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Abstract

3D Convolutional Neural Networks (3D-CNN) have been used for object recogni-
tion based on the voxelized shape of an object. However, interpreting the decision
making process of these 3D-CNNs is still an infeasible task. In this paper, we
present a unique 3D-CNN based Gradient-weighted Class Activation Mapping
method (3D-GradCAM) for visual explanations of the distinct local geometric
features of interest within an object. To enable efficient learning of 3D geometries,
we augment the voxel data with surface normals of the object boundary. We then
train a 3D-CNN with this augmented data and identify the local features critical
for decision-making using 3D GradCAM. An application of this feature identifi-
cation framework is to recognize difficult-to-manufacture drilled hole features in
a complex CAD geometry. The framework can be extended to identify difficult-
to-manufacture features at multiple spatial scales leading to a real-time design for
manufacturability decision support system.

1 Introduction

Deep learning (DL) algorithms, more specifically 3D-Convolutional Neural Networks (3D-CNN),
hierarchically learn multiple levels of abstractions of the data. They have been extensively used in
computer vision (Sarkar et al., 2015; Lee et al., 2009; Lore et al., 2016; Larochelle and Bengio, 2008),
specifically for object recognition. However, learning local features in a geometry is different from
object recognition where the object is classified based on a collection of features. In this work, we
make use of a semi-supervised methodology to learn localized geometric features of interest within
the object based on the cost function of the overall object classification problem. For this purpose, we
train a 3D-CNN to learn the key features of the object and also learn the variation in the features that
can classify the object based on a given cost function. We make use of a voxelized 3D representation
of the object augmented with surface normal information to identify these localized features.

One applications of the aforementioned methodology, which we explore in this paper, is to identify
difficult-to-manufacture features in a CAD geometry and ultimately, classify its manufacturability.
There are different handcrafted design for manufacturability (DFM) rules that ensure manufacturabil-
ity of a design. For this purpose, the hierarchical architecture of DL can be used to learn increasingly
complex features by capturing localized geometric features and feature-of-features. Thus, a deep-
learning-based design for manufacturing (DLDFM) tool can be used to learn the various DFM rules
from different examples of manufacturable and non-manufacturable components without explicit
handcrafting.
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Figure 1: Framework for deep-learning based design for manufacturability. The CAD model is

converted to a voxel representation and is input to a 3D-CNN for manufacturability classification.

The 3D-CNN output is analyzed using 3D-gradCAM to provide manufacturability feedback.

A primary concern while examining the manufacturability of CAD geometries using a DL based
approach is the black-box nature of such deep networks. Interpretation of the decision making
process in the form of visual explanations is essential for extracting the local features in an object that
effects its non-manufacturability. Visual detection of local features further enables re-designing of the
component or object to abide the various DFM rules. Recent major work on interpreting DL output
by Selvaraju et al. (2016) makes use of a 2D gradient-weighted class activation map for producing
visual explanations of the CNN’s decision making processes in object recognition in images. In this
work, we extend the GradCAM to 3D objects for interpretation of 3D-CNN'’s outputs and visualizing
the regions that give rise to non-manufacturability conditions in the objects.

In this paper, we present a 3D convolutional neural network (3D-CNN) based framework that will
learn and identify localized geometric features from an expert database in a semi-supervised manner.
Further, we present a visual explanation technique using GradCAM to interpret the decision making
process in the context of manufacturability with different CAD models classified as manufacturable
and non-manufacturable.

2 Volumetric Representations for Learning Geometric Features

Traditional CAD systems use boundary representations (B-Reps) to define and represent the CAD
model Krishnamurthy et al. (2009). In B-Reps, the geometry is defined using a set of faces that form
the boundary of the solid object. B-Reps are ideally suited for displaying the CAD model by first
tessellating the surfaces into triangles and using the GPU to render them. In our framework, we
convert the B-Rep CAD model to a volumetric occupancy grid of voxels using a rendering-based
approach. For representing a 3D object with more information regarding its geometry, we augment the
boundary voxels with the surface normals of the B-Rep geometry. Finally,the z, y, & z components
of the surface normals are then embedded in the voxelization along with the occupancy grid to be
used as four-channel input to the 3D-CNN.

3 3D-CNN for Learning Localized Geometric Features

The input to the 3D-CNN is a zero-padded voxelized CAD model. The convolution layer is activated
with RELU function and is followed by batch normalization layer and a max. pooling layer. The same
sequence of convolution, batch normalization and max. pooling is used again. A fully connected
layer is used before the final output layer (manufacturability) with sigmoid activation. The model
parameters 6, comprised of weights W, and biases, b are optimized by error back-propagation
with binary cross-entropy loss function (Hinton and Salakhutdinov, 2006) using the ADADELTA
optimizer (Zeiler, 2012).



Several different CAD models were generated based on the DFM rules for drilling using ACIS (Spatial
Corporation, 2009), a commercial CAD modeling kernel, for training the network. DFM rules
for drilled holes are based on inter-related local geometric features such as the depth-to-diameter
ratio (Boothroyd et al., 2002; Bralla, 1999) and the presence of thin walls surrounding the hole. These
rules were used to classify the models as manufacturable or non-manufacturable.

