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Abstract. Diffusion-weighted magnetic resonance imaging (dMRI) allows for 
non-invasive, detailed examination of the white matter structures of the brain. 
White matter tract specific measures based on either the diffusion tensor model 
(e.g. FA, ADC, and MD) or tractography (e.g. volume, streamline count or den-
sity) are often compared between groups of subjects to localize differences within 
the white matter. Less commonly examined is the shape of the individual white 
matter tracts. In this paper, we propose to use the Laplace-Beltrami (LB) spec-
trum as a descriptor of the shape of white matter tracts. We provide an open, 
automated pipeline for the computation of the LB spectrum on segmented white 
matter tracts and demonstrate its efficacy through machine learning classification 
experiments. We show that the LB spectrum allows for distinguishing subjects 
diagnosed with bipolar disorder from age and sex matched healthy controls, with 
classification accuracy reaching 95%. We further demonstrate that the results 
cannot be explained by traditional measures, such as tract volume, streamline 
count, or mean and total length. The results indicate that there is valuable infor-
mation in the anatomical shape of the human white matter tracts.  
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1   Introduction 

The development of diffusion-weighted magnetic resonance imaging (dMRI) has al-
lowed for non-invasive, detailed examination of the white matter structures of the brain. 
Diffusion tensor imaging (DTI) models the diffusion of water molecules within the tis-
sue of the white matter and provides measures that describe the tissue’s microstructure 
and organization. These measures (such as fractional anisotropy, apparent diffusion co-
efficient, and mean diffusivity, among others) are often compared between groups of 
subjects, such as individuals with a neurological disorder and matched healthy controls, 
to localize differences within the white matter. Tractography can be applied in combi-
nation with the dMRI data to map the putative path of neuronal fiber bundles (stream-
lines) within the white matter. These maps are generally referred to as tractograms and 
they can be segmented into major white matter tracts. Tract-specific measures (such as 
volume, streamline density, or streamline count) are also often compared between 
groups, as well as the diffusion measures along the streamlines. Less commonly exam-
ined however, is the anatomical shape of the individual white matter tracts.  
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Although there are several popular methods for the shape analysis of brain structures 
(e.g. medial representations, spherical harmonics, deformation-based morphometry, 
and spectral methods [1,2,3,4]), very few have been applied to the segmented tracts of 
the white matter. This may be because streamlines, rather than a solid structure, are 
used to represent the white matter tracts, making it difficult to conceptualize the tracts 
as anatomical objects and to apply the more common brain shape methods. Several 
techniques specific to the streamline representation of white matter tracts have been 
developed [e.g. 5, 6, 7], however, they may have issues with proper correspondence. 
These methods typically try to establish correspondence either between the points along 
the streamlines within a tract or between the streamlines of tracts of different individu-
als. This can be problematic, as pointed out in Durrleman et al. [8], because it has never 
been shown that the points on a streamline or the streamlines themselves are homolo-
gous anatomical structures. Rather, it is the entire white matter tract that is the homol-
ogous structure across populations. Thus, it may be suggested that methods for analyz-
ing the shape of white matter tracts should not rely on point or streamline correspond-
ence, but should instead focus on the boundary and overall shape of the tract.  

In this paper, we propose to use the Laplace-Beltrami spectrum as a global shape 
descriptor of white matter tracts. The Laplace-Beltrami spectrum is isometry invariant 
and does not require the establishment of correspondence [4,9]. As such, it can be used 
to describe the boundary and general shape of the individual tracts (once converted 
from streamlines to a surface representation) without any registration or alignment. Ad-
ditionally, the computation of the Laplace-Beltrami spectrum can be automated, mak-
ing it ideal for large scale analyses, and applied to segmented tracts generated using any 
tractography algorithm, including probabilistic, deterministic, or ensemble methods. 
The Laplace-Beltrami spectrum has previously been used for the shape analysis of brain 
structures [e.g. 4,10,11,12,13], however we believe this is the first study to apply it to 
segmented white matter tracts. We developed an automated pipeline (Figure 1) for com-
puting the Laplace-Beltrami spectrum on white matter tracts and make it available as 
open source code and as cloud-based open services at brainlife.io (see Table 1). We 
demonstrate the efficacy of the Laplace-Beltrami spectrum as a shape descriptor for 
white matter tracts using machine learning classification. We show that the Laplace-
Beltrami spectrum allows for distinguishing with high accuracy between healthy con-
trols (age and sex matched) and subjects diagnosed with bipolar disorder from the 
UCLA Consortium for Neuropsychiatric Phenomics LA5c Study [14]. Research on bi-
polar disorder has consistently demonstrated an association with abnormalities in the 
white matter [15]. We compare the shape-based results to analyses using volume and 
other tract-specific measures (e.g. total streamline count, mean length of streamlines, 
and total length of streamlines). Our results demonstrate that the shape of the human 
white matter tracts contains important information that allows for the characterization 
of human individuality and variability between groups of subjects. We show that the 
Laplace-Beltrami spectrum, when applied to white matter tracts, can be used for dis-
criminating, with high accuracy, between healthy controls and individuals diagnosed 
with neuropsychiatric disorders.   
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2   Methods 

