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Abstract

Dynamical systems comprising of multiple components that can be partitioned into distinct
blocks originate in many scientific areas. A pertinent example is the interactions between
financial assets and selected macroeconomic indicators, which has been studied at aggregate
level—e.g. a stock index and an employment index—extensively in the macroeconomics
literature. A key shortcoming of this approach is that it ignores potential influences from
other related components (e.g. Gross Domestic Product) that may impact the system’s
dynamics and structure and thus produces incorrect results. To mitigate this issue, we con-
sider a multi-block linear dynamical system with Granger-causal ordering between blocks,
wherein the blocks’ temporal dynamics are described by vector autoregressive processes and
are influenced by blocks higher in the system hierarchy. We derive the maximum likelihood
estimator for the posited model for Gaussian data in the high-dimensional setting based
on appropriate regularization schemes for the parameters of the block components. To
optimize the underlying non-convex likelihood function, we develop an iterative algorithm
with convergence guarantees. We establish theoretical properties of the maximum likeli-
hood estimates, leveraging the decomposability of the regularizers and a careful analysis
of the iterates. Finally, we develop testing procedures for the null hypothesis of whether a
block “Granger-causes” another block of variables. The performance of the model and the
testing procedures are evaluated on synthetic data, and illustrated on a data set involving
log-returns of the US S&P100 component stocks and key macroeconomic variables for the
2001–16 period.

Keywords: Vector-autoregression; Stability; Block-coordinate descent; Consistency;
Global testing

1. Introduction.

The study of linear dynamical systems has a long history in control theory (Kumar and
Varaiya, 1986) and economics (Hansen and Sargent, 2013) due to their analytical tractability
and ease to estimate their parameters. Such systems in their so-called reduced form give
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rise to Vector Autoregressive (VAR) models (Lütkepohl, 2005) that have been widely used
in macroeconomic modeling for policy analysis (Sims, 1980, 1992), in financial econometrics
(Gourieroux and Jasiak, 2001), and more recently in functional genomics (Shojaie et al.,
2012), financial systemic risk analysis (Billio et al., 2012) and neuroscience (Seth, 2013).

In many applications, the components of the system under consideration can be nat-
urally partitioned into interacting blocks. For example, Cushman and Zha (1997) studied
the impact of monetary policy in a small open economy, where the economy under consid-
eration is modeled as one block, while variables in other (foreign) economies as the other.
Both blocks have their own autoregressive structure, and the inter-dependence between
blocks is unidirectional: the foreign block influences the small open economy, but not the
other way around, thus effectively introducing a linear ordering amongst blocks. Another
example comes from the connection between the stock market and employment macroe-
conomic variables (Fitoussi et al., 2000; Phelps, 1999; Farmer, 2015) that focuses on the
impact through a wealth effect mechanism of the former on the latter. Once again, the
underlying hypothesis of interest is that the stock market influences employment, but not
the other way around. In another application domain, molecular biologists conduct time
course experiments on cell lines or animal models and collect data across multiple molecular
compartments (transcripotmics, proteomics, metabolomics, lipidomics) in order to delineate
mechanisms for disease onset and progression or to study basic biological processes. In this
case, the interactions amongst the blocks (molecular compartments) are clearly delineated
(transciptomic compartment influencing the proteomic and metabolomic ones), thus leading
again to a linear ordering of the blocks.

The proposed model also encompasses the popular in marketing, regional science and
growth theory VAR-X model, provided that the temporal evolution of the exogenous block
of variables “X” exhibits autoregressive dynamics. For example, Nijs et al. (2001) examine
the sensitivity of over 500 product prices to various marketing promotion strategies (the
exogenous block), while Pauwels and Weiss (2008) examine changes in subscription rates,
search engine referrals and marketing efforts of customers when switched from a free account
to a fee-based structure, the latter together with customer characteristics representing the
exogenous block. Pesaran et al. (2004) examine regional inter-dependencies, building a
model where country specific macroeconomic indicators evolve according to a VAR model
and they are influenced exogenously by key macroeconomic variables from neighboring
countries/regions. Finally, Abeysinghe (2001) studies the impact of the price of oil on
Gross Domestic Product growth rates for a number of countries, while controlling for other
exogenous variables such as the country’s consumption and investment expenditures along
with its trade balance.

The proposed model gives rise to a network structure that in its most general form cor-
responds to a multi-partite graph, depicted in Figure 1 for 3 blocks, that exhibits a directed
acyclic structure between the constituent blocks, and can also exhibit additional depen-
dence between the nodes in each block. Selected properties of such multi-block structures,
known as chain graphs, have been studied in the literature. Specifically, their maximum
likelihood estimation for independent and identically distributed Gaussian data under a high-
dimensional sparse regime is thoroughly investigated in Lin et al. (2016), where a provably
convergent estimation procedure is introduced and its theoretical properties are established.
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Figure 1: Diagram for a dynamic system with three groups of variables

Given the wide range of applications of multi-block VAR models, which in addition
encompass the widely used VAR-X model, the key contributions of the current paper are
fourfold: (i) formulating the model as a recursive dynamical system and examining its stabil-
ity properties; (ii) developing a provably convergent algorithm for obtaining the regularized
maximum likelihood estimates (MLE) of the model parameters under high-dimensional scal-
ing; (iii) establishing theoretical properties of the ML estimates; and (iv) devising a testing
procedure for the parameters that connect the constituent blocks of the model: if the null
hypothesis is not rejected, then one is dealing with a set of independently evolving VAR
models, otherwise with the posited multi-block VAR model. Finally, the model, estima-
tion and testing procedures are illustrated on an important problem in macroeconomics,
as gleaned by the background of the problem and discussion of the results provided in
Section 6.

For the multi-block VAR model, we assume that the time series within each block are
generated by a Gaussian VAR process. Further, the transition matrices within and across
blocks can be either sparse or low rank. The posited regularized Gaussian likelihood function
is not jointly convex in all the model parameters, which poses a number of technical chal-
lenges that are compounded by the presence of temporal dependence. These are successfully
addressed and resolved in Section 3, where we provide a numerically convergent algorithm
and establish the theoretical properties of the resulting ML estimates, that constitutes a
key contribution in the study of multi-block VAR models.

The remainder of this paper is organized as follows. In Section 2, we introduce the model
setup and the corresponding estimation procedure. In Section 3, we provide consistency
properties of the obtained ML estimates under a high-dimensional scaling. In Section 4,
we introduce the proposed testing framework, both for low-rank and sparse interaction
matrices between the blocks. Section 5 contains selected numerical results that assess the
performance of the estimation and testing procedures. Finally, an application to financial
and macroeconomic data that was previously discussed as motivation for the model under
consideration is presented in Section 6.

Notation. Throughout this paper, we use |||A|||1 and |||A|||∞ respectively to denote the
matrix induced 1-norm and infinity norm ofA ∈ Rm×n, that is, |||A|||1 = max1≤j≤n

∑m
i=1 |aij |,

|||A|||∞ = max1≤i≤m
∑n

j=1 |aij |, and use ‖A‖1 and ‖A‖∞ respectively to denote the element-
wise 1-norm and infinity norm: ‖A‖1 =

∑
i,j |aij |, ‖A‖∞ = maxi,j |aij |. Moreover, we use

|||A|||∗, |||A|||F and |||A|||op to denote the nuclear, Frobenius and operator norms of A, respec-
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tively. For two matrices A and B of commensurate dimensions, denote their inner product
by 〈〈A,B〉〉 = trace(A′B). Finally, we write A % B if there exists some absolute constant c
that is independent of the model parameters such that A ≥ cB.

2. Problem Formulation.

To convey the main ideas and the key technical contributions, we consider a recursive linear
dynamical system comprising of two blocks of variables, whose structure is given by:

Xt = AXt−1 + Ut,

Zt = BXt−1 + CZt−1 + Vt,
(1)

where Xt ∈ Rp1 , Zt ∈ Rp2 are the variables in groups 1 and 2, respectively. The temporal
intra-block dependence is captured by transition matrices A and C, while the inter-block
dependence by B. Noise processes {Ut} and {Vt}, respectively, capture additional contem-
poraneous intra-block dependence of Xt and Zt, after conditioning on their respective past
values. Further, we assume that Ut and Vt follow mean zero Gaussian distributions with
covariance matrices given by Σu and Σv, i.e.,

Ut ∼ N (0,Σu), and Vt ∼ N (0,Σv).

With the above model setup, the parameters of interest are transition matrices A ∈ Rp1×p1 ,
B ∈ Rp2×p1 and C ∈ Rp2×p2 , as well as the covariances Σu,Σv. In high-dimensional settings,
different combinations of structural assumptions can be imposed on these transition matrices
to enable their estimation from limited time series data. In particular, the intra-block
transition matrices A and C are sparse, while the inter-block matrix B can be either sparse
or low rank. Note that the block of Xt variables acts as an exogenous effect to the evolution
of the Zt block (e.g., Cushman and Zha, 1997; Nicolson et al., 2016). Further, we assume
Ωu := Σ−1

u and Ωv := Σ−1
v are sparse.

Remark 1 For ease of exposition, we posit a VAR(1) modeling structure. Extensions to
general multi-block structures akin to the one depicted in Figure 1 and VAR(d) specifications
are rather straightforward and briefly discussed in Section 7.

The triangular (recursive) structure of the system enables a certain degree of separability
between Xt and Zt. In the posited model, Xt is a stand-alone VAR(1) process, and the
time series in block Zt is “Granger-caused” by that in block Xt, but not vice versa. The
second equation in (1), as mentioned in the introductory section, also corresponds to the
so-called “VAR-X” model in the econometrics literature (e.g., Sims, 1980; Bianchi et al.,
2010), that extends the standard VAR model to include influences from lagged values of
exogenous variables. Consider the joint process Wt = (X ′t, Z

′
t)
′, it corresponds to a VAR(1)

model whose transition matrix G has a block triangular form:

Wt = GWt−1 + εt, where G :=

[
A O
B C

]
, εt =

[
Ut
Vt

]
. (2)

The model in (2) can also be viewed from a Structural Equations Modeling viewpoint in-
volving time series data, and also has a Moving Average representation corresponding to a
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structural VAR representation with Granger causal ordering (Lütkepohl, 2005). As men-
tioned in the introductory section, the focus of this paper is model parameter estimation
under high-dimensional scaling, rather than their cause and effect relationship. For a com-
prehensive discourse of causality issues for VAR models, we refer the readers to Granger
(1969); Lütkepohl (2005), and references therein.

Next, we introduce the notion of stability and spectrum with respect to the system.

