indicated by them.
To expose the behavior of the method, DEXLEGO aims to
collect all instructions executed in the method. However,
existing systems [13], [14] that use method-level collection
cannot defend against dynamic bytecode modification, and the
detailed limitation is described as below.

Inadequacy of Method-level Collection. Consider Code 1 as
an example. While entering the method advancedLeak, the
smali code ! of the method is represented by Code 2. After the
first execution of the native method bytecodeTamper, the
code of the method advancedLeak is modified to Code 3.
In Code 3, the native method has modified the bytecode to hide
the source (Lines 2-4 are changed from Code 2 to Code 3), but
the sensitive data is already stored in the register v0. During
the second execution of the for loop, the sensitive data in the
register vO is leaked through the method sink (Lines 9-10
in Code 3). Then, the native method resumes the code back to
Code 2. The instruction array of the method advancedLeak
in memory is either Code 2 or 3 at any time point (e.g.,
before and after JNI code), which means that the method-
level collection (e.g., DexHunter [14] and AppSpear [13]) can
only collect Code 2 or 3 even when multiple collections are
involved. However, in the static taint flow analysis, the red
lines in Code 2 (Lines 2-4) represent a source, but the data
fetched from the source are sent to the blue lines (Lines 9-
10) which are not a sink. In Code 3, the red lines (Lines
9-10) are a sink, but the received data are obtained from the
blue lines (Lines 2-4) which are not a source. Thus, the leak
of the sensitive data can be identified from neither Code 2
nor Code 3, and the key reason is that the code representing
the source and sink are modified on purpose to hide the taint
flow. AppSpear claims that it implements an instruction-level
tracing mechanism, however, as we will explain below, simply
tracing the instructions does not satisfy the requirement of
static analysis tools.

Instruction-level Collection and Tree Model. In light of the
shortcoming of method-level collection as described above,
the DEXLEGO leverages instruction-level collection to defend
against self-modifying code such as Code 1. One simple
approach for instruction-level collection is to list all the

! The smali code is a more readable format of the bytecode.

1 .method public advancedLeak ()V

2 invoke-virtual

8 if-ge vl1, v2,
9 invoke-virtual

1C

1 invoke-virtual { pO, vl

p0 , \
Lcom/test/Main; ->getSensitiveData ()Ljava/lang/String;

4 move-result-object vO0
const/4 vl1l, O
:LO
const/4 v2, 2
:L1

p0, vO , \
) Lcom/test/Main; ->normal (Ljava/lang/String;)V
[N

12 Lcom/ecspride/Main; —>bytecodeTamper (I)V

14 goto

16

add-int/1it8 v1, v1, 1
:LO

:L1

return-void
.end method

Code 2: Smali representation of the method advanced-
Leak while entering and leaving it.

1 .method public advancedLeak ()V

const-string v0, "non-sensitive data"

nop

4 nop

8 if-ge v1, v2,
9 invoke-virtual

1C

11

14 goto

16

const/4 vl, O
:LO
const/4 v2, 2
:L1
p0, vO , \
) Lcom/test/Main; —>sink (Ljava/lang/String;)V
invoke-virtual { p0, vl }, \
Lcom/ecspride/Main; —>bytecodeTamper (I)V
add-int/1it8 v1, vl1, 1
:LO
:L1
return-void
.end method

Code 3: Smali representation of the method advance-
dLeak after the first execution of the method bytecode—
Tamper.

executed instructions one by one; however, this approach
leads to a code scale issue. Take the loop as an example,
since the instructions in a loop are executed for multiple
times, the simple approach would lead to a large number of
repeating instructions. Moreover, the branch statements and
self-modifying code make it possible that different executions
of a single method lead to different instruction sequences.
However, the format of the DEX file [44] allows only one
instruction sequence for a single method.

To address the code scale issue, DEXLEGO eliminates
repeating instructions by comparing the instructions with
same indices. As mentioned above, the bytecode of a
method is organized in a 16-bit unit array and passed
to the interpretation functions (ExecuteSwitchImpl and
ExecuteGotoImpl functions). In these functions, the in-
terpreter uses a variable dex_pc to represent the index of
the executing instruction in the array. In light of this, we
identify repeating instructions by comparing the executing
instructions with the same dex_pc values. Moreover, the
self-modifying code can also be identified by the comparison.
Different instructions with the same dex_pc value actually
indicate a runtime modification.

Algorithm 1 illustrates the comparison-based instruction
collection algorithm, and Figure 3 shows the related data
structures. We consider the first execution of an instruction

TreeNode Collection Tree
IL 1IM
const/4 p1 0->0
4 4->2
sparse-switch p1 7->5
0 9->7
0
sub-int p1 p1 Children
3 node1 | node1 | | node2 | | node3 |
return-void ‘node2
node3
node4 n
sm_start 0 | Parent Io_de, ode5
[Csmend | -1 | | null]

Fig. 3: Data Structure Storing All Instructions in a Method
During a Single Execution. The right tree structure shows the
collection result for a method during a single execution. The
left rectangle describes the data structure of each tree node.
For each execution of a method, we generate a collection tree.

as a baseline and any different instructions with the same
dex_pc value as a divergence branch. Thus, each divergence
branch indicates a piece of self-modifying code. Note that self-
modifying code might also exist in the divergence branch (like
multiple layers of self-modifying). The divergence branches in
a method then form a tree structure. The right part of Figure 3
shows an example of the final collecting result. Nodes 1-
3 represent three pieces of self-modifying code on the root
node, and Nodes 4-5 represent two pieces of self-modifying
code on Node 2. The left rectangle in Figure 3 shows the
TreeNode structure which represents a node in the tree
structure. The Instruction List (IL) in the structure includes the
list of executed instruction and their metadata. The instructions
in IL are recorded by the order of their first execution and
the IL plays the role of baseline in the node. The dex_pc
value of an instruction may be different from its index in IL
due to branch statements, and we use an Instruction Index
Map (IIM) to maintain the mapping between the instruction’s
dex_pc value and its index in IL for further comparison.
sm_start and sm_end indicate the starting and ending
dex_pc value of the divergence branch, while parent and
children represent the parent and all children of the node,
respectively. With the tree structure, DEXLEGO records all
executed instructions in a single execution of a method and
maintains the code size similar to the original instruction array.