2.1   Data and Preprocessing  

Diffusion-weighted (dMRI) and T1-weighted structural MRI (sMRI) data from the 
UCLA Consortium for Neuropsychiatric Phenomics LA5c Study [14] were used for 
this study. We used data from 43 individuals diagnosed with bipolar disorder and 43 
age and sex matched controls. The dMRI (spatial resolution of 2 mm3 and 64 directions) 
images were aligned to corresponding sMRI, AC-PC aligned, anatomical images, and 
we utilized the 1,000 s/mm2 b-value acquisition shell. Freesurfer was used to segment 
the T1-weighted image into different tissue types and brain regions [16] and all subse-
quent analyses were performed within the white matter tissue.  

2.2   Automated Pipeline for White Matter Tract Shape Analysis  

Tractography generation. For this paper, ensemble tractography methods [17,18,19] 
were used to generate a whole brain tractogram of 615,000 streamlines by seeding 
within the entire white matter segmentation [20]. We combined both probabilistic and 
deterministic tracking methods, across a range of Lmax (2-8), a range of curvature (0.25, 
0.5, 1, 2, 4), and a fixed step size of 0.2 mm.  

 
Tract segmentation. Twenty major white matter tracts (9 bi-hemispheric and 2 cross-
hemispheric tracts) were segmented using established atlases and segmentation tech-
niques from the Automated Fiber Quantification software (AFQ) [21]. The two cross-
hemispheric tracts were the callosum forceps major and callosum forceps minor. The 
nine bi-hemispheric tracts (18 individual tracts) consisted of the right and left arcuate, 
cingulum cingulate, cingulum hippocampus, corticospinal, inferior fronto-occipital fas-
ciculus (IFOF), inferior lateral fasciculus (ILF), super lateral fasciculus (SLF), thalamic 
radiation, and uncinate. An automated cleaning method provided by AFQ was applied 
to the segmentations to remove stray streamlines that deviate substantially from the 
core white matter tract path.  

 
Binary voxel and surface generation. To generate surface representations of the seg-
mented white matter tracts, the streamline representations of each tract were first con-
verted into a binary voxel representation. The data was resampled to a higher resolution 
(2 mm3 to 0.7 mm3) in order to create a smoother, more detailed tract. For each stream-
line comprising the tract, we recorded which voxels of the resampled image contained 
a streamline node. A smoothing kernel was applied to ensure that the volume was a 
spatially contiguous, non-porous object. Because this smoothing has the unintended 
consequence of inflating the object, we removed a proportion of the lowest density 
voxels (20%). Additionally, a simple masking step was performed with a node count 
threshold and we removed all voxels with less than 2 nodes. The resulting volume was 
then passed to the surface generation component of the process. 

A discrete marching cubes algorithm was applied to each binary voxel representa-
tion to create a triangular surface mesh. The surface was then smoothed for 10 iterations 
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using a windowed sinc function interpolation kernel (a standard signal processing low-
pass filter) [22]. This filter essentially relaxed the mesh, making the triangular faces 
better shaped and the vertices more evenly distributed. After smoothing, any non-con-
nected components of the surface (islands) were removed. 
 