System Stability. To ensure that the joint process {Wt} is stable (Lütkepohl, 2005),
we require the spectral radius, denoted by ρ(·), of the transition matrix G to be smaller
than 1, which is guaranteed by requiring that ρ(A) < 1 and ρ(C) < 1, since

|λIp1×p2 −G| =
∣∣∣∣λIp1 −A O
−B λIp2 − C

∣∣∣∣ = |λIp1 −A||λIp2 − C|,

implying that the set of eigenvalues of G is the union of the sets of eigenvalues of A and C,
hence

ρ(A) < 1 , ρ(C) < 1, ⇒ ρ(G) = max{ρ(A), ρ(C)} < 1.

The latter relation implies that the stability of such a recursive system imposes spectrum
constraints only on the diagonal blocks that govern the intra-block evolution, whereas the
off-diagonal block that governs the inter-block interaction is left unrestricted.

Spectrum of the joint process. Throughout, we assume that the spectral density of
{Wt} exists, which then possesses a special structure as a result of the block triangular
transition matrix G. Formally, we define the spectral density of {Wt} as

fW (θ) =
1

2π

∞∑
h=−∞

ΓW (h)e−ihθ, θ ∈ [−π, π],

where ΓW (h) := EWtW
′
t+h. For two (generic) processes {Xt} and {Zt}, define their cross-

covariance as ΓX,Z(h) = EXtZ
′
t+h and ΓZ,X(h) = EZtX ′t+h. In general, ΓX,Z(h) 6= ΓZ,X(h).

The cross-spectra are defined as:

fX,Z(θ) :=
1

2π

∞∑
h=−∞

ΓX,Z(h)e−ihθ, and fZ,X(θ) :=
1

2π

∞∑
h=−∞

ΓZ,X(h)e−ihθ, θ ∈ [−π, π].

For the model given in (2), by writing out the dynamics of Zt, the cross-spectra between
Xt and Zt are given by

fX,Z(θ)(Ip2 − C ′e−iθ) = fX(θ)B′e−iθ, and (Ip2 − Ceiθ)fZ,X(θ) = BeiθfX(θ). (3)

Similarly, we have
(Ip2 − Ceiθ)fZ(θ) = BeiθfX,Z(θ) + fV,Z(θ). (4)

Combining (3) and (4), the spectrum of the joint process Wt is given by

fW (θ) =
[
H1(eiθ)

]−1
([
H2(eiθ)

][
12×2 ⊗ fX(θ)

][
H2(e−iθ)

]>
+

[
O O
O Σv

])[
H1(e−iθ)

]−>
, (5)
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where 12×2 is a 2× 2 matrix with all entries being 1, and

H1(x) :=

[
Ip1 O
O Ip2 − Cx

]
∈ R(p1+p2)×(p1+p2), H2(x) :=

[
Ip1 O
O Bx

]
∈ R(p1+p2)×(2p1).

Equation (5) implies that the spectrum of the joint process {Wt} can be decomposed into
the sum of two parts: the first, is a function of fX(θ), while the second part involves the
idiosyncratic error process {Vt}, which only affects the right-bottom block of the spectrum.
Note that since {Wt} is a VAR(1) process, its matrix-valued characteristic polynomial is
given by

G(θ) := I(p1+p2) −Gθ,

and its spectral density also takes the following form (c.f. Hannan, 1970):

fW (θ) =
1

2π

[
G−1(eiθ)

]
Σε

[
G−1(eiθ)

]∗
,

where

G(x) =

[
Ip1 −Ax O
−Bx Ip2 − Cx

]
, Σε =

[
Σu O
O Σv

]
,

and G∗ is the conjugate transpose. One can easily reach the same conclusion as in (5) by
multiplying each term, followed by some algebraic manipulations.

2.1 Estimation.

Next, we outline the algorithm for obtaining the ML estimates of the transition matrices
A,B and C and inverse covariance matrices Σ−1

u and Σ−1
v from time series data. We allow

for a potential high-dimensional setting, where the ambient dimensions p1 and p2 of the
model exceed the total number of observations T .

Given centered times series data {x0, · · · , xT } and {z0, · · · , zT }, we use X T and ZT
respectively, to denote the “response” matrix from time 1 to T , that is:

X T =
[
x1 x2 . . . xT

]′
and ZT =

[
z1 z2 . . . zT

]′
,

and use X and Z without the superscript to denote the “design” matrix from time 0 to
T − 1:

X =
[
x0 x1 . . . xT−1

]′
and Z =

[
z0 z1 . . . zT−1

]′
.

We use U and V to denote the error matrices. To obtain estimates for the parameters
of interest, we formulate optimization problems using a penalized log-likelihood function,
with regularization terms corresponding to the imposed structural assumptions on the model
parameters–sparsity and/or low-rankness. To solve the optimization problems, we employ
block-coordinate descent algorithms, akin to those described in Lin et al. (2016), to obtain
the solution.

As previously mentioned, {Xt} is not “Granger-caused” by Zt and hence it is a stand-
alone VAR(1) process; this enables us to separately estimate the parameters governing the
Xt process (A and Σ−1

u ) from those of the Zt process (B, C, and Σ−1
v ).

6



Estimating and Testing for High-dimensional VAR

Estimation of A and Σ−1
u . Conditional on the initial observation x0, the likelihood of

{xt}Tt=1 is given by:

L(xT , xT−1, · · · , x1|x0) = L(xT |xT−1, · · · , x0)L(xT−1|xT−2, · · · , x0) · · ·L(x1|x0)

= L(xT |xT−1)L(xT−1|xT−2) · · ·L(x1|x0),

where the second equality follows from the Markov property of the process. The log-
likelihood function is given by:

`(A,Σ−1
u ) =

T

2
log det(Σ−1

u )− 1

2

T∑
t=1

(xt −Axt−1)′Σ−1
u (xt −Axt−1) + constant.

Letting Ωu := Σ−1
u , then the penalized maximum likelihood estimator can be written as

(Â, Ω̂u) = arg min
A∈Rp1×p2

Ωu∈S++
p1×p1

{
tr
[
Ωu(X T −XA′)′(X T −XA′)/T

]
− log det Ωu +λA‖A‖1 + ρu‖Ωu‖1,off

}
. (6)

Algorithm 1 describes the key steps for obtaining Â and Ω̂u.

Algorithm 1: Computational procedure for estimating A and Σ−1
u .

Input: Time series data {xt}Tt=1, tuning parameter λA and ρu.

1 Initialization: Initialize with Ω̂
(0)
u = Ip1 , then

Â(0) = arg minA
{

1
T

∣∣∣∣∣∣X T −XA′∣∣∣∣∣∣2
F

+ λA‖A‖1
}

;

2 Iterate until convergence:

– Update Ω̂
(k)
u by graphical Lasso (Friedman et al., 2008) on the residuals with the

plug-in estimate Â(k);

– Update Â(k) with the plug-in Ω̂
(k−1)
u and cyclically update each row with a Lasso

penalty, which solves

min
A

{
1
T tr
[
Ω̂(k−1)
u (X T −XA)′(X T −XA)/T

]
+ λA‖A‖1

}
. (7)

Output: Estimated sparse transition matrix Â and sparse Ω̂u.

Estimation of B, C and Σ−1
v . Similarly, to obtain estimates of B, C and Ωv := Σ−1

v , we
formulate the optimization problem as follows:

(B̂, Ĉ, Ω̂v) = arg min
B∈Rp2×p1 ,C∈Rp2×p2

Ωv∈S++
p2×p2

{
tr
[
Ωv(ZT −XB′ −ZC ′)′(ZT −XB′ −ZC ′)/T

]
− log det Ωv

+ λBR(B) + λC‖C‖1 + ρv||Ωv||1,off

}
, (8)

where the regularizer R(B) = ‖B‖1 if B is assumed to be sparse, and R(B) = |||B|||∗ if B is

assumed to be low rank. Algorithm 2 outlines the procedure for obtaining estimates B̂, Ĉ
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Algorithm 2: Computational procedure for estimating B, C and Σ−1
v .

Input: Time series data {xt}Tt=1 and {zt}Tt=1, tuning parameters λB, λC , ρv.

1 Initialization: Initialize with Ω̂
(0)
v = Ip2 , then

(B̂(0), Ĉ(0)) = arg min
(B,C)

{
1
T

∣∣∣∣∣∣ZT −XB′ −ZC ′∣∣∣∣∣∣2
F

+ λBR(B) + λC‖C‖1
}
.

2 Iterate until convergence:

– Update Ω̂
(k)
v by graphical Lasso on the residuals with the plug-in estimates B̂(k)

and Ĉ(k);

– For fixed Ω̂
(k)
v , (B̂(k+1), Ĉ(k+1)) solves

min
B,C

{
1
T tr
[
Ω̂(k)
v (ZT −XB′ −ZC ′)′(ZT −XB′ −ZC ′)

]
+ λBR(B) + λC‖C‖1

}
.

· Fix Ĉ [s], update B̂[s+1] by Lasso or singular value thresholding, which solves

min
B

{
1
T tr
[
Ω̂(k)
v (ZT −XB′ −ZĈ [s]′)′(ZT −XB′ −ZĈ [s]′)

]
+ λBR(B)

}
;

· Fix B̂[s], update Ĉ [s] by Lasso, which solves

min
C

{
1
T tr
[
Ω̂(k)
v (ZT −X B̂[s]′ −ZC ′)′(ZT −X B̂[s]′ −ZC ′)

]
+ λC‖C‖1

}
.

Output: Estimated transition matrices B̂, Ĉ and sparse Ω̂v.

and Ω̂v. Note that B̂(k) and Ĉ(k) need to be treated as a “joint block” in the outer update
and convergence of the “joint block” is required before moving on to updating Ωv.

Note that the objective function in (6) is not jointly convex in both parameters, but biconvex.
Similarly in (8), the objective function is biconvex in

[
(B,C),Ωv

]
. Consequently, convergence to a

stationary point is guaranteed, as long as estimates from all iterations lie within a ball around the
true value of the parameters, with the radius of the ball upper bounded by a universal constant that
only depends on model dimensions and sample size (Lin et al., 2016, Theorem 4.1). This condition
is satisfied upon the establishment of consistency properties of the estimates.

To establish consistency properties of the estimates requires the existence of good initial values
for the model parameters (A,Ωu), and (B,C,Ωv), respectively, in the sense that they are sufficiently
close to the true parameters. For the (A,Ωu) parameters, the results in Basu and Michailidis (2015)
guarantee that for random realizations of {Xt, Et}, with sufficiently large sample size, the errors

of Â(0) and Ω̂
(0)
u are bounded with high probability, which provides us with good initialization

values. Yet, additional handling of the bounds is required to ensure that estimates from subsequent
iterations are also uniformly close to the true value (see Section 3.2 Theorem 5). A similar property

for (B̂(0), Ĉ(0), Ω̂
(0)
v ) and subsequent iterations is established in Section 3.2 Theorem 6 (see also

Theorem 15 in Appendix A).

