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Abstract

When models are trained for deployment in
decision-making in various real-world set-
tings, they are typically trained in batch
mode. Historical data is used to train and
validate the models prior to deployment.
However, in many settings, feedback changes
the nature of the training process. Either
the learner does not get full feedback on
its actions, or the decisions made by the
trained model influence what future train-
ing data it will see.

In this paper, we focus on the problems of
recidivism prediction and predictive polic-
ing. We present the first algorithms with
provable regret for these problems, by show-
ing that both problems (and others like
these) can be abstracted into a general rein-
forcement learning framework called partial
monitoring. We also discuss the policy im-
plications of these solutions.

Keywords: Partial monitoring, online
learning, predictive policing, recidivism pre-
diction
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1. Introduction

Machine learning models are increasingly being
used to make real-world decisions such as who to
hire, who should receive a loan, where to send
police, and who should receive parole. These
deployed models mostly use traditional batch-
mode machine learning, where decisions are made
and observed results supplement the training data
for the next batch.

However, the problem of feedback makes tradi-
tional batch learning frameworks both inappropri-
ate and incorrect. Hiring algorithms only receive
feedback on people who were hired, and predictive
policing algorithms only observe crime in neigh-
borhoods they patrol. Secondly, decisions made
by the system influence the data that is fed to
it in the future. For example, once a decision
has been made to patrol a certain neighborhood,
crime from that neighborhood will be fed into the
training apparatus for the next round of decision-
making.

In this paper, we model these problems in a
reinforcement learning setting, and derive algo-
rithms with provable error bounds. Notably, these
algorithms also translate into concrete procedures
that differ from current practice in the problems
under study.

c⃝ 2018 D. Ensign, S.A. Friedler, S. Neville, C. Scheidegger & S. Venkatasubramanian.



Decision making with limited feedback

The problems We will focus on two problems
that are of particular societal importance: predic-
tive policing and recidivism prediction. These
problems are at the core of the algorithmic
pipeline in criminal justice through which auto-
mated decision-making has a material impact on
society. They also serve as archetypal problems
through which we can gain an understanding of
generalizable issues faced in deployment. Another
motivating factor is that systems for solving these
problems are already in use and issues with these
processes are already documented, making the
discussion of remedies urgent. While problems
with recidivism prediction have been documented
in the well-publicized and Pulitzer-prize finalist
work by ProPublica (Angwin et al., 2016), the
complications that arise from limited feedback
have not been discussed. PredPol, a predictive
policing system, has been shown to produce in-
accurate feedback loops when deployed in batch
mode (Lum and Isaac, 2016), so that police are
repeatedly sent back to the same neighborhoods,
even though the underlying crime rate would sug-
gest a different deployment.

Definition 1 (Predictive Policing) Given
historical crime data for a collection of d regions,
decide how to allocate k patrol officers to areas to
detect crime.

Definition 2 (Recidivism Prediction)
Given an inmate up for parole, use a model of
re-offense (whether the individual will reoffend
within a fixed time period after being released) to
determine whether they should be granted parole.

Contributions. Our first contribution is a for-
mal model for predictive policing which places
it in the framework of partial monitoring. We
exploit structure within the problem to reduce
it to a combinatorial semi-bandit problem. Our
reduction, combined with existing regret bounds
for such problems, yields an algorithm (the first
of its kind) for predictive policing that exhibits
O(kd

√
kT ) regret over T iterations. This result,

and the method used to prove it, is somewhat
counter-intuitive: the “true loss” i.e the actual
crime rate is not revealed to the learner, but we
show that there are fully observable proxy losses
that yield the same instantaneous (and therefore
overall) regret.

We also consider the degree to which feedback
affects algorithm performance, by considering in-
stead the case when crime is reported instead of
discovered by patrol officers. Using our framework
from above, we show that this can be analyzed
using a full information online linear optimiza-
tion framework, yielding an algorithm with regret
O(kd

√
T log k).

Turning now to recidivism prediction, we show
that it too has a natural analog in the partial mon-
itoring literature, in the form of the apple tasting
problem. By invoking results in that model, we
present an algorithm (the first with a provable
guarantee) for recidivism prediction that achieves
a mistake bound of

√
T .

We also examine the policy implications of these
results. In the case of predictive policing, our re-
sults provide an alternative to current deployed
algorithms that are based on batch learning and
are vulnerable to runaway feedback loops (Ensign
et al., 2017). In the case of recidivism predic-
tion, our algorithm suggests a random process
by which inmates are released: while this might
not be a tenable practical solution, it resembles
closely practical approaches involving the random
assignment of judges to decision-making.