Shape descriptor computation. The Laplace-Beltrami (LB) spectrum was used as a 
shape descriptor of the surface mesh of each white matter tract. The LB spectrum allows 
for highly discriminative shape comparisons with minimal preprocessing [4,9]. Im-
portantly, the eigenvalues estimated from the LB spectrum are isometry invariant, 
therefore requiring no registration or mapping between the surfaces of different tracts 
or subjects. The eigenvalues of the Laplace-Beltrami operator, D, were computed using 
the first-order finite element method by solving the Laplacian eigenvalue problem on 
each given surface: 

 ∆𝑓 = −𝜆𝑓. (1) 

The solution consists of a number (n) of eigenvalue (𝜆& ∈ ℝ) and eigenfunction (𝑓&) 
pairs, sorted by the eigenvalue magnitude (0 ≤ 𝜆+	   ≤ 𝜆-	   ≤	  …). To achieve scale inde-
pendence and allow a direct shape comparison between tracts irrespective of size, we 
normalized the eigenvalues by the surface area of the given tract, also known as the 
Riemannian volume v [9]: 

 𝜆. = 𝑣𝑜𝑙2+ -𝜆. (2) 

The normalized LB spectrum was computed on the triangle mesh surfaces of all 20 
segmented white matter tracts for all subjects. Similar to spherical harmonics [2], the 
more eigenvalues included in the spectrum, the more details of the shape are repre-
sented (Figure 2). Because the complexity of the shape of each tract varies widely, we 
used a range of non-zero eigenvalues of the LB spectrum, dependent on the tract, for 
the analyses in this paper. All computations of the LB spectrum were done in MatLab 
(Mathworks, Natick, MA) using the Geometry Processing Toolbox [23].  
 
Volume and streamline measures computation. The volume of each white matter 
tract was computed using the resampled binary voxel representation. To compute the 
total volume of a tract, the volume of a single voxel was determined based on the reso-
lution of the resampled dMRI data (7mm3) and then multiplied by the total number of 
voxels in the binary voxel representation. The volume was also divided by the estimated 
total intracranial volume (eTIV) as calculated by Freesurfer [16], to normalize for brain 
size. Analyses were performed on both the normalized and non-normalized volumes. 
Additionally, the total number of streamlines, average length of streamlines, and total 
combined length of the streamlines were computed based on the segmented streamline 
representation of each tract.  



5 

2.3   Statistical Analysis 

Permutation tests (20,000 permutations for all tests) were used to compare the volume, 
streamline measures and eigenvalue spectrums of each segmented white matter tract 
between the disorder groups and their age/sex matched controls. For the volume and 
streamline measure values a two-sided, nonparametric, permutation test based on the t-
statistic was used. Individual eigenvalues were also compared using independent, two-
sided, nonparametric permutation tests, as done in [4,13], and the false discovery rate 
method of correction was used to correct for multiple comparisons.  

2.4   Machine Learning Experiments 

Binary classification (bipolar disorder vs. healthy control) was performed using ma-
chine learning algorithms implemented in the Python package scikit-learn [24]. We 
performed five different machine learning experiments: (1) classification using only the 
(non-normalized) volume values as features, (2) classification using only the streamline 
measures as features, (3) classification using the combined LB spectrums of all tracts 
as features, (4) classification using the LB spectrum of single tracts as features individ-
ually, and (5) voting-based ensemble classification based on the results of (4). To pre-
pare the data for classification, we standardized each feature by removing the mean and 
scaling the values to unit variance. This standardization procedure ensured that each 
feature had the properties of a standard normal distribution, a requirement for many of 
the algorithms. 

Because this is an initial, exploratory study, we performed an exhaustive grid 
search using 10-fold cross validation across 7 different machine learning classifier al-
gorithms and classifier hyperparameter sets for each experiment (RandomForestClas-
sifier (RF), AdaBoostClassifier (ABC), SVC (SVM, C-Support Vector Classification), 
KNeighborsClassifier (KNN), DecisionTreeClassifier (DT), LinearDiscriminantAnal-
ysis (LDA), LogisticRegression (LR) in scikit-learn [24]). In the experiments using the 
LB spectrum, we also performed the grid search across numbers of eigenvalues (30, 50, 
100, 150, 200, 300, 400, 500, 600). The results of the grid search helped us determine 
which classification algorithms and hyperparameter sets performed best for each fea-
ture set, as well as which level of shape detail (number of eigenvalues of the LB spec-
trum) allowed for the greatest distinction between the two groups. For experiments (1) 
through (4), the best performing classifier and hyperparameter set was used for a final 
classification with leave-one-out (LOO) cross validation, repeated 10 times. LOO cross 
validation was used for the final classification due to the relatively limited number of 
subjects available in the data set. The average accuracy, sensitivity (true positive rate) 
and specificity (true negative rate) of the classifications are reported. 