3. Theoretical Properties.

In this section, we investigate the theoretical properties of the penalized maximum likelihood es-
timation procedure proposed in Section 2, with an emphasis on the error bounds for the obtained
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estimates. We focus on the model specification in which the inter-block transition matrix B is
low rank, which is of interest in many applied settings. Specifically, we consider the consistency
properties of Â and (B̂, Ĉ) that are solutions to the following two optimization problems:

(Â, Ω̂u) = arg min
A,Ωu

{
tr
[
Ωu(X T −XA′)′(X T −XA′)/T

]
− log det Ωu + λA‖A‖1 + ρu‖Ωu‖1,off

}
, (9)

and

(B̂, Ĉ, Ω̂v) = arg min
B,C,Ωv

{
tr
[
Ωv(ZT −XB′ −ZC ′)′(ZT −XB′ −ZC ′)/T

]
− log det Ωv

+λB |||B|||∗ + λC‖C‖1 + ρv||Ωv||1,off

}
.

(10)

The case of a sparse B can be handled similarly to that of A and/or C with minor modifi-
cations (details shown in Supplementary Material ??).

3.1 A road map for establishing the consistency results.

Next, we outline the main steps followed in establishing the theoretical properties for the
model parameters. Throughout, we denote with a superscript “?” the true value of the
corresponding parameters.

The following key concepts, widely used in high-dimensional regularized estimation prob-
lems, are needed in subsequent developments.

Definition 2 (Restricted Strong Convexity (RSC)) For some generic operator X :
Rm1×m2 7→ RT×m1, it satisfies the RSC condition with respect to norm Φ with curvature
αRSC > 0 and tolerance τ > 0 if

1

2T
|||X(∆)|||2F ≥ αRSC|||∆|||2F − τΦ2(∆), for some ∆ ∈ Rm1×m2 .

Note that the choice of the norm Φ is context specific. For example, in sparse regression
problems, Φ(∆) = ‖∆‖1 corresponds to the element-wise `1 norm of the matrix (or the usual
vector `1 norm for the vectorized version). The RSC condition becomes equivalent to the
restricted eigenvalue (RE) condition (see Loh and Wainwright, 2012; Basu and Michailidis,
2015, and references therein). This is the case for the problem of estimating transition
matrix A. For estimating B and C, define Q to be the weighted regularizer Q(B,C) :=
|||B|||∗ + λC

λB
‖C‖1, and the associated norm Φ in this setting is defined as

Φ(∆) := inf
Baug+Caug=∆

Q(B,C).

Definition 3 (Diagonal dominance) A matrix Ω ∈ Rp×p is strictly diagonally dominant
if

|Ωii| >
∑
j 6=i
|Ωij |, ∀ i = 1, · · · , p.

Definition 4 (Incoherence condition (Ravikumar et al., 2011)) A matrix Ω ∈ Rp×p
satisfies the incoherence condition if:

max
e∈(SΩ)c

‖HeSΩ
(HSΩSΩ

)−1‖1 ≤ 1− ξ, for some ξ ∈ (0, 1),
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where HSΩSΩ
denotes the Hessian of the log-determinant barrier log det Ω restricted to the

true edge set of Ω denoted by SΩ, and HeS is similarly defined.

The above two conditions are associated with the inverse covariance matrices Ωu and
Ωv. Specifically, the diagonal dominance condition is required for Ω?

u and Ω?
v as we build

the consistency properties for Â and (B̂, Ĉ) with the penalized maximum likelihood formu-
lation. The incoherence condition is primarily required for establishing the consistency of
Ω̂u and Ω̂v.

We additionally introduce the upper and lower extremes of the spectrum, defined as

M(fX) := esssup
θ∈[−π,π]

Λmax(fX(θ)) and m(fX) := essinf
θ∈[−π,π]

Λmin(fX(θ)).

Analogously, the upper extreme for the cross-spectrum is given by:

M(fX,Z) := esssup
θ∈[−π,π]

√
Λmax(f∗X,Z(θ)fX,Z(θ)),

with f∗X,Z(θ) being the conjugate transpose of fX,Z(θ). With this definition,

M(fX,Z) =M(fZ,X).

Next, consider the solution to (9) that is obtained by the alternate update between A
and Ωu. If Ωu is held fixed, then A solves (11), and we denote the solution by Ā and its
corresponding vectorized version as β̄A := vec(Ā):

β̄A := arg min

β∈Rp2
1

{
− 2β′γX + β′ΓXβ + λA‖β‖1

}
, (11)

where
ΓX = Ωu ⊗ X

′X
T , γX = 1

T

(
Ωu ⊗X ′

)
vec(X T ). (12)

Using a similar notation, if A is held fixed, then Ωu solves (13) with the solution being Ω̄u:

Ω̄u := arg min
Θ∈S++

p1×p1

{
log det Ωu − trace (SuΩu) + ρu‖Ωu‖1,off

}
, (13)

where
Su = 1

T (X T −XA′)′(X T −XA′). (14)

For fixed realizations of X and U , by Basu and Michailidis (2015), the error bound of β̄A
relies on (1) ΓX satisfying the RSC condition defined above; and (2) the tuning parameter λA
is chosen in accordance with a deviation bound condition associated with ‖X ′UΩu/T‖∞.
By Ravikumar et al. (2011), the error bound of Ω̄u relies on how well Su concentrates
around Σ?

u, that is, ‖Su−Σ?
u‖∞. Specifically, for (12) and (14), with Ω?

u and A? plugged in
respectively, for random realizations of X and U , these conditions hold with high probability.
In the actual implementation of the algorithm, however, quantities in (12) and (14) are

substituted by estimates so that at iteration k, β̂
(k)
A and Ω̂

(k)
u solve

β̂
(k)
A := arg min

β∈Rp2
1

{
− 2β′γ̂

(k)
X + β′Γ̂

(k)
X β + λA‖β‖1

}
,

Ω̂(k)
u := arg min

Ωu∈S++
p1×p1

{
log det Ωu − trace

(
Ŝ(k)
u Ωu

)
+ ρu‖Ωu‖1,off

}
,

10
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where

Γ̂
(k)
X = Ω̂(k−1)

u ⊗ X ′XT , γ̂
(k)
X = 1

T

(
Ω̂(k−1)
u ⊗X

)
, Ŝ(k)

u = 1
T

[
X T −X (Â(k))′

]′[X T −X (Â(k))′
]
.

As a consequence, to establish the finite-sample bounds of Â and Ω̂u given in (9), we need

Γ̂
(k)
X to satisfy the RSC condition, a bound on ‖X ′UΩ̂

(k−1)
u ‖∞ and a bound on ‖Ŝ(k)

u −Σ?
u‖∞

for all k. Toward this end, we prove that for random realizations of X and U , with high

probability, the RSC condition for Γ̂
(k)
X and the universal bounds for ‖X ′UΩ̂

(k−1)
u ‖∞ and

‖Ŝ(k)
u −Σ?

u‖∞ hold for all iterations k, albeit the quantities of interest rely on estimates from
the previous or current iterations. Consistency results of Â and Ω̂u then readily follow.

Next, consider the solution to (10) that alternately updates (B,C) and Ωv. As the regu-
larization term involves both the nuclear norm penalty and the `1 norm penalty, additional
handling of the norms is required which leverages the idea of decomposable regularizers
(Agarwal et al., 2012). Specifically, if Ωv and (B,C) are respectively held fixed, then

(B̄, C̄) := arg min
B,C

{
1
T tr
[
Ωv(ZT −XB′ −ZC ′)′(ZT −XB′ −ZC ′)

]
+ λB|||B|||∗ + λC ||C||1

}
,

Ω̄v := arg min
Ωv

{
log det Ωv − trace

(
SvΩv

)
+ ρv‖Ωv‖1,off

}
,

where Sv = 1
T (ZT − XB′ − ZC ′)′(ZT − XB′ − ZC ′). If we let W := [X ,Z] ∈ RT×(p1+p2),

and define the operator WΩv : Rp2×(p1+p2) 7→ RT×p2 induced jointly by W and Ωv as

WΩv(∆) :=W∆′Ω1/2
v for ∆ ∈ Rp2×(p1+p2), (15)

then B̄aug := [B̄, Op2×p2 ] and C̄aug := [Op2×p1 , C̄] are equivalently given by

(B̄aug, C̄aug) = arg min
B,C

{
1
T

∣∣∣∣∣∣∣∣∣ZTΩ1/2
v −WΩv

(Baug + Caug)
∣∣∣∣∣∣∣∣∣2
F

+ λB |||B|||∗ + λC ||C||1
}
, (16)

where Baug := [B,Op2×p2 ], Caug := [Op2×p1 , C] ∈ Rp2×(p1+p2). Then, for fixed realizations of
Z, X and V, with an extension of Agarwal et al. (2012) the error bound of (B̄aug, C̄aug) relies
on (1) the operator WΩv satisfying the RSC condition; and (2) tuning parameters λB and
λC are respectively chosen in accordance with the deviation bound conditions associated
with

|||W ′VΩv/T |||op and |||W ′VΩv/T |||∞. (17)

The error bound of Ω̄v again relies on ‖Sv − Σ?
v‖∞. In an analogous way, for the actual

alternate update,

(B̂(k)
aug, Ĉ

(k)
aug) = arg min

B,C

{
1
T

∣∣∣∣∣∣∣∣∣ZT [Ω̂(k−1)
v

]1/2 −W
Ω̂

(k−1)
v

(Baug + Caug)
∣∣∣∣∣∣∣∣∣2
F

+ λB|||B|||∗ + λC ||C||1
}
,

Ω̂(k)
v := arg min

Ωv

{
log det Ωv − trace

(
Ŝ(k)
v Ωv

)
+ ρv‖Ωv‖1,off

}
,

and the error bound of (B̂, Ĉ, Ω̂v) defined in (10) depends on the properties of W
Ω̂

(k)
v

,

|||W ′VΩ
(k)
v /T |||op and |||W ′VΩ

(k)
v /T |||∞ for all k. Specifically, when Ωv and (B,C) (in (15)

and (17), resp.) are substituted by estimated quantities, we prove that the RSC condition
and bounds hold with high probability for random realizations of Z, X and V, for all
iterations k, which then establishes the consistency properties of (B̂, Ĉ) and Ω̂v.

11
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3.2 Consistency results for the Maximum Likelihood estimators.