In Algorithm 1, we only update one node during the
execution of a single instruction, and this node is considered
as the current node. DEXLEGO creates an empty root node as
the current node while entering a method. Once an instruction
is executed, we check IIM of the current node to find whether
the dex_pc value of this instruction has been recorded. If it
does not exist in IIM, DEXLEGO pushes the instruction into IL
and updates IIM. If the dex_pc value already exists in I[IM,
we add a check procedure to find whether the instruction is the
same as the one we recorded before. A positive result means
that the same instruction in the same position is executed
again, and DEXLEGO does not record it. In contrast, the
negative result indicates that modification has occurred to

Algorithm 1 Bytecode Collection Algorithm

1: procedure BYTECODECOLLECTION

2 create node root

3 current = root

4 for each executing instruction ins do

5: let index of ins be dex_pc

6 if dex_pc exists in current.IIM then

7 pos_in_I L = current.I1M.get(dex_pc)

8 old_ins = current.IL.get(pos_in_IL)
if !Samelns(ins, old_ins) then

10: create a child node child

1 child.parent = current

12: child.start_pos = dex_pc

13: current = child

14: else

15: continue

16: end if

17: else if current has a parent then

18: parent = current.parent

19: if dex_pc exists in parent.IIM then

20: pos_in_I L = parent.IIM.get(dex_pc)
21 old_ins = parent.IL.get(pos_in_IL)
2 if Samelns(ins, old_ins) then

23: current.end_pos = dex_pc

24: current = parent

25: continue

26: end if

27: end if

28: end if

29: pos_in_IL = current.IL.size()

30: current.IL.add(ins)

31 current. Il M.push(pair(dex_pc, pos_in_IL))
32 end for

33 end procedure

this instruction since its last execution. Then, we create a
child node of the current node to represent the divergence
branch, and the new node becomes the current node. After
that, DEXLEGO treats the instruction as a new instruction and
pushes it into IL of the current node. In a divergence branch,
another check procedure is added to each instruction, and this
check procedure aims to identify whether the current diver-
gence branch converges to its parent. If the same instruction
with the same dex_pc value has been found in the parent’s
IL, we consider that the divergence branch converges back to
its parent (e.g., current layer of self-modifying code ends) and
make the parent node to be the new current node.

Listing 1 shows a high-level semantic view of the collection
result of the method advancedLeak in Code 1. When Line
13 in Code 1 is executed for the first time, an invocation of
the method normal is recorded. Then, in the second run,
an invocation of the method sink is detected. However, by
comparing with the recorded instructions, DEXLEGO finds
that it is a divergence point. A child node is forked and
the instruction is pushed into the IL of the child node.
Furthermore, a convergence point is found when Line 14 is
executing. Thus, the collection tree contains a root node and a
child node, and the child node contains only one instruction.
With the tree, the executed instructions and the control flows
in the method are well maintained. Note that the modification
to the Line 11 is ignored since the modified instructions are
never executed.

For the issue of multiple instruction sequences for a single

1 Root Node:
2 String a = getSensitiveDatal();

I String a = getSensitiveData();
for (int 1 = 0; 1 < 2; ++i) {

for (int 1 = 0; 1 < 2; ++1i) { if (Modification.com_test_Main_advancedLeak_0) {
4 normal (a); 1 normal (a);
5 bytecodeTamper (1) ; } else {
6 } 6 sink (a)
7 }
8 Child Node: (Line 13 in Code 1) 8 bytecodeTamper (1) ;
9 sink (a); 9 }
Listing 1: High-level Semantic View of the Collection Code 4: Reassembled Result of the Method

Result of the Method advancedLeak in Code 1.

method, we generate multiple collection trees for multiple
executions of the method and keep only the unique trees. The
trees are further combined together with the approach detailed
in Section IV-B.

B. Bytecode Reassembling

The offline reassembling-phase merges the collected trees

into a DEX file while holding all the executed instructions and
control flows. There are two steps in this phase: 1) converting
each tree into an instruction array. 2) merging instruction
arrays into the DEX file.
Converting a Tree into an Instruction Array. Each node in
the collection tree generated from the collection phase contains
an independent Instruction List (IL), and the goal of this phase
is to combine the ILs in the nodes together without losing
any control flows or instructions. To simplify the combination
process, we traverse the nodes with the bottom-up fashion
since the leaf nodes contain no child node.

To merge a single leaf to its parent, DEXLEGO inserts an
additional branch instruction in the divergence point (indicated
by sm_start, self-modifying start, as defined in the above
subsection IV-A), with one branch of the instruction pointing
to the leaf. To make both conditional branches reachable,
the conditional expression of the added branch instruction
is calculated based on a static field of an instrument class
with random values. Note that the random value produces
indeterminacy problem on the additional branch instruction,
and we consider it acceptable since the static analysis tool
will take both branches of the instruction as reachable.

Once the leaf nodes are recursively merged into their
parents, the root node becomes a complete set of the collected
instructions including different control flows triggered during
the execution.

Code 4 demonstrates the reassembled result of Listing 1.

The static field com_test_Main_advancedLeak_0 in
our instrument class Modification indicates the diver-
gence point in Line 13 of Code 1. When this result is fed
to static analysis tools, they treat both normal and sink as
reachable and detect the taint flow from sensitive data to text
message in Code 1.
Merging Instructions Arrays. For each executed method,
the previous phase outputs unique instruction arrays which
indicate different executions of the method. Similar to the
approach discussed above, we create a method variant for
each instruction array and use additional branch instructions
to cover different method variants.

advancedLeak in Code 1.