For experiment (5), we developed a robust voting-based ensemble classification 
method that combined the results of the series of weaker classifiers applied to individual 
white matter tracts in experiment (4) [25]. The results of experiment (4) identified the 
best performing eigenvalue, classifier, and hyperparameter set for each tract. The clas-
sification also provided a predicted classification category (vote) for each subject in the 
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dataset (bipolar disorder or control). The final classification for this experiment is ob-
tained by setting the final category of each subject to the mode of the vote distribution 
(predicted classification category distribution) across the tracts. In the case of a tie, a 
null category was reported. This voting-based classification was performed 10 times.  

3   Results 

3.1   Statistical analysis 

We performed a series of control analyses to show whether the white matter tracts dif-
fered between the two groups in a series of properties, such as volume, streamline 
counts, and length. Results show that only two of the white matter tracts had a statisti-
cally significant difference in non-normalized volume between the controls (C) and 
subjects with bipolar disorder (BD): the right cingulum cingulate (p=0.044, BD>C) and 
the right uncinate (p=0.021, C>BD). Of the normalized volume (volume/eTIV) com-
parison, only the right uncinate was statistically significant (p=0.007, C>BD). Four 
tracts had a statistically significant difference in streamline count between the two 
groups: the left cingulum hippocampus (p=0.015, BD>C), the left corticospinal tract 
(p=0.020, C>BD), the right corticospinal tract (p=0.013, C>BD), and the right uncinate 
(p=0.005, C>BD). One tract had a statistically significant group difference in mean 
length: the left ILF (p=0.005, BD>C). Three tracts had a statistically significant differ-
ence in total length between the two groups: the right cingulum cingulate (p=0.048, 
BD>C), the left cingulum hippocampus (p=0.016, BD>C), and the right uncinate 
(p=0.016, C>BD).   

We also tested whether single eigenvalues of the individual white matter tracts 
differed between the two groups. Results of the permutation tests for the eigenvalues 
are shown in Figure 3. The right and left cingulum hippocampus, the right and left 
corticospinal, and the right uncinate all had multiple eigenvalues with p-values that 
passed the 5% and 15% FDR correction for multiple comparisons, suggesting signifi-
cant shape differences between the two groups for those tracts. The right arcuate, right 
SLF, and the right and left ILF had eigenvalues with p-values that passed the 15% FDR 
correction for multiple comparisons. 

3.2   Machine learning classification 

(1) Binary classification using volume only. For this experiment, we used the non-
normalized volume only. The input feature set was 20 volume values for each subject. 
Using the best classifier and hyperparameter set as determined by the grid search 
(KNeighborsClassifier), a final classification was performed. The classification accu-
racy was 54.65%, with a sensitivity of 37.20%, and specificity of 79.09%. The results 
were the same for all 10 repeats.  
 
(2) Binary classification streamline measures only. For this experiment, the input 
feature set was 20 streamline counts, 20 mean length values, and 20 total length values 
for each subject. Using the best classifier and hyperparameter set as determined by the 
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grid search (LogisticRegression), a final classification was performed. The classifica-
tion accuracy was 70.56%, with a sensitivity of 69.76% and specificity of 72.09%. The 
results were the same for all 10 repeats. Overall classification and specificity was sig-
nificantly improved using the streamline measures over the volume measures, although 
specificity was slightly reduced.  
 
(3) Binary classification using the Laplace-Beltrami spectrum of all tracts. For 
these experiments, the input features were the n-number of eigenvalues times 20 tracts 
across nine different numbers of eigenvalues. The LogisticRegression classifier per-
formed the best in the grid search for all eigenvalue numbers, and therefore was the 
classifier used for the final classification of all eigenvalue numbers. The results of the 
final classification using the best performing hyperparameter sets for each eigenvalue 
number are shown in Table 2. The highest obtained average accuracy was 67.79% 
(±1.34) with 200 eigenvalues, a sensitivity of 67.90% (±0.63), and specificity of 
67.67% (±0.87). Overall classification accuracy using the combined LB spectrums of 
all tracts was better than classification using only the volumes of tracts, but slightly 
worse than classification using just the streamline measures.  
 