Theorems 5 and 6 below give the error bounds for the estimators in (9) and (10) obtained
through Algorithms 1 and 2, using random realizations coming from the stable VAR system
defined in (1). As previously mentioned, to establish error bounds for both the transition
matrices and the inverse covariance matrix obtained from alternating updates, we need to
take into account that the quantities associated with the RSC condition and the deviation
bound condition are based on estimated quantities obtained from the previous iteration. On
the other hand, the sources of randomness contained in the observed data are fixed, hence
errors from observed data stop accumulating once all sources of randomness are considered
after a few iterations, which govern both the leading term of the error bounds and the
probability for the bounds to hold.

Specifically, using the same notation as defined in Section 3.1, we obtain the error
bounds of the estimated transition matrices and inverse covariance matrices iteratively,
building upon that for all iterations k:

(1) Γ̂
(k)
X or the operator W

Ω̂
(k)
v

satisfies the RSC condition;

(2) deviation bounds hold for ‖X ′UΩ̂
(k)
u /T‖∞, ‖W ′VΩ̂

(k)
v /T‖∞, and |||W ′VΩ̂

(k)
v /T |||op;

(3) a good concentration given by ‖Ŝ(k)
u − Σ?

u‖∞ and ‖Ŝ(k)
v − Σ?

v‖∞.

We keep track of how the bounds change in each iteration until convergence, by properly
controlling the norms and track the rate of the error bound that depends on p1, p2 and T ,
and reach the conclusion that the error bounds hold uniformly for all iterations, for the
estimates of both the transition matrices A,B and C and the inverse covariance matrices
Ωu and Ωv.

Theorem 5 Consider the stable Gaussian VAR process defined in (1) in which A? is as-
sumed to be s?A-sparse. Further, assume the following:

C.1 The incoherence condition holds for Ω?
u.

C.2 Ω?
u is diagonally dominant.

C.3 The maximum node degree of Ω?
u satisfies dmax

Ω?
u

= o(p1).

Then, for random realizations of {Xt} and {Ut}, and the sequence {Â(k), Ω̂
(k)
u }k returned by

Algorithm 1 outlined in Section 2.1, there exist constants c1, c2, c̃1, c̃2 > 0, τ > 0 such that
for sample size T % max{(dmax

Ω?
u

)2, s?A} log p1, with probability at least

1− c1 exp(−c2T )− c̃1 exp(−c̃2 log p1)− exp(−τ log p1),

the following hold for all k ≥ 1 for some C0, C
′
0 > 0 that are functions of the upper and

lower extremes M(fX),m(fX) of the spectrum fX(θ) and do not depend on p1, T or k:

(i) Γ̂
(k)
X satisfies the RSC condition;

(ii) ‖X ′UΩ̂
(k)
u /T‖∞ ≤ C0

√
log p1

T ;

12



Estimating and Testing for High-dimensional VAR

(iii) ‖Ŝ(k)
u − Σ?

u‖∞ ≤ C ′0
√

log p1

T .

As a consequence, the following bounds hold uniformly for all iterations k ≥ 1:∣∣∣∣∣∣∣∣∣Â(k) −A?
∣∣∣∣∣∣∣∣∣
F

= O
(√

s?A log p1

T

)
,

∣∣∣∣∣∣∣∣∣Ω̂(k)
u − Ω?

u

∣∣∣∣∣∣∣∣∣
F

= O
(√

(s?Ωu
+p1) log p1

T

)
.

It should be noted that the above result establishes the consistency for the ML estimates
of the model presented in Basu and Michailidis (2015).

Theorem 6 Consider the stable Gaussian VAR system defined in (1) in which B? is as-
sumed to be low rank with rank r?B and C? is assumed to be s?C-sparse. Further, assume the
following

C.1 The incoherence condition holds for Ω?
v.

C.2 Ω?
v is diagonally dominant.

C.3 The maximum node degree of Ω?
v satisfies dmax

Ω?
v

= o(p2).

Then, for random realizations of {Xt}, {Zt} and {Vt}, and the sequence {(B̂(k), Ĉ(k)), Ω̂
(k)
v }k

returned by Algorithm 2 outlined in Section 2.1, there exist constants {ci, c̃i}, i = (0, 1, 2)
and τ > 0 such that for sample size T % (dmax

Ω?
v

)2(p1 + 2p2), with probability at least

1−c0 exp{−c̃0(p1+p2)}−c1 exp{−c̃1(p1+2p2)}−c2 exp{−c̃2 log[p2(p1+p2)]}−exp{−τ log p2},

the following hold for all k ≥ 1 for C0, C
′
0, C

′′
0 > 0 that are functions of the upper and lower

extremes M(fW ),m(fW ) of the spectrum fW (θ) and of the upper extreme M(fW,V ) of the
cross-spectrum fW,V (θ) and do not depend on p1, p2 or T :

(i) Γ̂
(k)
W satisfies the RSC condition;

(ii) ‖W ′VΩ̂
(k)
v /T‖∞ ≤ C0

√
(p1+p2)+p2

T and |||W ′VΩ̂
(k)
v /T |||op ≤ C ′0

√
(p1+p2)+p2

T ;

(iii) ‖Ŝ(k)
v − Σ?

v‖∞ ≤ C ′′0
√

(p1+p2)+p2

T .

As a consequence, the following bounds hold uniformly for all iterations k ≥ 1:∣∣∣∣∣∣∣∣∣B̂(k) −B?
∣∣∣∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣∣∣∣Ĉ(k) − C?

∣∣∣∣∣∣∣∣∣2
F

= O
(

max{r?B ,s
?
C}(p1+2p2)
T

)
,
∣∣∣∣∣∣∣∣∣Ω̂(k)

v − Ω?
v

∣∣∣∣∣∣∣∣∣
F

= O
(√

(s?Ωv
+p2)(p1+2p2)

T

)
.

Remark 7 It is worth pointing out that the initializers Â(0) and (B̂(0), Ĉ(0)) are slightly
different from those obtained in successive iterations, as they come from the penalized least
square formulation where the inverse covariance matrices are temporarily assumed diagonal.
Consistency results for these initializers under deterministic realizations are established in
Theorems 14 and 15 (see Appendix A), and the corresponding conditions are later verified
for random realizations in Lemmas 16 to 19 (see Appendix B). These theorems and lemmas
serve as the stepping stone toward the proofs of Theorems 5 and 6.

Further, the constants C0, C
′
0, C

′′
0 reflect both the temporal dependence among Xt and Zt

blocks, as well as the cross-sectional dependence within and across the two blocks.
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3.3 The effect of temporal and cross-dependence on the established bounds.

We conclude this section with a discussion on the error bounds of the estimators that
provides additional insight into the impact of temporal and cross dependence within and
between the blocks; specifically, how the exact bounds depend on the underlying processes
through their spectra when explicitly taking into consideration the triangular structure of
the joint transition matrix.

First, we introduce additional notations needed in subsequent technical developments.
The definition of the spectral densities and the cross-spectrum are the same as previously
defined in Section 2 and their upper and lower extremes are defined in Section 3.1. For
{Xt} defined in (1), let A(θ) = Ip1 −Aθ denote the characteristic matrix-valued polynomial
of {Xt} and A∗(θ) denote its conjugate. We further define its upper and lower extremes by:

µmax(A) = max
|θ|=1

Λmax (A∗(θ)A(θ)) , µmin(A) = min
|θ|=1

Λmin (A∗(θ)A(θ)) .

The same set of quantities for the joint process {Wt = (X ′t, Z
′
t)
′} are analogously defined,

that is,

G(θ) = Ip1+p2 −Gθ, µmax(G) = max
|θ|=1

Λmax (G∗(θ)G(θ)) , µmin(G) = min
|θ|=1

Λmin (G∗(θ)G(θ)) .

Using the result in Theorem 6 as an example, we show how the error bound depends on the
underlying processes {(X ′t, Z ′t)′}. Specifically, we note that the bounds for (B̂(k), Ĉ(k)) can
be equivalently written as

|||B̂(k) −B?|||
2

F + |||Ĉ(k) − C?|||
2

F ≤ C̄
(

max{r?B ,s
?
C}(p1+2p2)
T

)
,

which holds for all k and some constant C̄ that does not depend on p1, p2 or T . Specifically,
by Theorem 15, Lemmas 18 and 19,

C0 ∝
[
M(fW ) + 1

2πΛmax(Σv) +M(fW,V )
]
/m(fW ).

This indicates that the exact error bound depends on m(fW ),M(fW ) andM(fW,V ). Next,
we provide bounds on these quantities. The joint process Wt as we have noted in (2), is
a VAR(1) process with characteristic polynomial G(θ) and spectral density fW (θ). The
bounds for m(fW ) and M(fW ) are given by Basu and Michailidis (2015, Proposition 2.1),
that is,

m(fW ) ≥ min{Λmin(Σu),Λmin(Σv)}
(2π)µmax(G)

and M(fW ) ≤ max{Λmax(Σu),Λmax(Σv)}
(2π)µmin(G)

. (18)

Consider the bound for M(fW,V ). First, we note that {Vt} is a sub-process of the joint
error process {εt}, where εt = (U ′t , V

′
t )′. Then, by Lemma 24,

M(fW,V ) ≤M(fW,ε) ≤M(fW )µmax(G),

where the second inequality follows from Basu and Michailidis (2015, Proof of Proposition
2.4).
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What are left to be bounded are µmin(G) and µmax(G). By Proposition 2.2 in Basu and
Michailidis (2015), these two quantities are bounded by:

µmax(G) ≤
[
1 +
|||G|||∞ + |||G|||1

2

]2
(19)

and

µmin(G) ≥ (1− ρ(G))2 · |||P |||−2
op ·

∣∣∣∣∣∣P−1
∣∣∣∣∣∣−2

op
,

where G = PΛGP
−1 with ΛG being a diagonal matrix consisting of the eigenvalues of G.

Since |||P−1|||op ≥ |||P |||
−1
op , it follows that

|||P |||−2
op ·

∣∣∣∣∣∣P−1
∣∣∣∣∣∣−2

op
≥
∣∣∣∣∣∣P−1

∣∣∣∣∣∣2
op
·
∣∣∣∣∣∣P−1

∣∣∣∣∣∣−2

op
= 1,

and therefore

µmin(G) ≥ (1−max{ρ(A), ρ(C)})2 . (20)

Remark 8 The impact of the system’s lower-triangular structure on the established bounds.
Consider the bounds in (19) and (20). An upper bound of µmax(G) depends on |||G|||∞ and
|||G|||1, whereas a lower bound of µmin(G) involves only the spectral radius of G. Combined
with (18), this suggests that the lower extreme of the spectral density is associated with the
average of the maximum weighted in-degree and out-degree of the system, whereas the upper
extreme is associated with the stability condition: the less the system is intra- and inter-
connected, the tighter the bound for the lower extreme will be; similarly, the more stable
(exhibits smaller temporal dependence) the system is, the tighter the bound for the upper
extreme will be. Finally, we note that an upper bound for (|||G|||∞ + |||G|||1) is given by

max{|||A|||∞ + |||B|||∞, |||C|||∞}+ max{|||A|||1, |||B|||1 + |||C|||1}.