2. Related Work

Our work fits into the larger framework of the
social implications of algorithmic decision-making,
and as such it overlaps with the recent interest
in fairness, accountability, and transparency of
these systems. The narrower question of defining
notions of fairness in sequential learning settings
such as the ones we describe has been studied
extensively, primarily in the setting of bandits
(regular, contextual and linear) and Markov deci-
sion processes (Kannan et al., 2017; Joseph et al.,
2016b; Jabbari et al., 2016; Joseph et al., 2016a).
There, the primary goal is to understand how to
define fairness in such a process, and how ensur-
ing fairness might affect the ability to learn an
accurate model.

We note that the perspective from Markov deci-
sion processes (and POMDPs) has much to offer:
however, the problems of limited feedback relate
more directly to the area of partial monitoring
(Cesa-Bianchi and Lugosi, 2006) which we employ
heavily in this paper. There are a number of
systems currently in place for recidivism predic-
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tion and predictive policing. While the details of
the actual implementations (such as COMPAS
(NorthPointe, Inc.)) remain proprietary, Berk
and Bleich (2013) provide a comprehensive re-
view of the methods used in this area. There has
been important empirical work (Lum and Isaac,
2016) demonstrating the consequences of feedback
loops in simulation in the predictive policing set-
ting (specifically the system known as PredPol
(Mohler et al., 2015)).

3. Background

The reinforcement learning framework we will
be using to evaluate the above problems is the
well-known partial monitoring framework (Pic-
colboni and Schindelhauer, 2001),(Cesa-Bianchi
and Lugosi, 2006, Chapter 6). Formally, a partial
monitoring problem P = (A, Y,H,L) consists of a
set of n actions A = {a1, a2, ..., an} and a set of m
outcomes (adversary actions) Y = {y1, y2, ..., ym}.
There is a feedback function (also called a feed-
back matrix) H : A × Y → Σ that takes in a
learner action and an outcome and outputs some
symbol σ ∈ Σ denoting information that the
learner receives. Finally there is a loss function
(also called a loss matrix) L : A × Y → R that
takes in an action and an outcome and outputs
a loss (which is usually assumed to be positive).
We denote h(at, yt) ∈ Σ as the value of H given
an action and an outcome, and ℓ(at, yt) ∈ R as
the value of L given an action and an outcome.
The learner and adversary are told what L and H
are before the learning begins. After the learner
performs a given action, they do not have access
to the incurred loss; in partial monitoring, the
loss is said to be hidden.
As usual, an algorithm consists of sequence of

actions, and its quality is measured in terms of
regret bounds, (either weak, strong or stochastic).
Standard multi-arm bandits (Bubeck et al., 2012)
can be captured in this setting by setting the
feedback matrix H to be equal to the loss matrix
L.
In general, proving regret bounds for partial

monitoring is hard because the feedback matrix
H might bear no relation to the true loss matrix
L. Thus, results in this area take two forms.
One class of results look at general bounds on
partial monitoring under assumptions about the
relation between H and L(Bartók et al., 2014)

and another class of results look at special sub-
cases that are more amenable to analysis (such
as the vast literature on bandits(Bubeck et al.,
2012)).

Regret and Mistake Bounds For any partial
monitoring algorithm, let the algorithm actions
be a1, a2, . . . , aT with corresponding outcomes
o1, o2, . . . , oT . Note that the actions might be
random variables. Then the (weak) regret of the
algorithm is its loss compared to the loss of any
fixed action:

RT =
∑
i∈T

ℓ(ai, oi)−min
a∈A

∑
t≤T

ℓ(a, oi)

and the expected weak regret is E[RT ]. Our goal
will be to optimize this quantity in a minimax
way, (i.e over all adversaries and all strategies).

Alternately, we can measure algorithm perfor-
mance in terms of mistake bounds. A mistake is
an action-outcome pair for which ℓ(a, o) > 0, and
the mistake bound of an algorithm is the number
of mistakes. Note that mistake bounds are not
relative with respect to some fixed action.