C. Data Collection and DEX Reassembling

As mentioned in Section III-A, besides bytecode instruc-
tions, DEXLEGO uses JIT collection to collect the metadata
of DEX file. The collected data is written into collection files
and further used to reassemble a new DEX file offline.

In Code 1, before any method or field in Main is
accessed, the class Lcom/example/Main; is loaded
and initialized. During the process, we firstly store string
Lcom/example/Main; into a string structure and
record the index of this string structure. Then with the
index, a type structure is constructed and stored. Finally,
a corresponding class structure related to the type is
extracted. The collection occurs again when the class is
initialized. The initialization procedure links the methods
and fields to the class, and initializes the static fields. In
Code 1, methods onCreate, advancedLeak, normal,
and sink are linked to the class. While the static field
PHONE is initialized, DEXLEGO stores its name PHONE, type
Ljava/lang/String; and initial value 800-123-456.
Lastly, a field structure is created and recorded. The
method structures and the bytecode inside them are collected
before and during the execution of the methods, respectively.

After the collection process, all collection files including
bytecode are combined offline according to the format of the
DEX file. Finally, we leverage the Android Asset Packaging
Tool integrated with Android SDK to replace the DEX file
in the original APK file with the reassembled one. To verify
the soundness of our extracting and reassembling algorithm,
we perform extensive tests against real-world applications,
and the evaluation results in Section V-A, Section V-B, and
Section V-D show that the reassembled DEX file retains the
semantics of the real-world application and can be correctly
processed by the state-of-the-art static analysis tools.

D. Handling Reflection

Currently, reflection is a serious obstacle for static analysis
tools, and even the state-of-the-art static analysis tools [1]-
[3], [23] cannot provide a precise result when reflection is
involved in an application. FlowDroid [1], DroidSafe [3],
and HornDroid [2] can solve the reflection only when the
parameters are constant strings. However, the name string can
be encrypted in some cases [23], and advanced malware can
use reflection without involving any string parameter [24].

The TamiFlex [25] system on traditional Java platform uses
load-time instrumentation to log reflective method calls and
transform them to direct calls at offline. However, the required

Branch
Analysis

Previous
Execution

Execution

Results Collecting Stage

Path
Analysis

Paths
to UCBs

Fig. 4: Tterative Force Execution.

Yes

Next
Force Execution

load-time instrumentation class java.lang.instrument
is not supported in Android [1]. Meanwhile, since the target
of the reflective method calls is parsed in ART at runtime,
DEXLEGO actually knows the target of each reflection. Thus,
we apply the similar idea in ART by replacing the reflection
calls with direct calls in the collecting stage.

E. Force Execution

As a supplement of the code coverage improvement module,
we implement a prototype of force execution which executes
the target application in an iterative fashion. Note that our
force execution starts from the execution result of the previous
execution, and the previous execution could be any kind
of execution like fuzzing, symbolic execution, another force
execution, or simply open the application and close. Figure 4
shows the workflow of the iterative force execution. In each
iteration, we first use branch analysis to identify the Uncovered
Conditional Branch (UCB) from the result of the previous
execution. Next, we calculate the control flow path to each
UCB. A path to an UCB consists of branch instructions and
the offsets of the conditional branches leading to the UCB. We
save each path into a file and use these files as the input of the
next iteration together with the original application. Finally, in
the interpretation functions, the outcome of the corresponding
conditional expression is automatically manipulated at runtime
following the path files. With this approach, DEXLEGO en-
sures that the runtime control flow goes along the path to the
UCB. If no more new UCB are generated after the iteration,
we terminate the execution and continue the collecting stage.
Otherwise, the next iteration is scheduled.

Since the idea of force execution breaks the normal control
flow of the original application, the application may crash
due to the control flow falls to an infeasible path [40], [41].
To avoid crash triggered by force execution, we monitor
the unhandled exception in the interpreter and tolerate it by
directly clear the exception. This strategy helps us to avoid
terminations due to infeasible paths while does not affect our
runtime bytecode and data collection.

V. EVALUATION

In this section, we evaluate DEXLEGO with Droid-
Bench [24] and real-world applications downloaded from
Google Play and other application markets. In particular, we
aim to answer five research questions:

RQ1. Can we correctly reconstruct the behavior of apps?
RQ3. How is DEXLEGO compared with other tools?
RQ4. Can DEXLEGO work with real-world packed apps?

TABLE I: Test Result of Different Packers.

Applications HTMLViewer Calculator ~ Calendar Contacts
of Instructions 217 2,507 78,598 103,602
360 [11] v v v v
Alibaba [7] v v v v
Tencent [12] v v v v
Baidu [8] v v v v
Bangcle [48] v v v v
NetQin [46] The service is offline now

APKProtect [47] Unresponsive to packing requests

Tjiami [9] Samples are rejected by human agents

RQS5. What is the coverage of our force execution prototype?
RQ6. What is the runtime performance overhead?

A. RQI: Test with Open-source Apps and Public Packers

To verify the correctness of the reassembled re-
sult, we pick up four open source applications (i.e.,
HTMLViewer, Calculator, Calendar, and Contacts)
from AOSP [42] and use DEXLEGO to reveal them. By
manually comparing the instructions and control flows in each
method, we ensure that the instructions and control flows in
the source code are completely included in the reassembled
result. In regard to Calendar and Contacts, we use
Soot framework [45] to build a complete call graph since
the numbers of instructions (78,598 and 103,602 instructions,
respectively) are too large for a manual analysis. By examining
the call graph, we confirm that the control flows in these two
applications are properly maintained in the reassembled DEX.

