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Abstract—The pervasive von Neumann architecture uses com-
plex processor cores and sequential computation. In contrast,
the brain is massively parallel and highly efficient, owing to
the ability of the neurons and synapses to store and process
information simultaneously and to adapt according to incoming
information. These features have motivated researchers to develop
a host of brain-inspired computers, devices, and models, collec-
tively referred to as neuromorphic computing systems. The quest
for synaptic materials capable of closely mimicking biological
synapses has led to an alamethicin-doped, synthetic biomembrane
with volatile memristive properties which can emulate key synaptic
functions to facilitate learning and computation. In contrast
to its solid-state counterparts, this two-terminal, biomolecular
memristor features similar structure, switching mechanisms, and
ionic transport modality as biological synapses while consuming
considerably lower power. To use the device as a circuit element,
it is important to understand its response to different kinds of
input signals. Here we develop a simplified closed form analytical
solution based on the underlying state equations for pulse and
sine wave inputs. A Verilog-A model based on Runge-Kutta
method was developed to incorporate the device in a circuit
simulator. Finally, the paper demonstrates possible applications for
short- and long-term learning using its unique volatile memristive
properties.

I. INTRODUCTION

The imminent demise of Moore’s Law and the problem
of low bandwidth between CPU and memory (von Neumann
bottleneck) has driven researchers to look for alternative com-
puting paradigms. Neuromorphic computing is a computing
paradigm inspired by the interconnectivity, performance, and
energy efficiency of the brain. The brain uses sophisticated
molecular mechanisms to continually reconfigure connectivity
between neurons through synaptic plasticity [1] which enables
the brain to remember patterns, adapt to incoming informa-
tion, and perform massive amounts of parallel operations with
significantly low levels of power consumption [2]. However,
most of the current solid-state devices used for neuromorphic
computing do not exhibit biologically realistic structural and
functional attributes and, consequently, require far more com-
plex neural networks and power to achieve similar computa-
tional capability. A possible alternative approach is to design
more biologically faithful systems that are energy-efficient, soft,
stochastic, fault-tolerant, and preferably biological. To this end,

a biomolecular memristor (memory resistor) with composition,
structure, switching mechanism, and ionic transport similar to
biosynapses has been recently reported by Najem et al. [3]. The
reversible and volatile voltage-driven insertion of alamethicin
peptides into an insulating lipid bilayer creates conductive
pathways that exhibit pinched current-voltage hysteresis at po-
tentials above their insertion threshold. This device can emulate
key synaptic functions including paired-pulse facilitation (PPF)
and depression (PPD) due to a generic memristive property, en-
abling learning and computation with considerably lower power
consumption. Moreover, the synapse-like dynamic properties of
the device enables simplified learning circuit implementations.

The remainder of the paper is organized as follows: In
Section II, we explore the physical mechanism resulting in
volatile memristance and validate the model used to describe
the device operation. In Section III, we solve the state equations
underlying its memristive charecteristic to derive closed form
analytical solution for pulse and sinusoidal inputs. In Section
IV, we develop VerilogA model to integrate the device in
standard circuit simulator and discuss simulation results from
example circuits to show how the unique device functinal-
ity can be used to accomlish long-time learning mechanism
such as STDP(Spike Time Dependent Plasticity) and short-
time learning mechanism such as SRDP(Spike Rate Dependent
Plasticity). Finally, we discuss our results and conclude the
paper in Section V.

II. DEVICE OPERATION AND MODEL VALIDATION

The biomolecular memristor consists of an alamethicin-
doped synthetic biomembrane of 3-5 nm thickness. The highly
insulating (~10 G) lipid membrane self assembles at the in-
terface of two in-contact, lipid-encased aqueous droplets placed
in a reservoir of hexadecane oil. In the presence of alamethicin
(alm) peptides (in both droplets) and sufficient transmembrane
voltage, conductive ionic pathways are created through volatile,
voltage-driven insertion of alm peptides into the insulating lipid
membrane. At low voltages, where alm peptides are surface-
bound, the device is considered to be in the resting state with
very high resistance. However, when the voltage exceeds a
threshold potential, the device abruptly switches into a voltage-



dependent conductive state. This mechanism is very similar to
the voltage-modulated variable conductance in biosynapses.

The device behavior is governed by two voltage-dependent
state variables: the areal density of alamethicin channels N,
and the increase in membrane area A,, due to electrowetting,
which in turn dictates the total number of ion channels, and,
thus, the net conductance of the device. Compared to prior
memristive devices, this biomolecular memristor consumes
significantly less power (0.1-10 nW), is relatively low-cost, and
scalable to support large-network computing applications.

The current-voltage relationship of a generic voltage-
controlled memristor can be written as

I=G(x)V ey
dx
o f(x;V) (2

Here, GG is the nominal memory conductance and x repre-
sents one or more voltage-controlled state variables that control
the conductance [4]. Here, we consider N,, and A,,, as two
state variables for our device.

The insertion of alamethicin peptides and subsequent for-
mation of ion channels (pores) in response to an increase in
transmembrane voltage is well characterized [5] [6]. The steady
state fractional increase in area through electrowetting caused
by applied voltage has also been reported in [7]. For an applied
voltage V, the state equations for N, and A,,, as derived in
[3], are

dN,
dta =a1 + aaN, 3
dA
Yom 4 oA, 4
7 1+ b2 “4)
where,
_ Noexp(|V]/Ve) _ -1
moexp(|V[/Vi) Toexp(|V |/ Vi)
2
LA
TE'LU TE'LU

Here, V. , Ny, V; and 7y are the voltage required to cause an
e-fold increase in the number of alm pore, a proportionality
constant that represents the number of alm pores at zero volts,
the voltage required to induce an e-fold increase in 7, and
the time constant for pore closure at zero volts, respectively.
« and T, are voltage-sensitivity constant, and characteristic
time constant describing electrowetting process, respectively.
Combining these results, the overall conductance can be written
as,

G(t) = GuN, () Ao(1 + A, (t)) 5)
where Ay and G, are bilayer area at zero volts and average
unit conductance of a single alm pore.

Tew and a were determined by fitting numerical solutions of
equation 4 to the measured change in membrane area during
voltage sweeps and these, along with measured relaxation time
constants (7g), were used in another fitting routine to estimate
the parameters for alm insertion by fitting numerical solutions
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Fig. 1: Comparison between experimental data and model result

for pinced hysteresis loop for periodic triangular wave input.

of equation 3 to measured /-V responses.These parameters and
corresponding conductance can be varied by changing lipid
type, alm concentration, temperature etc. The pinched hysteresis
I-V curve of DPhPC memristor for 0.17 Hz triangular wave
of amplitude 160 mV is shown in Fig. 1. The values of the
parameters used here are, V, = 0.0063V, V, = 0.0617V,
No = 0.17, 70 = 10ms, o = 14.4V =2, 7., = 1.5s and
G, = 5nS. As seen in this figure, the model fits reasonably
well with the measured experimental data.

III. RESPONSE TO PULSE AND SINUSOIDAL INPUT VOLTAGE

A. Pulse Input

For pulse input, coefficients a;, as, by and by will be different
from ON to OFF cycle depending on Vo and Vo rr. A closed
form analytical solution for IV, and A,, can be derived as,

j i a a
Non(t) = (Ninston + LON Jexp(azont) — 0%
20N 20N
. . a a
Norr(t) = (Ninitorr + M)eﬂb‘p(cbzoz«*z«“?f) - JleFR
a A20FF
Al i bion bion
on(t) = (Abnion + Jexp(b2ont) —
baonN baon
i i biorr biorr
Aorr(t) = (Ainiorr + Jexp(b2orrt) —
b2orF b2orr

The initial values have to be updated for every cycle to the final
value of the previous cycle i.e.

NiinitON = N((i —1)T), Nz‘initOFF = N((i — 1T +Ton)
tniton = A((i = 1)T),  Alniorr = A((i — )T + Ton)
i = number of cycles, T =Ton +Torr = Period
For a input pulse train with a short off time, more pores will be
available for conduction during each subsequent pulse resulting
in an increase in average conductance and current. This can be
clearly seen in Fig. 2 where the results are plotted based on the

above analytical solutions. Here, Ton = 10ms, Topr = bms,
VON = 150mV and VOFF =0V.

B. Sinusoidal input

The response of this device to sinusoidal input requires more
involved analysis. For sinusoidal input, v(t) = O + A sin(wt).
Here, O=0ffset, A=amplitude,w=angular frequency.
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Fig. 2: Results from analytical solution for a pulse train input.

For a first order equation of the form %’ + p(t)y = g(t), the
general solution is
S u)g(t)dt + C
yt) = ————— (6)
u(t)

Here, 1u(t) = e/ P()dt_ Both the state equations 3 and 4 can be
rewritten in this format.

For Pore generation p(t) = ce®® and g(t) = ae®) where,
a=M p=L1 L =1 g=-1
Ve V2 Vt
The solutions of these equatlons entails expanding periodic
functions of the form e*"* and 5% in fourier series, comput-
ing the fourier coefficients using modified Bessel function and
truncating the higher harmonic terms of negligible magnitude.
The complete derivation is quite long but the final closed form
solution can be summarized as,

Nu(t)+C’1
Ny(t) = ———— @)
="

Here, Nu(t) & famac™® o . 5712 PL(E) + ks 1L, P2(1)

,LL(t) ~ k2 (CL wt+2 [a sn;(nwt) bncosn(nwt)])

PL(t) = (M?;;er t(iwsin(iwt) + kycos(iwt));i € Z

Pi2(t):( )"grkZe (kysin(iwt) + iwcos(iwt));1 € Z

k1 ce®©, ky = ky | ks = ae’©, ky = keagw,
21 = dA, 22 = bA, 23 = —kgb%, Z4 = L
ap = Io(=1). a5 = (In(21) + (=1)"In(21))(=1)"/
by = (In(21) + (1) Un(2))(-1)72, af = Io(z2),
ap = (In(z2) + (=1)"In(22))(=1)"% by = (In(22) +

(=) (22))(-1) "7, af =
ag = Ip(24), at = 2I,(z4), bt =0, I,,(2) = modlﬁed bessel
function of the first kind of order n.

mo = g1 + %, m1 = g1z + 52, ma = g2 + g2z + g25/2,
m3 = g13/2+g14/2, M4 = g3+ g24/2+ g26/2, M5 = g14/2+
915/2, Mme = ga + ga5/2 + g27/2, M7 = g15/2 + g16/2, Mg =
g5 + 926/2 + g28/2, M9 = g16/2 + g17/2, m10 = g6 + g27/2.
mi1 = gi17/2, mi2 = gag/2, M1z = gag/2, M1s = g7 + g30/2.
mis = gi18/2 + g19/2, mig = gs + g20/2 + g31/2, mar =
919/2+920/2, m1g = go+930/2+932/2, m1g = g20/2+921/2,
Mmoo = gi0 + 931/2 + 933/2, ma1 = g21/2 + g22/2, Moy =
911 + 932/2, maz = ga2/2, Moy = g33/2.
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Fig. 3: Comparison between numerical simulation and analyti-

cal solution of current response for sinusoidal input.
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The constant C'; can be determined from initial condition as
C1 = N,(0)(0) — Nu(0). .
For electrowetting, p(t) = ——, g(t) = 2.

“2tap?(t)dt + C
Aty = L AL G
(1) (8)
_ aan [Al (t) + AQ (t) + Ag(t) - A4(t)] + 02
- eazt
_ O%et _ 20Ae™?* (azsin(wt) — weos(wt))
Al(t) - as 7A2(t) - a% +w2 ’
_ A%e®? _ A%e™'(Qwsin(2wt) + azcos(2wt))
As(t) = = Al = 2(a? + 4w?) '
Cy can be determined using the initial condition. For
2 _ w a 2
A (0) = 0, we get, C2 = 7aa[%+ agg:?? +%72(a%2-élw2)]'

Since some approximations were used to arrive at these
results, the validity of the final solution is validated against
numerical simulation for sine wave as shown in Fig. 3. Here,
O=A=75mV, w=06283rads™ 1.

IV. IMPLEMENTATION IN CIRCUIT SIMULATOR AND
LEARNING APPLICATIONS

The model was also implemented in VerilogA and simulated
using Cadence Spectre circuit simulator. For the VerilogA
implementation, the state equations were solved numerically
using fourth order Runge-Kutta method. Here, each value of
N, and A,, is computed iteratively. First, we assume dé\i =
f(NL), d;‘t’” = f(A,,) and the value of N, and 4,,

at n'h
iteration is N and A},. Then, in each iteration, we define




ki = f(ND) k2 = F(ND + k1/2), ks = F(ND + ka/2), ks =
J(Ng + ks) and q1 = f(AR).q2 = f(A}, + k1/2),q3 =
f(AR +k2/2),q0 = f(A}, +k3).The value of state variables in
the next iteration will be, N1 = N+ % (k1+2ko+2ks+ky)
AZ’jl =A} + %(m +2¢2+2q3+q4). Once, the state variables
are calculated, eqn 1 and eqn 5 are used to calculate the
response current.

As evident from Fig. 2, this biomolecular device offers
opportunity for learning mechanisms like SRDP which plays an
important role in synaptic computations [8]. It is shown in Fig.
4 by plotting the relative change is average device resistance for
two successive pulses with varying OFF time. Here, different
pulse parameters such as OFF voltage and ON time are varied
to show their effect on the amount of PPF.
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Fig. 4: Effect of pulse parameters on SRDP, (a) varying OFF
voltage, b) varying ON time.
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Fig. 5: Simplified schematic of a circuit containing Non-volatile
and bio-memristor to implement STDP.

The PPF property of the device can also be used to facilitate
long time learning mechanism such as STDP. A simplified
schematic of an example circuit is shown in Fig. 5, where a
non volatile memristor(Ms) is used as synaptic weight and is
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Fig. 6: Effect of pulse parameter on STDP

updated based on the time difference between pre and post
spike. This synaptic update is accomplished using a our bio-
memristor(M;) along with a trans-impedance amplifier. The
results for different OFF voltages are shown in Fig. 6.

V. CONCLUSION

This paper describes a soft matter memristor capable of
emulating biologically realistic synaptic plasticity and presents
analytical solution of the response current for pulse and si-
nusoidal input. We have also developed a Verilog-A model to
integrate the device as a circuit element in circuit simulator and
simulated example circuits to demonstrate potential application
in online learning. As shown in this paper, the unique capability
of this device will enable more biologically realistic next
generation spiking neural network hardware.
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