4 Interpretation of 3D-CNN Output

The trained 3D-CNN network can be used to classify the manufacturability of any new geometry
and can be treated as a black box. In a practical scenario, interpretability and explainability of the
output provided by the 3D-CNN is essential. In this paper, we attempt to visualize the input features
that lead to a particular output of the 3D-CNN and if possible, modify it. A similar approach was
used in object recognition in images by using class activation maps to obtain class specific feature
maps by Selvaraju et al. (2016). The class specific feature maps could be obtained by taking a class
discriminative gradient of the prediction with respect to the feature map for the class activation. In this
paper, we present the first application of 3D gradient weighted class activation map (3D-GradCAM)
for recognizing local features in a 3D object.

In order to get the feature localization map using 3D-GradCAM, we need to compute the spatial
importance of each feature map A; in the last convolutional layer of the 3D-CNN, for a particular
class, ¢ (c can either be manufacturability or non-manufacturability, for the sake of generality) in the
classification problem. This spatial importance for each feature map can be interpreted as weights for
each feature map; it can be computed as the global average pooling of the gradients back from the
specific class of interest as shown in Eqn. 2.

The cumulative spatial importance activations that contribute to the class discriminative localization
map, L3pGradc An, is computed using

L3pgradcam = ReLU (Z Qg X Al) , )]

l
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We can compute the activations obtained for the input using Lsparedcans to analyze the source
of output. The heat map of (L3pgredacan) is resampled using linear interpolation to match the
input size, and then overlaid in 3D with the input to be able to spatially identify the source of
non-manufacturability. This composite data is finally rendered using a volume renderer.

‘We make use of a GPU-based ray-marching approach to render this volume data. The rendering is
parallelized on the GPU with each ray corresponding to the screen pixel being cast independently.
The intersection of the ray with the bounding-cube of the voxel data is computed, and then the 3D
volumetric data is sampled at periodic intervals. The sum of all the sampled values along the ray
is then computed. This value is converted to RGB using a suitable color scale and rendered on the
screen. Table 2 shows different volumetric renderings of the composite 3D-GradCAM data.

5 Results and Discussion

The generated CAD geometries are classified to be manufacturable or non-manufacturable based on
the DFM rules for drilled holes. The 3D-CNN (explained in Section 3) is trained on the generated data
with fine-tuned hyper-parameters to have the least validation loss. The architecture of the DLDFM
network with voxelized information is composed of three convolution layers with filter sizes of 8,
4, and 2 respectively. Likewise, the DLDFM networks using surface normal along with voxelized
representation, comprises of three convolution layers with filter sizes of 6, 3, and 2 respectively. In
succession to the first and last Convolution layers, we use MaxPooling layers of subsampling size 2.
A batch size of 64 is selected while training the DLDFM networks. The training was performed using
Keras (Chollet, 2015) with a TensorFlow (Abadi et al., 2015) backend in Python environment. The
training is performed until the validation loss remains constant for at least 10 consecutive epochs.



Table 1: Quantitative performance assessment of the DLDFM on test data sets.

Test Data Type Model Description Tm?, True . Fals'e. False . Accuracy
Positive  Negative  Positive  Negative
In-outs 391 90 17 176 0.7136
675 models In-outs +
408 Manufacturable 334 201 74 65 0.7938

Surface Normals

After successful training, the DLDFM network was tested on a test set to benchmark its performance.
Accuracy of DLDFM network on the test set using the two data representations is shown in Table 1.
The test-set has completely different geometries compared to the training set. Thus, it can be seen
that the DLDFM is learning the localized geometric features.

Using the trained DLDFM network, it is possible to obtain the localization of the feature activating
the decision of the DLDFM. The 3D-GradCAM renderings for various cases are shown in the Table 2.
We have used 3D-GradCAM to visualize the results of various inputs such as manufacturable holes,
non-manufacturable-holes, multiple holes in same face, and holes in multiple faces of the cube. 3D-
GradCAM can localize the features that can cause the part to be non-manufacturable. For example, in
Table 2, the second example shows a CAD model with a hole, which is non-manufacturable because
it is too close to one of side faces. This is a difficult example to classify based only on the information
of the hole. The 3D-GradCAM rendering correctly identifies the non-manufacturable hole and as a
result the DLDFM network also predicts the part to be non-manufacturable.

6 Conclusions

In this paper, we have developed an interpretable deep-learning-based DFM (DLDFM) framework
for cyber-enabled manufacturing. The DLDFM was able to learn local features directly from the
voxelized model. In addition, using the 3D-gradCAM eliminates the black box notion about CNNss;
the DLDFM framework provides feedback about the source of non-manufacturability. The feedback is
helpful to understand which particular local feature among various other features in a CAD geometry
accounts for the non-manufacturability and possibly modify the design appropriately.

Table 2: Illustrative examples of manufacturability prediction and interpretation using the DLDFM
framework.
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