Next, to check the functionality against packers, we use
different public packing platforms to pack these applications
and then use DEXLEGO to reveal them again. Table I shows
the result of the experiments. For the packers including
360 [11], Alibaba [7], Tencent [12], Baidu [8], and Bang-
cle [48], DEXLEGO succeeds in both collection and reassem-
bling stages. By using the same approach described above,
we ensure that DEXLEGO correctly rebuilds the behavior of
each application. Note that NetQin packer [46] mentioned in
AppSpear [13] is no longer available. The APKProtect [47] is
unresponsive to the packing requests, and there are no logs of
the occurred errors. The packing service provided by Ijiami [9]
requires manual audits by their agents, and they reject our
applications for the reason that the applications are not actually
developed by us.

B. RQ2: Test with Existing Tools

1) Static Analysis Tools: DroidBench [24] is a set of open-
source samples that leak sensitive data in various ways. It is
considered as a benchmark for Android application analysis
and widely used among recent analysis tools [1]-[5]. The latest
release of DroidBench contains 119 applications, including
both leaky and benign samples. The leaky samples leak a
variety of sensitive data fetched from sources (API calls
that fetch sensitive information) to sinks (API calls that may
leak information), and the benign samples contain no such
information flows. As a supplement, we contribute another 15

TABLE II: Analysis Result of Static Analysis Tools. The
columns in “Original” represent the analysis result of the
original samples, and the columns in "DEXLEGO” represent
that of the samples reassembled by DEXLEGO. The column
”TP” and ”FP” indicate the number of true positives and false
positives of the analysis result, respectively.

of # of Original DEXLEGO
Samples Malware TP FP TP FP

FlowDroid [1] 134 111 81 10 95
DroidSafe [3] 134 111 95 12 105 7
HornDroid [2] 134 111 98 9 106 4

samples involving usage of advanced reflection (5 samples),
dynamic loading (3 samples), self-modifying (4 samples), and
unreachable taint flows (3 samples). Current static analysis
tools [1]-[3] cannot precisely analyze these newly added
samples. Besides this benchmark, we choose three represen-
tative static analysis tools (FlowDroid [1], DroidSafe [3], and
HornDroid [2]) to conduct the experiments.

Our experiment involves 134 samples (119 samples in the
newest release plus 15 samples we contributed) in Droid-
Bench. Since the lines of code in DroidBench samples are
small, we simply choose the state-of-the-art fuzzing tool
Sapienz [27] to generate the inputs for the execution. We first
use the static analysis tools to analysis the original samples
and the samples processed by DEXLEGO, and the result is
shown in Table II. The table shows that DEXLEGO increases
more than 8 true positives by resolving advanced reflections,
extracting self-modifying code and dynamic loading code.
Moreover, The JIT collection ensures that the extracted data
reflects the performed behavior of the target application. Thus,
at least 5 false positives introduced by dead code blocks are
removed. Next, without losing generality, we use one of the
most popular packers tested in Section V-A, 360 packer, to
pack the original samples and process the packed samples with
DEXLEGO, DexHunter [14], and AppSpear [13], respectively.
The analysis result of the processed samples is shown in
Table III. Note that DexHunter and AppSpear lead to the same
result since they can extract the original DEX files and the
result is same as analyzing the original DEX. Compared to
DEXLEGO, they fail to deal with self-modifying code and
reflection. As shown in the table, DEXLEGO provides more
than 5 true positives and reduces more than 5 false positives
than DexHunter and AppSpear. We note that DEXLEGO fails
to cover taint flow in only one application among all samples.
In this sample, sensitive data only leaks in the tablet, and it
cannot be detected as we execute it in a mobile phone.

tn

tp
tp+ fn 7‘/"7/“!‘](4177 (1)
Sensitivity X Specificity

Sensitivity = , Specificity =

F-Measure = 2 x Sensitivity + Speci ficity
The F-Measure [2] is a standard measure of the performance
of a classification, and it is calculated by Formula (1). Fig-
ure 5 illustrates the changes of F-Measures after involving
DexHunter, AppSpear, and DEXLEGO. Once DEXLEGO is

TABLE III: Analysis Result of Packed Samples. The columns
in ’DH”, ”AS”, and "DEXLEGO” represent the analysis result
of the samples processed by DexHunter [14], AppSpear [13],
and DEXLEGO, respectively. The column “TP” and “FP”
indicate the number of true positives and false positives of
the analysis result, respectively.

of # of DH [14] / AS [13] DEXLEGO

Samples Malware P FP P FP

FlowDroid [1] 134 111 84 10 95 4
DroidSafe [3] 134 111 98 12 105 7
HornDroid [2] 134 111 101 9 106 4

I 0] Original a [/ DexHunterE N AppSpearD 0 DEXLEGO ‘

100%

80%
60% 7 §
LI%@ 0l

FlowDroid DroidSafe =~ HornDroid
Fig. 5: F-measures of Static Analysis Tools.

F-Measure

involved, the F-Measure of FlowDroid increases from 63% to
84% on DroidBench, and that of DroidSafe increases from
61% to 80%. In regard to the most recent static analysis
tool, HornDroid, the F-Measure increases from 72% to 89%.
The percentages of incremental values are 33.3%, 31.1%,
and 23.6%, respectively. In the meantime, the improvement
introduced by DexHunter and AppSpear is less than 3%.

2) Dynamic Analysis Tools: As mentioned in Section I,
dynamic analysis tools can be circumvented through implicit
taint flows, and a recent work [23] shows that a representitive
dynamic analysis tool, TaintDroid [17], misses leakage on
some samples of DroidBench. We pick these samples and
analyze them with both TaintDroid and another recent dynamic
analysis tool TaintART [18]. Next, we use DEXLEGO to
analyze it again. The reassembled result is fed to HornDroid,
the most recent static analysis tool, for comparison.