4. Modeling Predictive Policing

We now formalize predictive policing in a partial
monitoring setting. Assume we have a police
force consisting of k officers patrolling a set of
d regions. An action a = (a1, a2, . . . , ad), 0 ≤
ai ≤ k,

∑
i ai = k consists of a deployment of

the k officers to the d regions: formally, the set
A = {(a1, a2, . . . , ad) | 0 ≤ ai ≤ k,

∑
i ai = k}

consists of all possible ordered partitions of d
into k parts and has size |A| = O((d+k

k )k). An
outcome describes the actual amount of crime
in each of the regions and is expressed as the
tuple o = (o1, o2, . . . , od), oi ≥ 0, and the set of
all possible outcomes is denoted by O. We will
assume that the total crime

∑
i oi on any day is

finite but unbounded. However we will show that
from the perspective of algorithm design without
loss of generality we can assume that the total
crime is upper bounded by kd.

For predictive policing the (hidden) loss is the
number of uncaught crimes. We will make the
simplifying modeling assumption that each officer
in a region can “catch” one crime: while this
does not reflect the reality of police patrolling,
abstractly, this can be thought of as a measure of
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how much work an officer can do in a given area in
one time step. Too many officers in one place will
create slack, while too few officers leads to missed
opportunity. The linearity assumption captures
the idea that each productive officer is roughly
equivalent (at least at the limit). We will use
the analogy to crime presence and catching crime
throughout. With that assumption in place, the
system incurs loss when a region does not have
sufficiently many officers assigned to catch all the
crime in it. Thus, given vectors for action a and
outcome o, we define the total loss as

L(a,o) =
∑
i

max(oi − ai, 0) (1)

Officers that catch crime relay this information
back to their precinct. Thus, the feedback received
by the system is merely the amount of caught
crime. For any region i this can be expressed as
h(ai, oi) = min(ai, oi), and so the feedback vector
received by the system is

H(a,o) = (h(a1, o1), . . . , h(ad, od)) (2)

Our partial monitoring system for predictive
policing can now be described as the system
(A,O,L,H).

5. An Observable Form of
Predictive Policing

The system (A,O,L,H) is a classic partial mon-
itoring system because it is not obvious how to
relate the loss and feedback matrices. Using a
structural characterization developed by Neu and
Bartók (2013), it is possible to show a bound
of O(T 2/3) by exploiting useful symmetries in L
and H. However, we can do better. Through a
series of reduction, we now show that a proxy
loss function achieves the same weak regret as L
but has the advantage of being fully observable
given H, thus yielding a more traditional bandit
formulation.

Recall that our original loss function L is given
by Equation (1). We now define two different loss
functions that are related to L. As always, let a
be the vector of actions (i.e the number of officers
assigned to each region) and let o be the vector
of outcomes: the amount of crime that occurred
in each region.

Loss: The number of officers who failed
to catch crime. If we send too many officers
to any region, then we run the risk of over-
provisioning: because the total number of officers
is fixed, this might result in too few officers sent
elsewhere. A loss based the number of officers
who failed to catch crime is

Lf (a,o) =
∑
i

max(0, ai − oi) (3)

Note that while L is not directly observable
from the feedback H, Lf is observable since in
each region the feedback indicates whether oi ≥ ai
and if not yields oi from which we can compute
ai − oi.

Loss: The number of wasted officers. The
above loss is misleading: if the total crime over-
whelms the number of available officers, then there
is really nothing the officers can do. A more ac-
curate measure might be the number of officers
who could have caught crime but did not (because
they were misallocated). This involves a slight
correction to the previous loss: let Ct denote the
total crime at a given time instant. Then

Lw(a,o) = −max(0, k − Ct) +
∑
i

max(0, ai − oi)

(4)

Note that the only difference between Lw(a
t, ct)

and Lf (a
t, ct) is the term −max(0, k−Ct). This

difference means that Lw is not directly observable
from feedback (since we don’t know Ct).

Proving equivalence Our goal is now to show
that from the perspective of optimizing (strong or
weak) regret, L (true but unobserved) is equiva-
lent to Lf (observable). We’ll do this by showing
that the regret function doesn’t change when we
change our loss. This is unusual, as Lf is clearly
observable, yet L,Lw are not.
Let at denote the vector of actions taken at

time t and similarly let ot be the outcome vector
at time t. Let Ct denote the total crime occurring
at time t. In either form of regret, we compare
our loss at time t to the best action (at time t for
strong regret, and the single best for weak regret).
Let this action be bt. At time t, the instantaneous
regret from an action at with respect to loss ℓ is
given by

R(at,bt, ℓ) = ℓ(bt,ot)− ℓ(at − ot)
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We now prove our equivalence in two steps.