The presence of |||B|||∞ and |||B|||1 depicts the role of the inter-connectedness between {Xt}
and {Zt} on the lower extreme of the spectrum, which is associated with the overall curvature
of the joint process.

The impact of the system’s lower-triangular structure on the system capacity. With G
being a lower-triangular matrix, we only require ρ(A) < 1 and ρ(C) < 1 to ensure the
stability of the system. This enables the system to have “larger capacity” (can accommodate
more cross-dependence within each block), since the two sparse components A and C can
exhibit larger average weighted in- and out-degrees compared with a system where G does
not possess such triangular structure. In the case where G is a complete matrix, one deals
with a (p1 + p2)-dimensional VAR system and ρ(G) < 1 is required to ensure its stability.
As a consequence, the average weighted in- and out-degree requirements for each time series
become more restrictive.

4. Testing Group Granger-Causality.

In this section, we develop a procedure for testing the hypothesis H0 : B = 0. Note that
without the presence of B, the blocks Xt and Zt in the model become decoupled and can be
treated as two separate VAR models, whereas with a nonzero B, the group of variables in
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Zt is collectively “Granger-caused” by those in Xt. Moreover, since we are testing whether
or not the entire block of B is zero, we do not need to rely on the exact distribution of its
individual entries, but rather on the properly measured correlation between the responses
and the covariates. To facilitate presentation of the testing procedure, we illustrate the
proposed framework via a simpler model setting with Yt = ΠXt + εt and testing whether
Π = 0; subsequently, we translate the results to the actual setting of interest, namely,
whether or not B = 0 in the model Zt = BXt−1 + CZt−1 + Vt.

The testing procedure focuses on the following sequence of tests for the rank of B:

H0 : rank(B) ≤ r, for an arbitrary r < min(p1, p2). (21)

Note that the hypothesis of interest, B = 0 corresponds to the special case with r = 0. To
test for it, we develop a procedure associated with canonical correlations, which leverages
ideas present in the literature (see Anderson, 2002).

As mentioned above, we consider a simpler setting similar to that in Anderson (2002),
given by

Yt = ΠXt + εt,

where Yt ∈ Rp2 , X ∈ Rp1 and εt is independent of Xt. At the population level, let

EYtY ′t = ΣY , EXtX
′
t = ΣX , EYtX ′t = ΣY X = Σ′XY .

The population canonical correlations between Yt and Xt are the roots of∣∣∣∣−ρΣY ΣY X

ΣXY −ρΣX

∣∣∣∣ = 0,

i.e., the nonnegative solutions to

|ΣY XΣ−1
X ΣXY − ρ2ΣY | = 0, (22)

with ρ being the unknown. By the results in Anderson (2002), the number of positive
solutions to (22) is equal to the rank of Π, and indicates the “degree of dependency”
between processes Yt and Xt. This suggests that if rank(Π) ≤ r < p, we would expect∑p

k=r+1 λk to be small, where the λ’s solve the eigen-equation

|SY XS−1
X SXY − λSY | = 0, with λ1 ≥ λ2 ≥ · · · ≥ λp,

and SX , SXY and SY are the sample counterparts corresponding to ΣX ,ΣXY and ΣY ,
respectively.

With this background, we switch to our model setting given by

Zt = BXt−1 + CZt−1 + Vt, (23)

where Vt is assumed to be independent ofXt−1 and Zt−1, B encodes the canonical correlation
between Zt and Xt−1, conditional on Zt−1. We use the same notation as in Section 3; that
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is, let ΓX(h) = EXtX
′
t+h, ΓZ(h) = EZtZ ′t+h, and ΓX,Z(h) = EXtZ

′
t+h, with (h) omitted

whenever h = 0. At the population level, under the Gaussian assumption, Zt
Xt−1

Zt−1

 ∼ N
0

0
0

 ,
 ΓZ Γ′X,Z(1) ΓZ(1)

ΓX,Z(1) ΓX ΓX,Z
Γ′Z(1) Γ′X,Z ΓZ

 ,

which suggests that conditionally,

Zt
∣∣Zt−1 ∼ N

(
ΓZ(1)Γ−1

Z Zt−1,Σ00

)
and Xt−1

∣∣Zt−1 ∼ N
(
ΓX,ZΓ−1

Z Zt−1,Σ11

)
,

where

Σ00 := ΓZ − ΓZ(1)Γ−1
Z Γ′Z(1) and Σ11 := ΓX − ΓX,ZΓ−1

Z Γ′X,Z . (24)

Then, we have that jointly[
Zt
Xt−1

] ∣∣∣Zt−1 ∼ N
([

ΓZ(1)
ΓX,Z

]
Γ−1
Z Zt−1 ,

[
ΓZ Γ′XZ(1)

ΓXZ(1) ΓZ

]
−
[
ΓZ(1)
ΓXZ

]
Γ−1
Z

[
Γ′Z(1) ΓZX

])
,

so the partial covariance matrix between Zt and Xt−1 conditional on Zt−1 is given by

Σ10 = Σ′01 := ΓX,Z(1)− ΓZ(1)Γ−1
Z ΓX,Z . (25)

The population canonical correlations between Zt and Xt−1 conditional on Zt−1 are the
non-negative roots of ∣∣Σ01Σ−1

11 Σ10 − ρ2Σ00

∣∣ = 0,

and the number of positive solutions corresponds to the rank of B; see Anderson (1951) for
a discussion in which the author is interested in estimating and testing linear restrictions
on regression coefficients. Therefore, to test rank(B) ≤ r, it is appropriate to examine the

behavior of Ψr :=
∑min(p1,p2)

k=r+1 φk, where φ’s are ordered non-increasing solutions to

|S01S
−1
11 S10 − φS00| = 0, (26)

and S01, S11 and S00 are the empirical surrogates for the population quantities Σ01,Σ11 and
Σ00. For subsequent developments, we make the very mild assumption that p1 < T and
p2 < T so that Z ′Z is invertible.

Proposition 9 gives the tail behavior of the eigenvalues and Corollary 11 gives the testing
procedure for block “Granger-causality” as a direct consequence.

Proposition 9 Consider the model setup given in (23), where B ∈ Rp2×p1. Further, as-
sume all positive eigenvalues µ of the following eigen-equation are of algebraic multiplicity
one: ∣∣Σ01Σ−1

11 Σ10 − µΣ00

∣∣ = 0, (27)

where Σ00,Σ11 and Σ01 are given in (24) and (25). The test statistic for testing

H0 : rank(B) ≤ r, for an arbitrary r < min(p1, p2),
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is given by

Ψr :=

min(p1,p2)∑
k=r+1

φk,

where φk’s are ordered decreasing solutions to the eigen-equation |S01S
−1
11 S10 − φS00| = 0

where

S11 = 1
T X
′(I − Pz)X , S00 = 1

T

(
ZT
)′

(I − Pz)
(
ZT
)
, S10 = S′01 = 1

T X
′(I − Pz)

(
ZT
)
,

and Pz = Z(Z ′Z)−1Z ′. Moreover, the limiting behavior of Ψr is given by

TΨr ∼ χ2
(p1−r)(p2−r).

Remark 10 We provide a short comment on the assumption that the positive solutions to
(27) have algebraic multiplicity one in Proposition 9. This assumption is imposed on the
eigen-equation associated with population quantities, to exclude the case where a positive root
has algebraic multiplicity greater than one and its geometric multiplicity does not match
the algebraic one, and hence we would fail to obtain r mutually independent canonical
variates and the rank-r structure becomes degenerate. With the imposed assumption which
is common in the canonical correlation analysis literature (e.g. Anderson, 2002), such a
scenario is automatically excluded. Specifically, this condition is not stringent, as for φ’s
that are solutions to the eigen-equation associated with sample quantities, the distinctiveness
amongst roots is satisfied with probability 1 (see Hsu, 1941b, Proof of Lemma 3).

Corollary 11 (Testing group Granger-causality) Under the model setup in (23), the
test statistic for testing B = 0 is given by

Ψ0 :=

min(p1,p2)∑
k=1

φk,

with φk being the ordered decreasing solutions of∣∣∣S01

[
diag(S11)

]−1
S10 − φS00

∣∣∣ = 0.

Asymptotically, TΨ0 ∼ χ2
p1p2

. To conduct a level α test, we reject the null hypothesis
H0 : B = 0 if

Ψ0 >
1

T
χ2
p1p2

(α),

where χ2
d(α) is the upper α quantile of the χ2 distribution with d degrees of freedom.

Remark 12 Corollary 11 is a special case of Proposition 9 with the null hypothesis being
H0 : r = 0, which corresponds to the Granger-causality test. Under this particular setting,
we are able to take the inverse with respect to diag(S11), yet maintain the same asymptotic
distribution due to the fact that S01 = S10 = 0 under the null hypothesis B = 0. This
enables us to perform the test even with p1 > T .
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The above testing procedure takes advantage of the fact that when B = 0, the canonical
correlations among the partial regression residuals after removing the effect of Zt−1 are
very close to zero. However, the test may not be as powerful under a sparse alternative,
i.e., HA : B is sparse. In Supplementary Material ??, we present a testing procedure that
specifically takes into consideration the fact that the alternative hypothesis is sparse, and
the corresponding performance evaluation is shown in Section 5.2 under this setting.

5. Performance Evaluation.

Next, we present the results of numerical studies to evaluate the performance of the devel-
oped ML estimates (Section 2.1) of the model parameters, as well as that of the testing
procedure (Section 4).

5.1 Simulation results for the estimation procedure.

A number of factors may potentially influence the performance of the estimation procedure;
in particular, the model dimension p1 and p2, the sample size T , the rank of B? and the
sparsity level of A? and C?, as well as the spectral radius of A? and C?. Hence, we consider
several settings where these parameters vary.

For all settings, the data {xt}T1 and {zt}T1 are generated according to the model

xt = A?xt−1 + ut,

zt = B?xt−1 + C?zt−1 + vt.

For the sparse components, each entry in A? and C? is nonzero with probability 2/p1 and
1/p2 respectively, and the nonzero entries are generated from Unif ([−2.5,−1.5] ∪ [1.5, 2.5]),
then scaled down so that the spectral radii ρ(A) and ρ(C) satisfy the stability condition.
For the low rank component, each entry in B? is generated from Unif(−10, 10), followed
by singular value thresholding, so that rank(B?) conforms with the model setup. For the
contemporaneous dependence encoded by Ω?

u and Ω?
v, both matrices are generated according

to an Erdös-Rényi random graph, with sparsity being 0.05 and condition number being 3.