(4) Binary classification using the Laplace-Beltrami spectrum of single tracts. For 
these experiments, we performed the final binary classification of each individual tract 
using the eigenvalue, classifier, and hyperparameter sets that performed best in the grid 
search. The eigenvalue, average classification accuracy, sensitivity, and specificity of 
each tract are shown in Figures 4 and 5. The best overall classification accuracy ob-
tained with a single tract, the left corticospinal tract, was 77.79% (±1.15) (sensitivity = 
85.34% (±1.56), specificity = 70.23% (±1.47)), followed by the left arcuate at 76.74% 
(±0.00) (sensitivity = 79.06%(±0.00), specificity = 74.41% (±0.00)) and the callosum 
forceps minor at 74.88% (±0.12) (sensitivity = 73.95 % (±0.21), specificity = 75.81% 
(±0.12)). All but one of the white matter tracts achieved an overall accuracy higher than 
volume based classification (>54%), 6 of the individual tracts achieved an overall ac-
curacy higher than streamline measures based classification (>70%) and 10 achieved 
an overall accuracy higher than classification based on the combined LB spectrums of 
all tracts (>67%).  
 
(5) Voting-based ensemble classification using the Laplace-Beltrami spectrum of 
each tract. For this experiment, we used the results of experiment (4) for a voting-
based classification. Each tract was used to predict the classification category of each 
subject. The mode of the classification predictions (votes) across all tracts was com-
puted to assign a final classification category to each subject. The average overall clas-
sification accuracy was 95.23% (±0.03), significantly higher than the accuracy of the 4 
previous experiments. The average sensitivity was 95.34% (±0.00) and average speci-
ficity was 95.11% (±0.06). The average classification accuracy, sensitivity, and speci-
ficity are also shown in Figures 4 and 5.  
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4   Discussion and Conclusion 

In this paper, we proposed the Laplace-Beltrami spectrum be used as a global shape 
descriptor of white matter tracts. Using the LB spectrum, volume, and streamline 
measures of segmented white matter tracts, we compared the efficacy of each feature 
for distinguishing subjects diagnosed with bipolar disorder from age and sex matched 
controls. Results showed that the shape of the white matter tracts contains important 
information that allows for a more accurate classification between the two groups. Ma-
chine learning classification performed using the LB spectrums of single tracts 
achieved higher classification accuracy than the volume or streamline measure-based 
classifications, with 6 of the tracts reaching an overall accuracy above 70%. The indi-
vidual tract with the highest classification accuracy was the left corticospinal, followed 
by the left arcuate (comparable to the results of [26]), and the callosum forceps minor. 
Overall classification accuracy was significantly improved when using a voting-based 
classification method with the LB spectrums, reaching 95% overall accuracy, 95% sen-
sitivity, and 95% specificity. 

Our results illustrate the importance of including shape information in neuroana-
tomical and neuropsychiatric research for a more complete picture of disorder related 
differences in the brain. Of the top three performing tracts in the shape classification 
(all >74% in overall accuracy), only one, the left corticospinal tract, had a significant 
difference in any of the non-shape measures (streamline count). None of the three had 
any statistical difference in volume, mean or total streamline length. Analyses based 
only on volume or streamline measures might mistakenly conclude that there are no 
disorder related differences in those tracts.  

The high classification accuracy we obtained demonstrates that the LB spectrum 
captures meaningful information about white matter tract morphology. The results sug-
gest that including the shape of white matter tracts in neuropsychiatric research may be 
useful for narrowing down the etiology of the range of neuropsychiatric and brain dis-
orders known to be accompanied by changes in the white matter [15]. Future research 
directions include expanding the analyses to incorporate other neuropsychiatric disor-
ders, such as schizophrenia and attention deficit hyperactivity disorder, as well as in-
cluding comparisons to analyses with diffusion-based microstructure measures.  
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Table 1. Links to GitHub repositories and Brainlife.io applications for each step of the pipeline. 