Lemma 3

R(at,bt, Lw) = R(at,bt, Lf )

Proof
Let us first consider the instantaneous regret

with respect to Lw (Equation (4)).

R(at,bt, Lw) = Lw(b
t)− Lw(a

t)

=
(
−max(0, k − Ct)

+

n∑
i=1

max(0, bti − oti)
)

−
(
−max(0, k − Ct)

+

n∑
i=1

max(0, ati − oti)
)

which after cancelling the max terms yields( n∑
i=1

max(0, bti − cti)
)
−
( n∑

i=1

max(0, ati − cti)
)

If we now consider Lf , the instantaneous regret
is simply

R(at,bt, Lw) =
( n∑

i=1

max(0, bti − cti)
)

−
( n∑

i=1

max(0, ati − cti)
)

which means that at any time t and for any action
b

R(at,bt, Lw) = R(at,bt, Lf )

The next step is to connect the true loss L to
the auxiliary loss Lw.

Lemma 4

R(at,bt, L) = R(at,bt, Lw)

Proof
Fix a time t. If Ct ≤ k, L(at,ot) = Lw(a

t,ot)
directly from (1),(4). Intuitively, this is because

we have enough officers to catch all crime, and so
crime not caught corresponds to wasted allocation.
Conversely, If Ct > k, we are guaranteed to miss
Ct − k crimes regardless of how we assign officers.
Thus, when Ct > k, we get

Lw(a
t,ot) = L(at,ot)− (Ct − k)

We can summarize these relationships as

Lw(a
t,ot) = L(at,ot)−max(0, Ct − k)

Because this is a constant independent of the ac-
tion taken at time t, the same logic as in Lemma 3
can be applied to conclude that

R(at,bt, Lw) = R(at,bt, L)

Combining Lemmas 3 and 4 shows that regret
with respect to the true loss L is equivalent to
regret with respect to the observable loss Lf . This
means that in the regret sense, the best strategy
for one Loss function gives the best strategy for
the other.

6. An Algorithm for Predictive
Policing

The results of the previous section allow us to
cast predictive policing as a classical multi-armed
bandit, where each “arm” is a particular alloca-
tion of officers to regions. Using standard regret
bounds for multi-armed bandits, this implies an
algorithm that in T steps incurs O(

√
TK) regret

(Auer et al., 1995) where K is the number of arms.
However, the number of arms K is prohibitive:

it is the number of ways of partitioning the integer
k into d parts, and as such is exponential in d. A
better way to model this problem is to exploit the
vector structure of the actions and losses, in the
form of a semi-bandit problem.

Definition 5 (Semi-bandits (Neu and Bartók, 2013))
In each time step the learner chooses an action
Vt drawn from a set S ⊆ {0, 1}d, where for
all v ∈ S, ∥v∥1 ≤ m. The environment picks a
loss vector ℓt ∈ [0, 1]d, and the learner incurs
a loss V⊤

t ℓt while receiving the feedback vector
(Vt,1ℓt,1, . . . , Vt,dℓt,d).
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Semi-bandit feedback provides more feedback
than a classical bandit (in which we would merely
get the feedback V⊤

t ℓt, while not being as power-
ful as a full information setting (where we would
receive the environment vector ℓt). The key value
of the semi-bandit formulation is that one can de-
sign algorithms with regret O(

√
mdT ) (Audibert

et al., 2013).

6.1. Mapping predictive policing to
semi-bandits

We now describe how to transform the bandit
problem (A,O,Lf , H) into a semi-bandit prob-
lem. Consider the function fo : [0 . . . k] →
[0 . . . k] defined as fo(x) = max(0, x − o). We
associate with fo the k + 1-dimensional vector
vo = (fo(0), f0(1), . . . , fo(K)). Finally, given an
outcome vector o, we construct the environment
vector ℓo = (vo1 , vo2 , . . . , vod).

We now turn to the encoding of actions. For any
0 ≤ a ≤ k, let ua be the unit vector of dimension
k + 1 with a 1 in position a. We can now encode
the action a as the vector Va = (ua1

, ua2
, . . . , uad

).

The loss Va ·ℓo is
∑d

i=1 max(0, ai−oi) = Lf (a,o).

An Illustration. For concreteness, consider a
setting with d = 3 regions and k = 4 officers.
Suppose that at time t, the actual crime vector is
ot = (2, 1, 4). This corresponds to an environment
loss ℓt of the form (here written stacked)

ℓt =
0 0 0 1 2 . . . vo1
0 0 1 2 3 . . . vo2
0 0 0 0 0 . . . vo3

Suppose the algorithm now chooses the action
at = (1, 3, 0). Then:

Vt =
0 1 0 0 0 . . . ua1

0 0 0 1 0 . . . ua2

1 0 0 0 0 . . . ua3

Thus Vt · lt = 0 + 2 + 0 = 2 as desired since we
have 2 officers who did not catch a crime.
The dimension of Va is d · k. Further, note

that |Va|1 = d. To apply the bound above, we
need Vt, lt to be {0, 1}, which we can arrange
by encoding all values in unary and replacing
each dimension with k entries. So that (.., 3, ..)
becomes (..., 1, 1, 1, 0, ...) in lt. The result is that
our unary vectors are a factor of k larger, and
|Vt| = k · d. Substituting these terms into the
bound from above, we obtain the following result.

Theorem 6 There is an algorithm for predictive
policing that in T steps incurs total (minimax)
regret O(kd

√
Tk).

Note we have eliminated the dependence on
the (large) number of arms, in favor of a new k

3
2 d

term.

6.2. Reported versus Discovered Crime

Thus far, we have only considered one kind of
crime “incident”: a crime discovered by a pa-
trolling officer. In general, incidents might also
be recorded via reports from residents in a region.
We call the former incident discovered crime and
the latter incident a reported crime.
We will assume that reported crime is not af-

fected by feedback (i.e that the likelihood of call-
ing 911 is independent of the current level of
policing in an area. While this might not always
be an accurate model of what prompts crime re-
ports, it allows us to understand how the presence
of reported incidents might alleviate the problem
of (limited) feedback.

In the most general case, all crime is reported.
In our model, this is equivalent to providing ot

as the feedback in time t. This reduces to a tra-
ditional online linear optimization in the “vector”
feedback setting from Section 6.1 above. Employ-
ing the same reduction, and using known results
for online linear optimization due to (Audibert
et al., 2013), we can conclude the following.

Theorem 7 If all crime is reported, there is an
algorithm for predictive policing that incurs regret
O(kd

√
T log k)

Notice that eliminating feedback reduces the
dependence on the number of officers, but does not
affect the dependence on the number of regions.
We leave as an open question the best bound
attainable if we receive some fixed (but unknown)
fraction of the reported incidents in addition to
the crime discovered through policing.

7. Recidivism Prediction

We now formalize the problem of recidivism pre-
diction in the context of partial monitoring. Re-
call from Section 1 that recidivism prediction is
the problem of determining if someone convicted
of a crime will reoffend if released (often measured
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based on rearrest within a fixed time period, say,
2 years). Such predictions are then used to deter-
mine if parole should be granted. The action here
is the decision to grant parole, and the outcome
is whether a crime is subsequently committed or
not. Formally, we will assume two actions, keep
and release and two outcomes, c (“crime”) and
¬c (“no crime”). We can then define a feedback
matrix and a corresponding loss matrix

L =

( c ¬c
keep 0 b
release c d

)

H =

( c ¬c
keep − −
release c d

)
In what follows, we will assume that c = b = 1
and d = 0. However in general, one might assign
different values to b, c and d if one had different
risk associated with incorrect release (c) versus an
unfair (d) or valid (b) incarceration. In recidivism
prediction, context consists of profile information
about the individual being evaluated.

7.1. A connection to apple tasting

Apple tasting is a well known example of partial
monitoring that can be solved with good regret
bounds. In the apple tasting problem, the goal is
to test apples in an orchard prior to selling them.
If we test an apple by tasting it, we discover if it is
bad or good, (but we cannot then sell it and incur
a loss if it was good). If we sell the apple, then we
receive a loss if it is bad and no loss if it is good.
In this setting the partial monitoring comes from
the algorithm only receiving feedback if it decides
to taste. However, the algorithm incurs a hidden
loss if it tastes a good apple or sells a bad one.

Formally, we can encode this as partial monitor-
ing with the following loss and feedback matrices:

L =

( bad good

sell 0 b
taste c d

)

H =

( bad good

sell − −
taste c d

)
,

The context here is provided by the description of
the apple: its color, texture and so on. The key

observation we make here is that: apple tasting
is equivalent to recidivism prediction. This leads
us to a regret bound for recidivism prediction.