Table 1 depicts the values of model parameters under different model settings. Specif-
ically, we consider three major settings in which the size of the system, the rank of the
cross-dependence component, and the stability of the system vary. The sample size is fixed
at T = 200 unless otherwise specified. Additional settings examined (not reported due to
space considerations) are consistent with the main conclusions presented next.

We use sensitivity (SEN), specificity (SPC) and relative error in Frobenius norm (Error)
as criteria to evaluate the performance of the estimates of transition matrices A, B and C.
Tuning parameters are chosen based on BIC. Since the exact contemporaneous dependence
is not of primary concern, we omit the numerical results for Ω̂u and Ω̂v.

SEN =
TP

TP + FN
, SPE =

TN

FP + TN
, Error =

|||Est.− Truth|||F
|||Truth|||F

.

Table 2 illustrates the performance for each of the parameters under different simulation
settings considered. The results are based on an average of 100 replications and their
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Table 1: Model parameters under different model settings

model parameters
p1 p2 rank(B∗) ρA ρC

model dimension

A.1 50 20 5 0.5 0.5
A.2 100 50 5 0.5 0.5
A.3 200 50 5 0.5 0.5
A.4 50 100 5 0.5 0.5

rank
B.1 100 50 10 0.5 0.5
B.2 100 50 20 0.5 0.5

spectral radius
C.1 50 20 5 0.8 0.5
C.2 50 20 5 0.5 0.8
C.3 50 20 5 0.8 0.8

Table 2: Performance evaluation of Â, B̂ and Ĉ under different model settings.

performance of Â performance of B̂ performance of Ĉ

SEN SPC Error rank(B̂) Error SEN SPC Error

A.1 0.98(0.014) 0.99(0.004) 0.34(0.032) 5.2(0.42) 0.11(0.008) 1.00(0.000) 0.97(0.008) 0.15(0.074)

A.2 0.97(0.014) 0.99(0.001) 0.38(0.015) 5.2(0.42) 0.31(0.011) 0.97(0.008) 0.97(0.004) 0.28(0.033)

A.3 0.99(0.005) 0.96(0.002) 0.87(0.011) 5.8(0.92) 0.54(0.022) 0.98(0.000) 0.92(0.009) 0.28(0.028)

A.4 0.96(0.0261) 0.99(0.002) 0.36(0.034) 5.2(0.42) 0.32(0.012) 0.95(0.009) 0.98(0.001) 0.37(0.010)

B.1 0.97(0.008) 0.99(0.001) 0.37(0.017) 11.4(1.17) 0.15(0.008) 1.00(0.000) 0.99(0.001) 0.09(0.021)

B.2 0.98(0.008) 0.99(0.001) 0.38(0.016) 21.2(0.91) 0.12(0.006) 1.00(0.000) 0.99(0.001) 0.08(0.018)

C.1 1.00(0.000) 0.97(0.005) 0.25(0.015) 5.6(0.52) 0.23(0.006) 1.00(0.000) 0.92(0.021) 0.11(0.072)

C.2 0.99(0.007) 0.95(0.004) 0.45(0.022) 5.0(0.00) 0.31(0.014) 1.00(0.000) 0.92(0.019) 0.04(0.011)

C.3 1.00(0.000) 0.96(0.004) 0.18(0.013) 6.7(1.16) 0.19(0.011) 1.00(0.000) 0.87(0.029) 0.14(0.067)

C.3’ 1.00(0.000) 0.99(0.002) 0.13(0.016) 5.2(0.42) 0.23(0.005) 1.00(0.000) 0.90(0.021) 0.06(0.023)

standard deviations are given in parentheses. Overall, the results are highly satisfactory
and all the parameters are estimated with a high degree of accuracy. Further, all estimates
were obtained in less than 20 iterations, thus indicating that the estimation procedure is
numerically stable. As expected, when the the spectral radii of A and C increase thus
leading to less stable {Xt} and {Zt} processes, a larger sample size is required for the
estimation procedure to match the performance of the setting with same parameters but
smaller ρ(A) and ρ(C). This is illustrated in row C.3’ of Table 2, where the sample size
is increased to T = 500, which outperforms the results in row C.3 in which T = 200 and
broadly matches that of row A.1.

Since in some application settings the data may deviate from the posited Gaussian as-
sumption, we further investigate the robustness of the algorithm in the presence of heavier
than Gaussian distributions in the Supplementary Material ??. Further, a brief comparison
of the ML estimates with their two-step (non-iterative) counterparts is given in the Supple-
mentary Material ?? , that illustrates the numerical benefits of the proposed procedure.

Lastly, we examine the performance with respect to one-step-ahead forecasting. Re-
call that VAR models are widely used for forecasting purposes in many application areas
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(Lütkepohl, 2005). The performance metric is given by the relative error as measured by
the `2 norm of the out-of-sample points xT+1 and zT+1, where the predicted values are given
by x̂T+1 = ÂxT and ẑT+1 = B̂xT + ĈzT , respectively. It is worth noting that both {Xt}
and {Zt} are mean-zero processes. However, since the transition matrix of {Xt} is subject
to the spectral radius constraints to ensure the stability of the corresponding process, the
magnitude of the realized value {xt} is small; whereas for {Zt}, since no constraints are
imposed on the B coefficient matrix that encodes the inter-dependence, zt’s has the capac-
ity of having relative large values in magnitude. Consequently, the relative error of x̂T+1

is significantly larger than that of ẑT+1, partially due to the small total magnitude of the
denominator.

The results show that an increase in the spectral radius (keeping the other structural
parameters fixed) leads to a decrease of the relative error, since future observations become
more strongly correlated over time. On the other hand, an increase in dimension leads to
a deterioration in forecasting, since the available sample size impacts the quality of the
parameter estimates. Finally, an increase in the rank of the B matrix is beneficial for
forecasting, since it plays a stronger role in the system’s temporal evolution.

Table 3: One-step-ahead relative forecasting error.
‖x̂T+1−xT+1‖2
‖xT+1‖2

‖ẑT+1−zT+1‖2
‖zT+1‖2

baseline A.1 0.89(0.066) 0.23(0.075)

spectral radius
C.1 0.62(0.100) 0.10(0.035)

C.2 0.93(0.062) 0.17(0.059)

C.3 0.68(0.096) 0.10(0.045)

rank
B.1 0.92(0.044) 0.14(0.038)

B.2 0.94(0.042) 0.14(0.025)

dimension
A.2 0.87(0.051) 0.24(0.073)

A.3 0.96(0.040) 0.44(0.139)

A.4 0.89(0.059) 0.274(0.068)

5.2 Simulation results for the block Granger-causality test.

Next, we illustrate the empirical performance of the testing procedure introduced in Sec-
tion 4, together with the one specifically tailored to a sparse alternative (described in detail
in the Supplementary Material ??) with the null hypothesis being B? = 0 and the alternative
being B? 6= 0, either low rank or sparse. Specifically, when the alternative hypothesis is true
and has a low-rank structure, we use the general testing procedure proposed in Section 4,
whereas when the alternative is true and sparse, we use the testing procedure presented
in Supplementary Material ??. We focus on evaluating the type I error (empirical false
rejection rate) when B? = 0, as well as the power of the test when B? has nonzero entries.

For both testing procedures, the transition matrix A? is generated with each entry being
nonzero with probability 2/p1, and the nonzeros are generated from Unif ([−2.5,−1.5] ∪ [1.5, 2.5]),
then further scaled down so that ρ(A?) = 0.5. For transition matrix C?, each entry is
nonzero with probability 1/p2, and the nonzeros are generated from Unif ([−2.5,−1.5] ∪ [1.5, 2.5]),
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then further scaled down so that ρ(C?) = 0.5 or 0.8, depending on the simulation setting.
Finally, we only consider the case where vt and ut have diagonal covariance matrices.

We use sub-sampling as in Politis et al. (1999) with the number of subsamples set to
3,000; an alternative would have been a block bootstrap procedure (e.g., Hall, 1985). Note
that the length of the subsamples varies across simulation settings in order to gain insight
on how sample size impacts the type I error or the power of the test.

Low-rank testing. To evaluate the type I error control and the power of the test, we pri-
marily consider the case where rank(B?) = 0, with the data alternatively generated based
on rank(B?) = 1. We test the hypothesis H0 : rank(B) = 0 and tabulate the empirical pro-
portion of falsely rejecting H0 when rank(B∗) = 0 (type I error) and the probability that we
reject H0 when rank(B∗) = 1 (power). In addition, we also show how the testing procedure
performs when the underlying B? has rank r ≥ 0. In particular, when rank(B?) = r?, the
type I error of the test corresponds to the empirical proportion of rejections of the null
hypothesis H0 : r ≤ r?, while the power of the test to the empirical proportion of rejections
of the null hypothesis set to H0 : r ≤ (r? − 1). The latter resembles the sequential test
in Johansen (1988).

Empirically, we expect that when B? = 0, the value of the proposed test statistic mostly
falls below the cut-off value (upper α quantile), while when rank(B?) = 1, the value of the
proposed test statistic mostly falls beyond the critical value χ2(α)p1p2/T with T being the
sample size, hence leading to a detection. Table 4 gives the type I error of the test when
setting α = 0.1, 0.05, 0.1, and the power of the test using the upper 0.01 quantile of the
reference distribution as the cut-off, for different combinations of model dimensions (p1, p2)
and sample size.

Based on the results shown in Table 4, it can be concluded that the proposed low-
rank testing procedure accurately detects the presence of “Granger causality” across the
two blocks, when the data have been generated based on a truly multi-layer VAR system.
Further, when B? = 0, the type I error is close to the nominal α level for sufficiently large
sample sizes, but deteriorates for increased model dimensions. In particular, relatively large
values of p2 and larger spectral radius ρ(C?) negatively impact the empirical false rejection
proportion, which deviates from the desired control level of the type I error. In the case
where rank(B?) = r > 0, the testing procedure provides satisfactory type I error control for
larger sample sizes and excellent power.