Table IV shows the taint flow analysis results of TaintDorid,
TaintART, and combing DEXLEGO and HornDroid. As shown
in Table IV, the static analysis result of reassembled APK
file by DEXLEGO detects the taint flows and is more precise
than dynamic analysis tools. In Buttonl and Button3,
the sensitive data are leaked via callback methods, and we
solve it properly while the dynamic analysis tools miss it.
As TaintDroid executes applications on emulator, the sample
EmulatorDetectionl evades the analysis. Both Taint-
Droid and TaintART cannot detect the implicit taint flows
in ImplicitFlowl, and using HornDroid with DEXLEGO
provides a precise analysis result. One of the taint flows
in PrivateDatalLeak3 leaks the sensitive data through
writing/reading an external file, and all tested tools fail to
detect this flow since they do not take this case into account.
Note that these missed taint flows are not caused by code
coverage issue, but due to the weakness of dynamic analysis

TABLE IV: Analysis Result of Dynamic Analysis Tools
and DEXLEGO. The columns "TD” and "TA” represent the
taint flows detected by TaintDroid [17] and TaintART [18],
respectively. The last column shows the detected taint flows
by feeding the revealed result of DEXLEGO to HornDroid [2].

of Leak Detected

Samples Leak #
TD [17] TA [18] DEXLEGO + HD [2]
Buttonl 1 0 0 1
Button3 2 0 0 2
EmulatorDetection] 1 0 1 1
ImplicitFlowl 2 0 0 2
PrivateDataleak3 2 1 1 1

tools on implicit taint flows.

Note that DEXLEGO is not a dynamic analysis tool. We
believe we should not directly compare DEXLEGO with dy-
namic analysis tools, and the dynamic analysis tools have
their advantages. However, the experiment conducted in this
subsection is to show that DEXLEGO can help static analysis
tools make up some deficiencies of dynamic analysis tools.

C. RQ3: Test with Real-world Packed Applications

A previous work [49] has downloaded more than one mil-
lion applications from Google Play by a crawler in 2014, and
we select the packed applications from this set. Since the DEX
file in an application packed by the public packing platforms
contains only the classes needed to unpack the original DEX
file, the number of the classes in the DEX file is less compared
to normal applications. In light of this, we perform a coarse-
grain analysis to screen the applications which contains less
than 50 classes from the top rated 10,000 applications. Next,
we select the first 9 applications from the screened result by
manually checking and reverse engineering. Without loss of
generality, we download the latest version of these applications
from three different popular application markets: 1) Google
Play [50] (denoted as set &), 2) 360 Application Market [51]
(denoted as set B), and 3) Wandoujia Application Market [52]
(denoted as set C).

For these real-world packed applications, we use FlowDroid
to provide a quick scan on the original applications, and
then execute them with DEXLEGO for 5 minutes. Next,
the reassembled APK file is analyzed again by FlowDroid.
Table V shows the result of our experiment. Although no taint
flow can be detected from the original samples, FlowDroid
detects several taint flows from these revealed applications.
From the analysis result, we find that all of these applications
send device ID (IMEI number) to remote servers. Moreover,
three of them leak location information and two of them
leak SSID. This result also shows that DEXLEGO successfully
reveals the latest packed real-world applications.

D. RQ4: Code Coverage

To evaluate the code coverage of our force execution engine,
we pick up five open source applications from the random
page [53] of F-Droid [26] project. For each application, we
first execute it with Sapienz [27] and use Java Code Coverage

TABLE V: Analysis Result of Packed Real-world Applica-
tions. The column ”Sample Set” is defined in Section V-C,
which indicates the source of the application. The column
“# of Installs” shows the installation number provided by
the application markets. The column “Original” represents the
number of detected taint flows in the original application while
the column “Revealed” is the number of detected taint flows
in the revealed APK file.

Package Name Version Sample Set # of Installs Original Revealed

com.lenovo.anyshare 3.6.68 A 100 million 0 4
com.moji.mjweather 6.0102.02 A 1 million 0 5
com.rongcai.show 349 A 100 thousand 0 3
com.wawoo.snipershootwar 2.6 B 10 million 0

com.wawoo.gunshootwar 2.6 B 10 million 0 5
com.alex.lookwifipassword 2.9.6 B 100 thousand 0 2
com.gome.eshopnew 43.5 C 15.63 million 0 3
com.szzc.ucar.pilot 3.4.0 C 3.59 million 0 5
com.pingan.pabank.activity 2.6.9 C 7.9 million 0 14

Library (JaCoCo) [54] for Android Studio to calculate the
coverage. Next, based on the result of Sapienz, we execute
it again using the force execution engine as the code coverage
improvement module.

Table VI shows the details of the samples including package
name, version number, the number of instructions, and the total
size of the dump files after fuzzing by Sapienz. Note that the
size of the dump files is not only related to the number of the
instructions in the application, but also related to the size of
other data structures in the DEX file (e.g., number of classes,
number of methods, size of strings, and so on.) and the code
coverage of the fuzzing. Table VII shows the average coverage
of these samples with different granularities. The results show
that the force execution significantly improves the coverage
and achieves an average instruction coverage of 82%. By
manually check the source code, we group the cause of missed
instructions into three main categories: 1) Dead code blocks.
As an example, the CmdTemplate class is never involved
in the application be.ppareit.swiftp, thus the entire
instructions in this class are not included while calculating
coverage. 2) Native crashes. Although DEXLEGO clears the
unhandled exceptions in the interpreter, the abnormal control
flows may lead the native code to crash. This may be mitigated
by the on demand runtime memory allocation mechanism
applied in [41]. 3) Instructions in exception handlers. During
force execution, the expected exceptions in the try—catch
blocks may not be thrown due to abnormal control flow, and it
may be solved by treating these blocks as branch instructions
in the branch analysis. We leave it as a future work.

E. RQS5: Performance

As DEXLEGO traces and extracts instructions at runtime,
it slows the ART during instruction execution. To learn the
performance overhead introduced by DEXLEGO, we use CF-
Bench [55] to compare the performance of the unmodified
ART and ART with DEXLEGO. For each environment, we
run CF-Bench for 30 times, and the results are presented in

TABLE VI: Samples from F-Droid [26].