Lemma 8 (via Antos et al. (2013)) There
exists a minimax O(

√
T ) weak regret algorithm

for recidivism prediction where T is the number
of time steps, and this can be achieved using the
EXP3 algorithm of Auer et al. (2002)

7.1.1. Mistake Bounds

The particular structure of the apple tasting prob-
lem allows for a stronger analysis. Helmbold et al.
(2000b) presented algorithm that achieves a mis-
take bound of

√
T for apple tasting.Moreover,

their bounds apply even when we have context.
As before, this immediately yields a similar bound
for recidivism prediction.

To state the result we must first assume the
existence of an online binary classifier that makes
a total of M+ false positive and M− false nega-
tive errors in T steps. As Helmbold et al. (2000b)
show, such a classifier can be obtained from re-
lated results (Helmbold et al., 2000a). The bound
for recidivism prediction can then be stated as
follows.

Lemma 9 (via Helmbold et al. (2000b))
There exists an algorithm for recidivism prediction
whose expected mistake bound upper bounded by
M+ + 2

√
TM−.

Algorithms The results above come with al-
gorithms that achieve the desired error bounds.
In the interest of space we focus on the stronger
result from Lemma 9. The key insight here (and
in many such methods) is that in order to defeat
the adversary, the algorithm must decide at ran-
dom when to request an evaluation (i.e release an
inmate). More formally, the algorithm asks the
online classifier to make a prediction. If the clas-
sifier predicts ¬c, the recidivism predictor does
the same. If not, the predictor tosses a coin and
with probability roughly

√
M/T decides to re-

lease the inmate anyway and obtains feedback.
Over time, the probability of overriding the classi-
fier decreases (as its accuracy increases). We refer
the reader to Helmbold et al. (2000b) for details
of the proof.
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Policy Implications The algorithm presented
above suggests that inmates should be released
at random in order to build an effective model
for recidivism prediction. The practical rem-
edy for this problem has been to observe that
judges are assigned to cases in a random way.
Suppose each judge j is modeled by a predictor
pj(x) : X → [0, 1] that takes a personal profile x
and releases the person with probability pj(x). If
cases are assigned uniformly at random to one
of k judges then the probability of an individual
being released is 1

k

∑
j pj(x). As long as individ-

ual judge bias (captured in pj(x)) is distributed
across the range, this effectively corresponds to
releasing an individual uniformly at random.
The claim that current methodology captures

the random labeling recommended by Lemma 9
rests on a key assumption: for any input
x, 1

k

∑
j pj(x) is close to 1/2. Once we stratify by

crime, this might not be true at all: for example,
most judges may be less likely to grant convicted
murderers parole. In this case, 1

k

∑
j pj(x) ≪ 1/2.

We leave for future research the question of how
stable the

√
T -mistake bound algorithm is under

such weaker definitions of randomness.

8. Discussion

The results presented here are the first time
the problem of feedback in automated decision-
making has been framed in the (arguably natural)
online learning setting. Existing tools for these
problems are typically based on traditional batch
learning frameworks, with no rigorous approach
updating the models thus learned. It is therefore
reasonable to ask: should all such algorithms be
replaced with methods based on our results?

Consider first predictive policing. Our bounds
for regret are predicated on the idea that min-
imizing uncaught crime is the goal. However,
an alternate goal is the more modest “learn the
crime rates in different regions” (this is in fact
how systems like PredPol are designed). That
framing corresponds to a stochastic model for the
environment rather than the adversarial model
we have adopted here. Further, one might then
argue that considering strong regret might be
more appropriate. It remains an interesting open
question to consider the semi-bandit problem we
construct in this setting. While the work of (Au-
dibert et al., 2013) and (Neu and Bartók, 2013)

addresses stochastic environments, they do not
address the setting of strong regret. We note
here that our general reduction holds for instan-
taneous regret and therefore our equivalence be-
tween losses applies even for strong regret. Note
that a natural extension of this model would be
to introduce context, which might allow us to
leverage the literature on contextual semi-bandit
learning (see (Krishnamurthy et al., 2016) and
references therein). Interestingly, context is ex-
plicitly avoided in PredPol because of the fear
of biased decision-making.
In the case of recidivism prediction, the sim-

plified version we presented results in a binary
classification of inmates. However, in general such
a prediction system typically outputs a risk level
– a score between 1 and 10 for example – and so
might fall into a more general setting where the
feedback depends on the score in a more compli-
cated manner. Modeling such a scenario would
be of great practical interest.
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Csaba Szepesvári. Toward a classification of
finite partial-monitoring games. Theoretical
Computer Science, 473:77–99, 2013.

Jean-Yves Audibert, Sébastien Bubeck, and
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