Processing	  Step	   GitHub	  repository	   Brainlife.io	  application	  
Preprocessing	  of	  
dMRI	  data	  

github.com/brain-life/app-datanormalize 
github.com/brain-life/app-splitshells 
github.com/brain-life/app-dtiinit 

https://brainlife.io/app/59272453436ee50ffd669a08 
https://brainlife.io/app/592db717b3cd7c00211dc230 
https://brainlife.io/app/58c56cf7e13a50849b258800 

Freesurfer	   github.com/brain-life/app-freesurfer https://brainlife.io/app/58c56d92e13a50849b258801 
Ensemble	  tracking	   github.com/brain-life/app-ensembletracking https://brainlife.io/app/592dbbccb3cd7c00211dc235 
Tract	  segmentation	   github.com/brain-life/app-AFQ_no-life https://brainlife.io/app/59dff93521ff360021b24ebf 
Segmentation	  	  
cleaning	  

github.com/brain-life/app-AFQclean https://brainlife.io/app/597f8c463a37c7002e39bf77 

Binary	  voxel	  	  
generation	  

github.com/kitchell/app-generatetractmasks https://brainlife.io/app/592dc03eb3cd7c00211dc239 

Surface	  generation	   github.com/kitchell/app-generatetractsurfaces https://brainlife.io/app/593049d7ff090a00210eff05 
LB	  spectrum	  	   github.com/kitchell/app-LBspectrum_matlab https://brainlife.io/app/5a53b2be56e507002d1a9628 
Streamline	  
measures	  

github.com/kitchell/app-classifiedfibertractstats https://brainlife.io/app/599f2c0a1a12b6002f642c74 

Tract	  volume	   github.com/kitchell/app-binvolvolume https://brainlife.io/app/5afe0f2a2e93b90028263655 

 
Fig. 1. Automated pipeline for shape analysis of white matter tracts. 

 

Fig. 2. White matter tracts reconstructed with different amounts of eigenfunctions. The original 
tract surface is shown in the leftmost column, followed by the tract reconstructed with the number 
of eigenvalues listed above (30-1500). Top. Callosum forceps minor tract, superior view. Middle. 
Left corticospinal tract, anterior and superior view. Bottom. Left IFOF tract, left view. Color = 
z-coordinate of the vertices (yellow - superior, blue - inferior).  
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Fig. 3. Results of the permutation tests for the individual eigenvalues of the Laplace-Beltrami 
spectrum. The p-value of each eigenvalue is plotted for each tract. Red horizontal lines are the 
0.05 significance level. If any of the eigenvalues passed FDR correction the FDR significance 
level is plotted in green (15% FDR) and blue (5% FDR).  

Table 2. Classification results using the combined LB spectrums of all tracts (Experiment 3). 

#	  eigenvalues	   30	   50	   100	   150	   200	   300	   400	   500	   600	  

Accuracy	   62.67 
(±2.01) 

58.13 
(±1.09) 

62.79 
(±0.00) 

64.76 
(±1.23) 

67.79 
(±1.34) 

65.58 
(±0.98) 

65.11 
(±0.00) 

62.09 
(±0.81) 

61.97 
(±0.95) 

Sensitivity	   67.67 
(±1.19) 

65.11 
(±0.66) 

65.11 
(±0.00) 

67.90 
(±0.42) 

67.90 
(±0.63) 

61.16 
(±0.48) 

60.46 
(±0.00) 

59.53 
(±0.51) 

58.60 
(±0.63) 

Specificity	   57.67 
(±0.91) 

51.11 
(±0.47) 

60.46 
(±0.00) 

61.62 
(±0.70) 

67.67 
(±0.87) 

70.00 
(±0.73) 

69.76 
(±0.00) 

64.65 
(±0.78) 

65.34 
(±0.56) 

 

Eigenvalue 

p-
va

lu
e 
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Fig. 4. Average overall accuracy of the classification based on the LB spectrum of individual 
white matter tracts (Experiment 4) and of the voting-based ensemble classification (Experiment 
5), sorted in order of overall accuracy. Black lines represent the standard deviation across the 10 
classification repeats; bars with no line had the same result for all repeats. Eigenvalue used for 
the final classification is listed in parentheses. 

 

 
Fig. 5. Average overall sensitivity (top, true positive rate) and specificity (bottom, true negative 
rate) of the classification based on the LB spectrum of individual white matter tracts (Experiment 
4) and of the voting-based ensemble classification (Experiment 5), sorted in the same order as 
Figure 4. Black lines represent the standard deviation across the 10 classification repeats; bars 
with no line had the same result for all repeats. 