Sparse testing. Since the rejection rule of the HC-statistic is based on empirical process
theory (Shorack and Wellner, 2009) and its dependence on α is not explicit, we focus on
illustrating how the empirical proportion of false rejections (type I error) varies with the
sample size T , the model dimensions (p1, p2) and the spectral radius of C?. To show
the power of the test, each entry in B? is nonzero with probability q ∈ (0, 1) such that
q(p1p2) = (p1p2)θ with θ = 0.6, to ensure the overall sparsity of B? satisfies the sparsity
requirement posited in Proposition ??. The magnitude is set such that the signal-to-noise
ratio is 1.2. Note that the actual number of parameters is p1p2, while the total number
of subsamples used is 3000 with the length of subsamples varying according to different
simulation settings to demonstrate the dependence of type I error and power on sample
sizes.
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Table 4: Empirical type I error and power for low-rank testing

type I error (B? = 0) power (rank(B?) = 1)
(p1, p2) sample size α = 0.01 α = 0.05 α = 0.1 cut-off χ2(0.01)p1p2/T

ρ(C?) = 0.5

(20, 20)
T = 500 0.028 0.123 0.227 1
T = 1000 0.015 0.073 0.137 1
T = 2000 0.011 0.059 0.118 1

(50, 20)
T = 500 0.070 0.228 0.355 1
T = 1000 0.026 0.125 0.226 1
T = 2000 0.013 0.094 0.163 1

(20, 50)
T = 500 0.484 0.751 0.857 1
T = 1000 0.089 0.246 0.375 1
T = 2000 0.020 0.088 0.164 1

(100, 50)
T = 500 0.997 0.999 1 1
T = 1000 0.608 0.828 0.908 1
T = 2000 0.166 0.374 0.511 1

ρ(C?) = 0.8

(20, 50)
T = 500 0.533 0.789 0.880 1
T = 1000 0.130 0.306 0.452 1
T = 2000 0.045 0.145 0.252 1

(50, 20)
T = 500 0.083 0.250 0.382 1
T = 1000 0.039 0.133 0.234 1
T = 2000 0.019 0.096 0.174 1

type I error (H0 : r ≤ 5) power (H0 : r ≤ 4)
α = 0.01 α = 0.05 α = 0.1 cut-off χ2(0.01)(p1−4)(p2−4)/T

ρ(C?) = 0.5

rank(B?) = 5

(20, 50)
T = 500 0.092 0.274 0.400 1
T = 1000 0.034 0.140 0.236 1
T = 2000 0.022 0.096 0.178 1

(50, 20)
T = 500 0.454 0.722 0.829 1
T = 1000 0.126 0.313 0.452 1
T = 2000 0.062 0.184 0.284 1

Table 5: Empirical type I error and power for sparse testing

type I error (B? = 0) power (SNR(B?) = 0.8)
(p1, p2) 200 500 1000 2000 200 500 1000 2000

ρ(C?) = 0.5

(20, 20) 0.244 0.097 0.074 0.055 1 1 1 1
(50, 20) 0.393 0.131 0.108 0.074 1 1 1 1
(20, 50) 0.996 0.351 0.153 0.093 1 1 1 1
(100, 50) 1.000 0.963 0.270 0.115 1 1 1 1

ρ(C?) = 0.8
(50, 20) 0.402 0.158 0.112 0.075 0.829 0.996 1 1
(20, 50) 0.999 0.430 0.166 0.111 1 1 1 1

Based on the results shown in Table 5, when B? = 0, the proposed testing procedure can
effectively detect the absence of block “Granger causality”, provided that the sample size
is moderately large compared to the total number of parameters being tested. However, if
the model dimension is large, whereas the sample size is small, the test procedure becomes
problematic and fails to provide legitimate type I error control as desired. When B? is
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nonzero, empirically the test is always able detect its presence, as long as the effective
signal-to-noise ratio is beyond the detection threshold.

6. Real Data Analysis Illustration.

We employ the developed framework and associated testing procedures to address one of
the motivating applications. Specifically, we analyze the temporal dynamics of the log-
returns of stocks with large market capitalization and key macroeconomic variables, as well
as their cross-dependence. Specifically, using the notation in (1), we assume that the Xt

block consists of the stock log-returns, while the macroeconomic variables form the Zt block.
With this specification, we assume that the macroeconomic variables are “Granger-caused”
by the stock market, but not vice versa. Note that our framework allows us to pose and
test a more general question than previous work in the economics literature considered. For
example, Farmer (2015) building on previous work by Fitoussi et al. (2000); Phelps (1999)
tests only the relationship between the employment index and the composite stock index,
using a bivariate VAR model. On the other hand, our framework enables us to consider
the components of the S&P 100 index and the “medium” list of macroeconomic variables
considered in the work of Stock and Watson (2005).

Next, we provide a brief description of the data used. The stock data consist of monthly
observations of 71 stocks corresponding to a stable set of historical components comprising
the S&P 100 index for the 2001-2016 period. The macroeconomic variables are chosen
from the “medium” list in Stock and Watson (2005). The complete lists of stocks and
macroeconomic variables, together with the preprocessing to ensure stationarity used in
this study are given in Supplementary Material ??.

We start the analysis by using the VAR model for the stock log-returns to study their
evolution over the 2001-2016 period. Analogously to the strategy employed by Billio et al.
(2012), we consider 36-month-long rolling-windows for fitting the model Xt = AXt−1 + Ut,
for a total of 143 estimates of the transition matrix A. VAR models involving more than
1 lag were also fitted to the data, but did not indicate temporal dependence beyond lag
1. To obtain the final estimates across all 143 subsamples, we employ stability selection
(Meinshausen and Bühlmann, 2010), with the threshold set at 0.6 for including an edge in
A.1 Figure 2 depicts the global clustering coefficient (Luce and Perry, 1949) of the skeleton
of the estimated A over all 143 rolling windows, with the time stamps on the horizontal
axis specifying the starting time of the corresponding window. The results clearly indicate
strong connectivity in lead-lag stock relationships during the financial crisis period March
2007-June 2009. Next, we present the analysis based on the VAR-X component of our
model, given by Zt = BXt−1 + CZt−1 + Vt with the stock log-returns corresponding to
the Xt block and the (stationary) macroeconomic variables to the Zt block. As before,
we fit the data within each rolling window, with the tuning parameters based on a search
over a 10 × 10 lattice (with (λB, λC) ∈ [0.5, 4] × [0.2, 2], equal-spaced) using the BIC. It
should be noted that for the majority of the rolling windows, the rank of B is 1 (data not
shown). The sparsity level of the estimated C over the 143 rolling windows is depicted in
Figure 3. The connectivity patterns in C show more complex and nuanced patterns than

1. The threshold is set at a relatively low level to compensate for the relative small rolling window size.
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Figure 2: Global clustering coefficient of estimated A over different periods

Figure 3: Sparsity of estimated C over different periods
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for stocks. A more detailed analysis of the various peaks identified through our model is
given in Supplementary Material ??.

Based on the previous findings, we partition the time frame spanning 2001-2016 into
the following periods: pre- (2001/07–2007/03), during- (2007/01–2009/12) and post-crisis
(2010/01-2016/06) one. We estimate the model parameters using the data within the entire
sub-period(s).

The estimation procedure of the transition matrix A for different periods is identical to
that described above using subsamples over rolling-windows. For the pre- and post- crisis
periods, since we have 76 and 77 samples respectively, the stability selection threshold is set
at 0.75, whereas for the during-crisis period, at 0.6 to compensate for the small sample size
(36). Table 6 shows the average R-square for all 71 stocks, as well as its standard deviation,
which is calculated based on in-sample fit; i.e.,the proportion of variation explained by
using the VAR(1) model to fit the data. The overall sparsity level and the spectral radius
of the estimated transition matrices A are also presented. The results are consistent with
the previous finding of increased connectivity during the crisis. Further, for all periods the
estimate of the spectral radius is fairly large, indicating strong temporal dependence of the
log-returns.

Table 6: Summary for estimated A within different periods.

2001/07–2007/03 2007/01–2009/12 2010/01–2016/06

Averaged R sq 0.31 0.72 0.28
Sd of R sq 0.103 0.105 0.094

Sparsity level of Â 0.17 0.23 0.19

Spectral radius of Â 0.67 0.90 0.75

Next, we focus on the key motivation for developing the proposed modeling framework,
namely the inter-dependence of stocks and macroeconomic variables over the specified three
sub-periods. The p-value for testing the hypothesis of lack of block “Granger causality”
H0 : B = 0, together with the spectral radius and the sparsity level for the estimated
C transition matrices are listed in Table 7. Specifically, for all three periods, the rank
of estimated B is 1, indicating that the stock market as captured by its leading stocks,
“Granger-causes” the temporal evolution of the macroeconomic variables. The fact that the
rank of B is 1, indicates that the inter-block influence can be captured as a single portfolio
acting in unison. To investigate the relative importance of each sector in the portfolio, we
group the stocks by sectors. The proportion of each sector (up to normalization) is obtained
by summing up the loadings (first right singular vector of the estimated B) of the stocks
within this sector, weighted by their market capitalization (results shown in Supplementary
Material ??).

Next, we discuss some key relationships emerging from the model. We start with total
employment (ETTL), whose dynamics are only influenced by its own past values as seen
by the lack of an incoming arrow in Figure ??. Further, an examination of the left singular
vector (see Table 8) of B strongly indicates the impact of the stock market on total employ-
ment. This finding is consistent with the analysis in Farmer (2015), which argues that the
crash of the stock market provides a plausible explanation for the great recession. However,
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the analysis in Farmer (2015) is based on bivariate VAR models involving only employment
and the stock index. Therefore, there is a possibility that the stock market is reacting to
some other information captured by other macroeconomic variables, such as GDP, capital
spending, inflation, interest rates, etc. However, our high-dimensional VAR model simulta-
neously analyzes a key set of macroeconomic variables and also accounts for the influence of
the largest stocks in the market. Hence, it automatically overcomes the criticism leveraged
by Sims (1992) about misinterpretations of findings from small scale VAR models due to
the omission of important variables, and further echoed in the discussion in Bernanke et al.
(2005). Other interesting findings are presented in Supplementary Material ??.

Table 7: Summary for estimated B and C within different periods.

2001/07–2007/03 2007/01–2009/12 2010/01–2016/16

p-value for testing H0 : B = 0 0.075 0.009 0.044

Sparsity level of Ĉ 0.06 0.25 0.06

Spectral radius of Ĉ 0.35 0.76 0.40

Table 8: Left Singular Vectors of Estimated B for different periods

Pre-Crisis During-Crisis Post-Crisis
FFR -0.24 -0.26 -0.23
T10yr -0.09 0.14 0.16
UNEMPL -0.07 0.01 -0.07
IPI -0.43 0.34 0.26
ETTL 0.33 0.24 0.13
M1 0.23 -0.12 -0.47
AHES -0.01 0.30 0.17
CU -0.49 0.32 0.27
M2 0.10 -0.04 -0.32
HS 0.51 -0.02 -0.02
EX -0.18 0.41 0.06
PCEQI -0.07 -0.18 0.41
GDP 0.10 -0.02 0.05
PCEPI 0.00 0.14 -0.01
PPI -0.15 0.00 0.06
CPI 0.01 0.15 -0.31
SP.IND -0.06 -0.53 0.38

Remark 13 We also applied our multi-block model with the first block Xt corresponding
to the macro-economic variables and the second block Zt the stocks variables (results not
shown). The key question is whether there is also “Granger causality” from the broader
economy to the stock market. The results are inconclusive due to sample size issues that
do not allow us to properly test for the key hypothesis whether B = 0 or not. Specifically,
the length of the sub-periods is short compared to the dimensionality required for the test
procedure. A similar issue arises, which is related to the detection boundary for the sparse
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testing procedure during the crisis period. Further, for a sparse B, an examination of its
entries shows that Employment Total did not impact the stock market, which is in line with
the conclusion reached at the aggregate level by Farmer (2015). On the other hand, GDP
negatively impacts stock log-returns, which may act as a leading indicator for suppressed
investment and business growth and hence future stock returns.