Package Name Version # of Instructions Dump File Size
be.ppareit.swiftp 2.14.2 8,812 47.26 KB
fr.gaulupeau.apps.InThePoche 2.0.0bl1 29,231 771.81 KB
org.gnucash.android 2.1.7 56,565 2.40 MB
org.liberty.android.fantastischmemopro 10.9.993 57,575 1.55 MB
com.fastaccess.github 2.1.0 93,913 3.18 MB

TABLE VII: Code Coverage with F-Droid Applications.

Class Method Line Branch Instruction

37%
88%

32%
82%

20%
78%

32%
82%

Sapienz [27] 44%
Sapienz + DEXLEGO 87%

Figure 6. A higher score indicates a better performance. It
shows that DEXLEGO brings 7.5x, 1.4x, 2.3x overhead on
Java score, native score, and overall score, respectively.

Moreover, we evaluate the launch time of three popular
applications (i.e., Snapchat, Instagram, and WhatsApp) down-
loaded from Google Play. While an activity in an application
is launching, the ActivityManager reports the time usage
for initializing and displaying. We launch each application
for 30 times and the result is summarized in Table VIIIL.
The result shows that DEXLEGO introduces about two times
slowdown on the launch time, and this result matches the
overall overhead tested by CF-Bench.

Since our system is designed for security analyst instead
of traditional users, we do not take performance as a critical
factor. In summary, we consider the overhead is acceptable
and leave the further improvement as our future work.

VI. RELATED WORK
A. Static Analysis Tools

FlowDroid [1] is a static taint-analysis tool for Android
applications, and it achieves a high accuracy by mitigating the
gaps between lifecycle methods and callback methods. Aman-
droid [5] and IccTA [4] aim to resolve the implicit control
flows during inter-component communication. EdgeMiner [56]
links the callback methods with their registration methods
to facilitate the static analysis tools in gaining more precise
results. DroidSafe [3] implements a simplified model of the
Android system and solves native code in the Android frame-
work by manually analyzing the source code and writing stubs
for them in Java. HornDroid [2] generates Horn clauses from
the bytecode of application and performs both value-sensitive
and flow-sensitive analysis on the clauses. HSOMiner [57]
uses machine learning algorithms to discover the hidden
sensitive operations by analyzing the branch instructions and
their related conditional branches.

B. Dynamic Analysis Tools

DroidScope [20] provides an instrumentation tool to moni-
tor the executed bytecode and native instructions to help ana-
lysts learn the malware manually. VetDroid [21] executes the
Android applications by a custom application driver and per-
forms a permission usage behavior analysis. CopperDroid [19]

10

‘ [B Unmodified ART [1 DEXLEGO ‘

10°

Score

10%

10%
Java Native Overall

Fig. 6: Performance Measured by CF-Bench [55].

TABLE VIII: Time Consumption of DEXLEGO. The column
”Original” represents the mean and standard deviation (STD)
of the launch time with unmodified ART, while the last column
represents launch time with DEXLEGO.

Application Version Original With DEXLEGO
Mean STD Mean STD
Snapchat 9.43.0.0 826.9ms 52.11ms 1,664.7ms 16.08ms
Instagram 9.7.0 608.5ms 45.6ms 1,275.8ms 25.37ms
WhatsApp 2.16.310 236.4ms 12.24ms 480.2ms 84.3ms

traces the system calls and reconstructs the behavior of the
target application. TaintDroid [17] and TaintART [18] are
taint flow analysis system on different Android Java virtual
machines. They track the information flow of the target
application at runtime and report the data leakage from sink
methods. DexHunter [14] focuses on how to dump the whole
DEX file from memory at a “right timing”. AppSpear [13]
leverages the key data structures in Dalvik to reassemble the
DEX file and claims that these data structures are reliable.
Both DexHunter and AppSpear assume that there is a clear
boundary between the unpacking code and the original code.
However, the unpacking code and malicious code may in-
tersperse with each other. Moreover, advanced malware can
modify bytecode and data in the DEX file at runtime, and
thus the previous dump-based unpacking systems will miss
the content modified after the dump procedure.

C. Hybrid Analysis Tools

Harvester [23] collects runtime values and injects these
values into the DEX file for the accuracy improvement of
analysis tools. However, some limitations still exist. Firstly,
marking logging points and backward slicing are based on the
original DEX file. If packing is considered, Harvester loses its
target like other static analysis tools. In contrast, DEXLEGO
does not analyze the original DEX file. Additionally, Harvester
greatly facilitates static analysis tools on solving reflections
as they reduce the parameters back into constant strings.
However, malware can use advanced reflection code to evade
the analysis. Since DEXLEGO replaces the reflective call with
direct call, we do not care about how the adversaries use
reflection.

D. Unpacking and Reassembling in Traditional Platforms

Ugarte et al. [58] present a summary of recent unpacking
tools and develop an analysis framework for measuring the
complexity of a large variety of packers. CoDisasm [59] is a

dissembler tool that takes memory snapshot during execution
and disassembles the captured memory. Uroboros [60] aims
to disassemble binaries with a reassembleable approach. Their
reassembling method is based on the disassembling output of
Uroboros. DEXLEGO is different from these systems as we do
not disassemble the binary or monitor memory. [61] collects
the instruction trace at runtime and performs taint analysis
on the trace. Unlike [61], DEXLEGO aims to facilitate the
other static analysis tools and outputs a standardized DEX file,
which could be used for state-of-the-art static analysis tools
to perform different kinds of analysis including taint analysis.

VII. LIMITATIONS AND FUTURE WORK

Although the bytecode collection in DEXLEGO is not based
on the machine code in ART, the experience of TaintART
shows that we can also implement our collecting algorithm in
the compliers of ART [18] to achieve the same goal. As we
implement DEXLEGO in a real mobile device, we consider that
it is transparent to applications with anti-emulation techniques.
However, advanced malware may be aware of its existence by
code footprints or checksum values of Android libraries. One
potential solution is to leverage hardware isolated execution
environment mentioned in [62] to reduce the artifacts of the
system and improve the transparency. The code coverage
improvement modules in DEXLEGO may introduce additional
false positives on the unreachable code paths caused by unre-
alistic input. It is a trade-off between the code coverage and
the analysis precision. As DEXLEGO collects instructions in
ART, our procedure may also be compromised by native code.
To prevent attackers tampering DEXLEGO, we can randomize
the memory address of DEXLEGO [63], [64] to make it
difficult to be located. Additionally, using sandbox [65], [66]
or hardware-assisted isolated execution environments such as
TrustZone technology [62], [67]-[69] can secure the execution
of DEXLEGO. Note that applying these techniques to the
entire ART may introduce a heavy performance overhead or
compatibility issues, and we need to restrictively use them on
DEXLEGO only. Currently, DEXLEGO only reveals the behav-
ior performed by Java code. However, JNI technique allows
sophisticated malware to perform malicious behavior through
native code. We consider tracing the native instructions and
reassemble them as our future work.

VIII. CONCLUSIONS

In this paper, we present DEXLEGO, a novel system that
performs bytecode extraction and reassembling for aiding
static analysis. It adopts instruction-level JIT collection to
record the data and control flows of applications, and reassem-
bles the extracted information back into a new DEX file. The
evaluation results on packed DroidBench samples and real-
world applications with state-of-the-art static analysis tools
show that DEXLEGO correctly reveals the behavior in packed
applications even with self-modifying code. The F-Measures
of FlowDroid, DroidSafe, and HornDroid increase by 33.3%,
31.1%, and 23.6%, respectively. We also show that DEXLEGO
provides a better accuracy than pure dynamic analysis, and our

11

force execution module efficiently increases the code coverage
of the dynamic analysis.

IX. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
Grant No. CICI-1738929 and IIS-1724227. Opinions, findings,
conclusions and recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the US Government.

REFERENCES

[11 S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’14), 2014,
S. Calzavara, I. Grishchenko, and M. Maffei, “HornDroid: Practical
and sound static analysis of Android applications by SMT solving,”
in Proceedings of the 1st IEEE European Symposium on Security and
Privacy (EuroS&P’16), 2016.

M. L. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of Android applications in
DroidSafe,” in Proceedings of the 22nd Network and Distributed System
Security Symposium (NDSS’15), 2015.

L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in Android apps,” in Proceedings of
the 37th International Conference on Software Engineering-Volume 1
(ICSE’15), 2015.

F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
Android apps,” in Proceedings of the 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS’14), 2014.

AVL Team, “AVL malware report 2015, https://www.avlsec.com/,
2016.

Alibaba Inc., “AliProtector,” http://jaq.alibaba.com/, 2014.

Baidu Inc., “BaiduProtector,” http://app.baidu.com/jiagu/, 2014.

Jjiami Inc., “IJiamiProtector,” http://www.ijiami.cn/AppProtect, 2013.
Licel Inc., “DexProtector,” https://dexprotector.com/, 2013.

Qihoo 360 Inc., “360Protector,” http://jiagu.360.cn/protection, 2014.
Tencent Inc., “TencentProtector,” http://legu.qcloud.com/, 2014.

W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu, “AppSpear:
Bytecode decrypting and DEX reassembling for packed Android mal-
ware,” in Proceedings of the 18th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID’15), 2015.

Y. Zhang, X. Luo, and H. Yin, “DexHunter: Toward extracting hidden
code from packed Android applications,” in Proceedings of the 20th Eu-
ropean Symposium on Research in Computer Security (ESORICS’15).,
2015.

Bluebox Security Inc., “Android security analysis challenge: Tampering
Dalvik bytecode during runtime,” https://bluebox.com/android-security-
analysis-challenge-tampering-dalvik-bytecode-during-runtime/, 2013.

J. hyuk Jung and J. Lee, “DABID: The powerful interactive Android
debugger for Android malware analysis,” Asia Black Hat, 2015.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation
(0SDI’10), 2010.

M. Sun, T. Wei, and J. Lui, “TaintART: a practical multi-level
information-flow tracking system for Android RunTime,” in Proceedings
of the 23rd ACM SIGSAC Conference on Computer and Communications
Security (CCS’16), 2016.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic reconstruction of Android malware behaviors,” in Proceed-
ings of the 22nd Network and Distributed System Security Symposium
(NDSS’15), 2015.

L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,”
in Proceedings of the 21st USENIX Security Symposium (USENIX
Security’12), 2012.

(2]

[3]

(5]

(7]
(8]
(9]
[10]
(11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,
and B. Zang, “Vetting undesirable behaviors in Android apps with
permission use analysis,” in Proceedings of the 20th ACM SIGSAC
Conference on Computer and Communications Security (CCS’13), 2013.
P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim,
and M. D. Ernst, “Static analysis of implicit control flow: Resolving
Java reflection and Android intents,” in Proceedings of the 30th Annual
International Conference on Automated Software Engineering (ASE’15),
2015.

S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
runtime values in Android applications that feature anti-analysis tech-
niques,” in Proceedings of the 23rd Network and Distributed System
Security Symposium (NDSS’16), 2016.

EC SPRIDE Secure Software Engineering Group, “DroidBench,” https:
//github.com/secure-software-engineering/DroidBench, 2013.

E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming
reflection: Aiding static analysis in the presence of reflection and custom
class loaders,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011.

F-Droid, “F-Droid,” https:/f-droid.org/, 2011.

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proceedings of the 25th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’16), 2016.

D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of Android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE’12), 2012.

T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Proceedings of the 19th ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA’13), 2013.
Google Inc., “Ul/Application Exerciser = Monkey,”
//developer.android.com/studio/test/monkey.html, 2008.

S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile systems, applications, and services (MobiSys’14), 2014.

A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input gen-
eration system for Android apps,” in Proceedings of the 9th Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC’13/FSE’13), 2013.

S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the 20th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE’12), 2012.

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’08), 2008.

N. Mirzaei, S. Malek, C. S. Pisdreanu, N. Esfahani, and R. Mahmood,
“Testing Android apps through symbolic execution,” ACM SIGSOFT
Software Engineering Notes, 2012.

M. Y. Wong and D. Lie, “IntelliDroid: A targeted input generator for
the dynamic analysis of Android malware,” in Proceedings of the 23nd
Network and Distributed System Security Symposium (NDSS’16), 2016.
Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: analyzing sensitive data transmission in Android for privacy
leakage detection,” in Proceedings of the 20th ACM SIGSAC Conference
on Computer and Communications Security (CCS’13), 2013.

Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iRiS: Vetting private
api abuse in iOS applications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS’15), 2015.
K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and D. Xu,
“J-Force: Forced Execution on JavaScript,” in Proceedings of the 26th
International Conference on World Wide Web (WWW’17), 2017.

F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-Force: Force-
executing binary programs for security applications,” in Proceedings of
the 23rd USENIX Security Symposium (USENIX Security’14), 2014.
Google Inc., “Android open source project,” https://source.android.com/,
2008.

Team Win, “Team win recovery project,” https://twrp.me/, 2014.

https:

12

[43]
[44]
[45]

[46
[47]

[48]

[49]
[50]
[51]

[52]
[53]
[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Google Inc., “Dalvik executable format,” https://source.android.com/
devices/tech/dalvik/dex-format.html, 2008.

P. Lam, E. Bodden, O. Lhotdk, and L. Hendren, “The Soot framework
for Java program analysis: A retrospective,” in Proceedings of the Cetus
Users and Compiler Infastructure Workshop (CETUS’11), 2011.
Bangcle Ltd., “BangcleProtector,” https://www.bangcle.com/, 2013.
NQ Mobile, “NetQinProtector,” https://shield.nq.com, 2014.

Android APK Encryption and Protection, “APKProtector,” https:/
sourceforge.net/projects/apkprotect/, 2013.

N. Viennot, E. Garcia, and J. Nieh, “A measurement study of Google
Play,” in Proceedings of the ACM SIGMETRICS, 2014.

Google, “Google Play,” https://play.google.com/store?hl=en, 2017.
Qihoo 360 Inc., “360 Market,” http://zhushou.360.cn/, 2017.
Wandoujia, “Wandoujia Market,” http://www.wandoujia.com/apps,
2017.

F-Droid, “F-Droid Random Page,” https:/f-droid.org/wiki/page/Special:
Random, 2011.

JaCoCo, “Java Code Coverage Library,” http://www.eclemma.org/
jacoco/, 2009.

Chainfire, “CF-Bench,” https://play.google.com/store/apps/details?id=
eu.chainfire.cfbench, 2013.

Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “EdgeMiner: Automatically detecting implicit control flow
transitions through the Android framework,” in Proceedings of the 22nd
Network and Distributed System Security Symposium (NDSS’15), 2015.
X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark Hazard:
Learning-based, large-scale discovery of hidden sensitive operations in
Android apps,” in Proceedings of the 24th Network and Distributed
System Security Symposium (NDSS’17), 2017.

X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P’15), 2015.

G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry, “CoDisasm: Medium scale concatic disassembly of self-
modifying binaries with overlapping instructions,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15), 2015.

S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Secu-
rity’15), 2015.

B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy (S&P’15), 2015.
Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and
debugging on arm,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/ning

B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened ASLR on Android,” in Proceedings of the 35th
IEEE Symposium on Security and Privacy (S&P’14), 2014.

M. Sun, J. C. Lui, and Y. Zhou, “Blender: Self-randomizing address
space layout for Android apps,” in Proceedings of the 19th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID’16),
2016.

V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna, “Going Native: Using a large-scale analysis
of Android apps to create a practical native-code sandboxing policy,”
in Proceedings of the 23nd Network and Distributed System Security
Symposium (NDSS’16), 2016.

M. Sun and G. Tan, “NativeGuard: Protecting android applications from
third-party native libraries,” in Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks (WiSec’14), 2014.
L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“TrustShadow: Secure execution of unmodified applications with ARM
trustzone,” in Proceedings of the 15th Annual International Conference
on Mobile systems, applications, and services (MobiSys’17), 2017.

F. Zhang and H. Zhang, “SoK: A study of using hardware-assisted iso-
lated execution environments for security,” in Proceedings of Hardware
and Architectural Support for Security and Privacy (HASP’16), 2016.
N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “CaSE: Cache-Assisted
Secure Execution on ARM Processors,” in Proceedings of the 37th IEEE
Symposium on Security and Privacy (S&P’16), 2016.

	Introduction
	Background
	Dalvik and Android Runtime
	Android Java Bytecode

	System Overview
	Bytecode and Data Collection
	DEX File Reassembling
	Code Coverage Improvement Module

	Design and Implementation
	Bytecode Collection
	Bytecode Reassembling
	Data Collection and DEX Reassembling
	Handling Reflection
	Force Execution

	Evaluation
	RQ1: Test with Open-source Apps and Public Packers
	RQ2: Test with Existing Tools
	Static Analysis Tools
	Dynamic Analysis Tools

	RQ3: Test with Real-world Packed Applications
	RQ4: Code Coverage
	RQ5: Performance

	Related Work
	Static Analysis Tools
	Dynamic Analysis Tools
	Hybrid Analysis Tools
	Unpacking and Reassembling in Traditional Platforms

	Limitations and Future Work
	Conclusions
	Acknowledgement
	References