References 
1.   Styner, M., et al. (2003). Statistical shape analysis of neuroanatomical structures based on 

medial models. Medical image analysis 7(3): 207-220. 
2.   Styner, M., et al. (2006). Framework for the statistical shape analysis of brain structures 

using SPHARM-PDM. The insight journal (1071): 242.  
3.   Ashburner, J. and K. J. Friston (2000). Voxel-based morphometry—the methods. Neu-

roimage 11(6): 805-821.  
4.   Niethammer, M., et al. (2007). Global medical shape analysis using the Laplace-Beltrami 

spectrum. International Conference on Medical Image Computing and Computer-Assisted 
Intervention, Springer. 



12 

5.   Corouge, I., et al. (2004). A statistical shape model of individual fiber tracts extracted from 
diffusion tensor MRI. International Conference on Medical Image Computing and Com-
puter-Assisted Intervention, Springer. 

6.   O'Donnell, L. J., et al. (2009). Tract-based morphometry for white matter group analysis. 
Neuroimage 45(3): 832-844. 

7.   Glozman, T., et al. (2018). Framework for shape analysis of white matter fiber bundles. 
Neuroimage 167: 466-477. 

8.   Durrleman, S., et al. (2011). Registration, atlas estimation and variability analysis of white 
matter fiber bundles modeled as currents. Neuroimage 55(3): 1073-1090.  

9.   Reuter, M., et al. (2006). Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. 
Computer-Aided Design 38(4): 342-366. 

10.   Shi, Y., et al. (2009). Inverse-consistent surface mapping with Laplace-Beltrami eigen-fea-
tures. International Conference on Information Processing in Medical Imaging, Springer. 

11.   Wachinger, C., Golland, P., Kremen, W., Fischl, B., Reuter, M., & Alzheimer's Disease 
Neuroimaging Initiative. (2015). BrainPrint: a discriminative characterization of brain mor-
phology. NeuroImage, 109, 232-248. 

12.   Wachinger, C., et al. (2016). Whole-brain analysis reveals increased neuroanatomical asym-
metries in dementia for hippocampus and amygdala. Brain 139(12): 3253-3266. 

13.   Shishegar, R., et al. (2011). Hippocampal shape analysis in epilepsy using Laplace-Beltrami 
spectrum. Electrical Engineering (ICEE), 2011 19th Iranian Conference on, IEEE. 

14.   Poldrack, R. A. et al. A phenome-wide examination of neural and cognitive function. Sci. 
Data 3:160110 doi: 10.1038/sdata.2016.110 (2016).  

15.   Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends 
in neurosciences, 31(7), 361-370. 

16.   Fischl B. (2012). FreeSurfer. NeuroImage, 62:774-781 
17.   Takemura, H., Caiafa, C. F., Wandell, B. A., & Pestilli, F. (2016). Ensemble tractog-

raphy. PLoS computational biology, 12(2), e1004692. 
18.   Caiafa, C. F., & Pestilli, F. (2017). Multidimensional encoding of brain connectomes. Sci-

entific reports, 7(1), 11491. 
19.   Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N., & Wandell, B. A. (2014). Evaluation 

and statistical inference for human connectomes. Nature methods, 11(10), 1058. 
20.   Tournier, J. D., Calamante, F., & Connelly, A. (2012). MRtrix: diffusion tractography in 

crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1) 
21.   Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A., & Feldman, H. M. (2012). 

Tract profiles of white matter properties: automating fiber-tract quantification. PloS 
one, 7(11), e49790. 

22.   Taubin, G., Zhang, T., & Golub, G. (1996). Optimal surface smoothing as filter design. 
In European Conference on Computer Vision (pp. 283-292). Springer, Berlin, Heidelberg. 

23.   Alec Jacobson and others (2016) gptoolbox: Geometry Processing Toolbox. 
http://github.com/alecjacobson/gptoolbox 

24.   Pedregosa F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R, Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 
Brucher, M., Perrot, M., Duchesnay, E. Scikit-learn: Machine Learning in Python, Journal 
of Machine Learning Research, 12, 2825-2830 (2011)  

25.   Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International 
workshop on multiple classifier systems (pp. 1-15). Springer, Berlin, Heidelberg.  

26.   Sun, Z. Y., Houenou, J., Duclap, D., Sarrazin, S., Linke, J., Daban, C., ... & Delavest, M. 
(2017). Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipo-
lar disorder. Journal of psychiatry & neuroscience: JPN, 42(1) 