7. Discussion.

We briefly discuss generalizations of the model to the case of more than two blocks, as
mentioned in the introductory section. For the sake of concreteness, consider a triangular
recursive linear dynamical system given by:

X
(1)
t = A11X

(1)
t−1 + ε

(1)
t ,

X
(2)
t = A12X

(1)
t−1 +A22X

(2)
t−1 + ε

(2)
t ,

X
(3)
t = A13X

(1)
t−1 +A23X

(2)
t−1 +A33X

(3)
t−1 + ε

(3)
t ,

...

(28)

where X(j) ∈ Rpj denotes the variables in group j, Aij (i < j) encodes the dependency
of X(j) on the past values of variables in group i, and Ajj encodes the dependency on its

own past values. Further, {ε(j)t } is the innovation process that is neither temporally, nor
cross-sectionally correlated, i.e.,

Cov(ε
(j)
t , ε(j)s ) = 0 (s 6= t), Cov(ε

(i)
t , ε

(j)
s ) = 0 (i 6= j, ∀ (s, t)), Cov(ε

(j)
t , ε

(j)
t ) =

(
Ω(j)

)−1
,

with Ω(j) capturing the conditional contemporaneous dependency of variables within group
j. The model in (28) can also be viewed from a multi-layered time-varying network per-
spective: nodes in each layer are “Granger-caused” by nodes from its previous layers, and
are also dependent on its own past values. As previously mentioned, in various real ap-
plications, it is of interest to obtain estimates of the transition matrices, and/or test if
“Granger-causality” is present between interacting blocks; i.e., to test Aij = 0 for some
i 6= j.

The triangular structure of the system decouples the estimation of the transition ma-
trices from each equation, and hence a straightforward extension of the estimation proce-
dure presented in Section 2.1 becomes applicable. Specifically, to obtain estimates of the
transition matrices Aij ’s for fixed j and 1 ≤ i ≤ j, and the inverse covariance Ω(j), the
optimization problem is formulated as follows:

({Âij}i≤j , Ω̂(j)) = arg min
Aij ,Ω(j)

{
− log det Ω(j)+

1

T

T∑
t=1

(
x

(j)
t −

j∑
i=1

Aijx
(i)
t−1

)′
Ω(j)

(
x

(j)
t −

∑
1≤i≤j

Aijx
(i)
t−1

)
+

j∑
i=1

R(Aij) + ρ(j)‖Ω(j)‖1,off

}
, (29)

where the exact expression for the R(Aij) adapts to the structural assumption imposed on
the corresponding transition matrix (sparse/low-rank). Solving (29) again requires an iter-
ative algorithm involving the alternate update between transition matrices and the inverse
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covariance matrices. Further, for updating the values of the transition matrices, a cyclic
block-coordinate updating procedure is used.

Consistency results can be established analogously to those provided in Section 3, under
the posited conditions of restricted strong convexity (RSC) and a deviation bound. With a
larger number of interacting blocks of variables, lower bounds for the lower extremes of the
spectra involve all corresponding transition matrices. The error rates that can be obtained
are as follows: (i) if equation k only involves sparse transition matrices, then the finite-
sample bounds of the transition matrices in this layer in Frobenius norm are of the order

O
(√ log pk+log

∑
i≤k pk

T

)
, while (ii) if some of the transition matrices are assumed low rank,

then the corresponding finite sample bounds are of the order O
(√pk+

∑
i≤k pk
T

)
.

Another generalization that can be handled algorithmically with the same estimation
procedure discussed above is the presence of d-lags in the specification of the linear dynam-
ical system. Based on the consistency results developed in this work, together with the
theoretical findings for VAR(d) models presented in Basu and Michailidis (2015), we expect
all the established theoretical properties of the transition matrices estimates to go through
under appropriate RSC and deviation bound conditions.
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Appendix A. Additional Theorems and Proofs for Theorems.

In this section, we introduce two additional theorems that respectively establish the con-
sistency properties for the initializers Â(0) and (B̂(0), Ĉ(0)), for fixed realizations of the
processes {Xt} and {Zt}. Specifically, Â(0) and (B̂(0), Ĉ(0)) are solutions to the following
optimization problems:

Â(0) := arg min
A

{
1
T

∣∣∣∣∣∣X T −XA′∣∣∣∣∣∣
F

+ λA‖A‖1
}
, (30)

(B̂(0), Ĉ(0)) := arg min
B,C

{
1
T

∣∣∣∣∣∣ZT −XB′ −ZC ′∣∣∣∣∣∣
F

+ λB|||B|||∗ + λC ||C||1
}
. (31)

Note that they also correspond to estimators of the setting where there is no contempo-
raneous dependence among the idiosyncratic error processes. If we additionally introduce
operators X0 and W0 defined as

X0 : X0(∆) = X ′∆, for ∆ ∈ Rp1×p1 ,

W0 : W0(∆) =W ′∆, for ∆ ∈ Rp2×(p1+p2) where W := [X ,Z],

then (30) and (31) can be equivalently written as

Â(0) := arg min
A

{
1
T

∣∣∣∣∣∣X T − X0(A)
∣∣∣∣∣∣
F

+ λA‖A‖1
}
,

(B̂(0), Ĉ(0)) := arg min
B,C

{
1
T

∣∣∣∣∣∣ZT −W0(Baug, Caug)
∣∣∣∣∣∣
F

+ λB|||B|||∗ + λC ||C||1
}
,

where Baug := [B,Op2×p2 ], Caug := [Op2×p1 , C].

Theorem 14 (Error bounds for Â(0)) Suppose the operator X0 satisfies the RSC condi-
tion with norm Φ(∆) = ‖∆‖1, curvature αRSC > 0 and tolerance τ > 0, so that

s?Aτ ≤ αRSC/32.

Then, with regularization parameter λA satisfying λA ≥ 4‖X ′U/T‖∞, the solution to (30)
satisfies the following bounds:

|||Â(0) −A?|||F ≤ 12
√
s?AλA/αRSC and ‖Â−A?‖1 ≤ 48s?AλA/αRSC.

Theorem 15 (Error bound for (B̂(0), Ĉ(0))) Let JC? be the support set of C? and s?C
denote its cardinality. Let r?B be the rank of B?. Assume that W0 satisfies the RSC condition
with norm

Φ(∆) := inf
Baug+Caug=∆

Q(B,C), where Q(B,C) := |||B|||∗ + λC
λB
‖C‖1,

curvature αRSC and tolerance τ such that

128τr?B < αRSC/4 and 64τs?C(λC/λB)2 < αRSC/4.

Then, with regularization parameters λB and λC satisfying

λB ≥ 4
∣∣∣∣∣∣W ′V/T ∣∣∣∣∣∣

op
and λC ≥ 4

∣∣∣∣W ′V/T ∣∣∣∣∞,
the solution to (31) satisfies the following bounds:

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F ≤ 4
(
2r?Bλ

2
B + s?Cλ

2
C

)
/α2

RSC.
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In the rest of this subsection, we first prove Theorem 14 and 15, then prove Theorem 5
and 6, whose statements are given in Section 3.2.
Proof [Proof of Theorem 14]

For the ease of notation, in this proof, we use Â to refer to Â(0) whenever there is no
ambiguity. Let β?A = vec(A?) and denote the residual matrix and its vectorized version by

∆A = Â−A? and ∆βA = β̂A − β?A, respectively. By the optimality of Â and the feasibility
of A?, the following basic inequality holds:

1
T |||X0(∆A)|||2F ≤

2
T 〈〈∆A,X ′U〉〉+ λA {||A?||1 − ||A

? + ∆A||1} ,

which is equivalent to:

∆′βAΓ̂
(0)
X ∆βA ≤ 2

T 〈∆βA , vec(X ′U)〉+ λA
{
||β?A||1 − ||β

?
A + ∆βA ||1

}
, (32)

where Γ̂
(0)
X = Ip1 ⊗ X

′X
T . By Hölder’s inequality and the triangle inequality, an upper bound

for the right-hand-side of (32) is given by

2
T ||∆βA ||1

∣∣∣∣X ′U∣∣∣∣∞ + λA‖∆βA‖1. (33)

Now with the specified choice of λA, by Lemma ??, ‖∆βA|JA?‖1 ≤ 3‖∆βA|J c
A?
‖1 i.e., ∆βA ∈

C(JA? , 3), hence ‖∆βA‖1 ≤ 4‖∆βA|JA?‖1 ≤ 4
√
s?A‖∆βA‖. By choosing λA ≥ 4‖X ′U/T‖∞,

(33) is further upper bounded by

3

2
λA‖∆βA‖1 ≤ 6

√
s?AλA‖∆βA‖. (34)

Combined with the RSC condition and the upper bound given in (34), we have

αRSC

2
‖∆βA‖

2 − τ

2
‖∆βA‖

2
1 ≤

1

2
∆′βAΓ̂

(0)
X ∆βA ≤ 3

√
s?AλA‖∆βA‖,

αRSC

4
‖∆βA‖

2 ≤
(
αRSC

2
−

16s?Aτ

4

)
‖∆βA‖

2 ≤ 3
√
s?AλA‖∆βA‖,

which implies

‖∆βA‖ ≤ 12
√
s?AλA/αRSC and ‖∆βA‖1 ≤ 48s?AλA/αRSC.

It is easy to see that these bounds also hold for ‖∆A‖F and ‖∆A‖1, respectively.

Next, to prove Theorem 15, we introduce the following two sets of subspaces {SΘ,S⊥Θ}
and {RΘ,RcΘ} associated with some generic matrix Θ ∈ Rm1×m2 , in which the nuclear norm
and the `1-norm are decomposable, respectively (see Negahban et al., 2012). Specifically,
let the singular value decomposition of Θ be Θ = UΣV ′ with U and V being orthogonal
matrices. Let r = rank(Θ), and we use U r and V r to denote the first r columns of U and
V associated with the r singular values of Θ. Further, define

SΘ :=
{

∆ ∈ Rm1×m2 |row(∆) ⊆ V r and col(∆) ⊆ U r
}
,

S⊥Θ :=
{

∆ ∈ Rm1×m2 |row(∆) ⊥ V r and col(∆) ