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Abstract—The pervasive von Neumann architecture uses com-
plex processor cores and sequential computation. In contrast,
the brain is massively parallel and highly efficient, owing to
the ability of the neurons and synapses to store and process
information simultaneously and to adapt according to incoming
information. These features have motivated researchers to develop
a host of brain-inspired computers, devices, and models, collec-
tively referred to as neuromorphic computing systems. The quest
for synaptic materials capable of closely mimicking biological
synapses has led to an alamethicin-doped, synthetic biomembrane
with volatile memristive properties which can emulate key synaptic
functions to facilitate learning and computation. In contrast
to its solid-state counterparts, this two-terminal, biomolecular
memristor features similar structure, switching mechanisms, and
ionic transport modality as biological synapses while consuming
considerably lower power. To use the device as a circuit element,
it is important to understand its response to different kinds of
input signals. Here we develop a simplified closed form analytical
solution based on the underlying state equations for pulse and
sine wave inputs. A Verilog-A model based on Runge-Kutta
method was developed to incorporate the device in a circuit
simulator. Finally, the paper demonstrates possible applications for
short- and long-term learning using its unique volatile memristive
properties.

I. INTRODUCTION

The imminent demise of Moore’s Law and the problem

of low bandwidth between CPU and memory (von Neumann

bottleneck) has driven researchers to look for alternative com-

puting paradigms. Neuromorphic computing is a computing

paradigm inspired by the interconnectivity, performance, and

energy efficiency of the brain. The brain uses sophisticated

molecular mechanisms to continually reconfigure connectivity

between neurons through synaptic plasticity [1] which enables

the brain to remember patterns, adapt to incoming informa-

tion, and perform massive amounts of parallel operations with

significantly low levels of power consumption [2]. However,

most of the current solid-state devices used for neuromorphic

computing do not exhibit biologically realistic structural and

functional attributes and, consequently, require far more com-

plex neural networks and power to achieve similar computa-

tional capability. A possible alternative approach is to design

more biologically faithful systems that are energy-efficient, soft,

stochastic, fault-tolerant, and preferably biological. To this end,

a biomolecular memristor (memory resistor) with composition,

structure, switching mechanism, and ionic transport similar to

biosynapses has been recently reported by Najem et al. [3]. The

reversible and volatile voltage-driven insertion of alamethicin

peptides into an insulating lipid bilayer creates conductive

pathways that exhibit pinched current-voltage hysteresis at po-

tentials above their insertion threshold. This device can emulate

key synaptic functions including paired-pulse facilitation (PPF)

and depression (PPD) due to a generic memristive property, en-

abling learning and computation with considerably lower power

consumption. Moreover, the synapse-like dynamic properties of

the device enables simplified learning circuit implementations.

The remainder of the paper is organized as follows: In

Section II, we explore the physical mechanism resulting in

volatile memristance and validate the model used to describe

the device operation. In Section III, we solve the state equations

underlying its memristive charecteristic to derive closed form

analytical solution for pulse and sinusoidal inputs. In Section

IV, we develop VerilogA model to integrate the device in

standard circuit simulator and discuss simulation results from

example circuits to show how the unique device functinal-

ity can be used to accomlish long-time learning mechanism

such as STDP(Spike Time Dependent Plasticity) and short-

time learning mechanism such as SRDP(Spike Rate Dependent

Plasticity). Finally, we discuss our results and conclude the

paper in Section V.

II. DEVICE OPERATION AND MODEL VALIDATION

The biomolecular memristor consists of an alamethicin-

doped synthetic biomembrane of 3-5 nm thickness. The highly

insulating (∼10 GΩ) lipid membrane self assembles at the in-

terface of two in-contact, lipid-encased aqueous droplets placed

in a reservoir of hexadecane oil. In the presence of alamethicin

(alm) peptides (in both droplets) and sufficient transmembrane

voltage, conductive ionic pathways are created through volatile,

voltage-driven insertion of alm peptides into the insulating lipid

membrane. At low voltages, where alm peptides are surface-

bound, the device is considered to be in the resting state with

very high resistance. However, when the voltage exceeds a

threshold potential, the device abruptly switches into a voltage-



dependent conductive state. This mechanism is very similar to

the voltage-modulated variable conductance in biosynapses.

The device behavior is governed by two voltage-dependent

state variables: the areal density of alamethicin channels Na,

and the increase in membrane area Am due to electrowetting,

which in turn dictates the total number of ion channels, and,

thus, the net conductance of the device. Compared to prior

memristive devices, this biomolecular memristor consumes

significantly less power (0.1-10 nW), is relatively low-cost, and

scalable to support large-network computing applications.

The current-voltage relationship of a generic voltage-

controlled memristor can be written as

I = G(x)V (1)

dx

dt
= f(x;V ) (2)

Here, G is the nominal memory conductance and x repre-

sents one or more voltage-controlled state variables that control

the conductance [4]. Here, we consider Na, and Am, as two

state variables for our device.

The insertion of alamethicin peptides and subsequent for-

mation of ion channels (pores) in response to an increase in

transmembrane voltage is well characterized [5] [6]. The steady

state fractional increase in area through electrowetting caused

by applied voltage has also been reported in [7]. For an applied

voltage V , the state equations for Na and Am, as derived in

[3], are

dNa

dt
= a1 + a2Na (3)

dAm

dt
= b1 + b2Am (4)

where,

a1 =
N0exp(|V |/Ve)

τ0exp(|V |/Vt)
, a2 =

−1

τ0exp(|V |/Vt)

b1 =
αV 2

τew
, b2 =

−1

τew

Here, Ve , N0, Vτ and τ0 are the voltage required to cause an

e-fold increase in the number of alm pore, a proportionality

constant that represents the number of alm pores at zero volts,

the voltage required to induce an e-fold increase in τ , and

the time constant for pore closure at zero volts, respectively.

α and τew are voltage-sensitivity constant, and characteristic

time constant describing electrowetting process, respectively.

Combining these results, the overall conductance can be written

as,

G(t) = GuNa(t)A0(1 +Am(t)) (5)

where A0 and Gu are bilayer area at zero volts and average

unit conductance of a single alm pore.

τew and α were determined by fitting numerical solutions of

equation 4 to the measured change in membrane area during

voltage sweeps and these, along with measured relaxation time

constants (τ0), were used in another fitting routine to estimate

the parameters for alm insertion by fitting numerical solutions

Fig. 1: Comparison between experimental data and model result

for pinced hysteresis loop for periodic triangular wave input.

of equation 3 to measured I-V responses.These parameters and

corresponding conductance can be varied by changing lipid

type, alm concentration, temperature etc. The pinched hysteresis

I-V curve of DPhPC memristor for 0.17 Hz triangular wave

of amplitude 160 mV is shown in Fig. 1. The values of the

parameters used here are, Ve = 0.0063V , Vt = 0.0617V ,

N0 = 0.17, τ0 = 10ms, α = 14.4V −2, τew = 1.5 s and

Gu = 5nS. As seen in this figure, the model fits reasonably

well with the measured experimental data.

III. RESPONSE TO PULSE AND SINUSOIDAL INPUT VOLTAGE

A. Pulse Input

For pulse input, coefficients a1, a2, b1 and b2 will be different
from ON to OFF cycle depending on VON and VOFF . A closed
form analytical solution for Na and Am can be derived as,

N i

ON (t) = (N i

initON +
a1ON

a2ON

)exp(a2ON t)−
a1ON

a2ON

N i

OFF (t) = (N i

initOFF +
a1OFF

a2OFF

)exp(a2OFF t)−
a1OFF

a2OFF

Ai

ON (t) = (Ai

initON +
b1ON

b2ON

)exp(b2ON t)−
b1ON

b2ON

Ai

OFF (t) = (Ai

initOFF +
b1OFF

b2OFF

)exp(b2OFF t)−
b1OFF

b2OFF

The initial values have to be updated for every cycle to the final
value of the previous cycle i.e.

N i

initON = N((i− 1)T ), N i

initOFF = N((i− 1)T + TON )

Ai

initON = A((i− 1)T ), Ai

initOFF = A((i− 1)T + TON )

i = number of cycles, T = TON + TOFF = Period

For a input pulse train with a short off time, more pores will be

available for conduction during each subsequent pulse resulting

in an increase in average conductance and current. This can be

clearly seen in Fig. 2 where the results are plotted based on the

above analytical solutions. Here, TON = 10ms, TOFF = 5ms,

VON = 150mV and VOFF = 0V.

B. Sinusoidal input

The response of this device to sinusoidal input requires more

involved analysis. For sinusoidal input, v(t) = O +Asin(ωt).
Here, O=Offset, A=amplitude, ω=angularfrequency.



Fig. 2: Results from analytical solution for a pulse train input.

For a first order equation of the form dy
dt + p(t)y = g(t), the

general solution is

y(t) =

∫

µ(t)g(t)dt+ C

µ(t)
(6)

Here, µ(t) = e
∫
p(t)dt. Both the state equations 3 and 4 can be

rewritten in this format.

For Pore generation, p(t) = cedv(t) and g(t) = aebv(t) where,

a = N0

τ0
, b = 1

Ve
−

1
Vt

, c = 1
τ0

, d = −
1
Vt

.

The solutions of these equations entails expanding periodic

functions of the form esinx and ecosx in fourier series, comput-

ing the fourier coefficients using modified Bessel function and

truncating the higher harmonic terms of negligible magnitude.

The complete derivation is quite long but the final closed form

solution can be summarized as,

Na(t) =
Nu(t) + C1

µ(t)
(7)

Here, Nu(t) ≈ k3m0e
k4t

k4

+ k3
∑12

i=1 P
1
i (t) + k3

∑11
i=1 P

2
i (t)

µ(t) ≈ ek2(a10ωt+
∑4

n=1[
a1

n
sin(nωt)

n −
b1
n
cos(nωt)

n ])

P 1
i (t) =

mi

(iω)2+k2

4

ek4t(iωsin(iωt) + k4cos(iωt)); i ∈ Z

P 2
i (t) =

ni

(iω)2+k2

4

ek4t(k4sin(iωt) + iωcos(iωt)); i ∈ Z

k1 = cedO, k2 = k1

ω , k3 = aebO, k4 = k2a0ω,

z1 = dA, z2 = bA, z3 = −k2b
1
1, z4 =

−k2b
1

3

3 ,

a10 = I0(z1), a1n = (In(z1) + (−1)nIn(z1))(−1)n/2,

b1n = (In(z1) + (−1)n−1In(z1))(−1)
n−1

2 , a20 = I0(z2),
a2n = (In(z2) + (−1)nIn(z2))(−1)n/2, b2n = (In(z2) +

(−1)n−1In(z2))(−1)
n−1

2 , a30 = I0(z3), a
3
n = 2In(z3), b

3
n = 0,

a40 = I0(z4), a
4
n = 2In(z4), b

4
n = 0, In(z) = modified bessel

function of the first kind of order n.

m0 = g1 +
g24
2 , m1 = g12 +

g13
2 , m2 = g2 + g23 + g25/2,

m3 = g13/2+g14/2, m4 = g3+g24/2+g26/2, m5 = g14/2+
g15/2, m6 = g4 + g25/2 + g27/2, m7 = g15/2 + g16/2, m8 =
g5 + g26/2 + g28/2, m9 = g16/2 + g17/2, m10 = g6 + g27/2,

m11 = g17/2, m12 = g28/2, m13 = g29/2, m14 = g7 + g30/2,

m15 = g18/2 + g19/2, m16 = g8 + g29/2 + g31/2, m17 =
g19/2+g20/2, m18 = g9+g30/2+g32/2, m19 = g20/2+g21/2,

m20 = g10 + g31/2 + g33/2, m21 = g21/2 + g22/2, m22 =
g11 + g32/2, m23 = g22/2, m24 = g33/2.

Fig. 3: Comparison between numerical simulation and analyti-

cal solution of current response for sinusoidal input.
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q0a
2
2i−2 1 ≤ i ≤ 6

q0b
2
2i−13 7 ≤ i ≤ 11

q1a
2
2i−24 12 ≤ i ≤ 17

q1b
2
2i−35 18 ≤ i ≤ 22

q2a
2
2i−46 23 ≤ i ≤ 28

q2b
2
(2i−57) 29 ≤ i ≤ 33

qi = a40a
3
i ; 0 ≤ i ≤ 2

ni =

{

m14 −m13 i = 1

mi+13 2 ≤ i ≤ 11

The constant C1 can be determined from initial condition as

C1 = Na(0)µ(0)−Nu(0).

For electrowetting, p(t) = 1
τEW

, g(t) = αv2

τEW
.

Am(t) =

∫

ea2tαv2(t)dt+ C2

µ(t)

=
αa2[A1(t) +A2(t) +A3(t)−A4(t)] + C2

ea2t

(8)

A1(t) =
O2ea2t

a2

, A2(t) =
2OAea2t(a2sin(ωt)− ωcos(ωt))

a2

2
+ ω2

,

A3(t) =
A2ea2t

2a2

, A4(t) =
A2ea2t(2ωsin(2ωt) + a2cos(2ωt))

2(a2 + 4ω2)
.

C2 can be determined using the initial condition. For

Am(0) = 0, we get, C2 = −αa[O
2

a2

+−2OAω
a2

2
+ω2 + A2

2a2

−
a2A

2

2(a2

2
+4ω2)

].

Since some approximations were used to arrive at these

results, the validity of the final solution is validated against

numerical simulation for sine wave as shown in Fig. 3. Here,

O = A = 75mV , ω = 62.83 rads−1.

IV. IMPLEMENTATION IN CIRCUIT SIMULATOR AND

LEARNING APPLICATIONS

The model was also implemented in VerilogA and simulated

using Cadence Spectre circuit simulator. For the VerilogA

implementation, the state equations were solved numerically

using fourth order Runge-Kutta method. Here, each value of

Na and Am is computed iteratively. First, we assume dNa

dt =
f(Na),

dAm

dt = f(Am) and the value of Na and Am at nth

iteration is Nn
a and An

m. Then, in each iteration, we define




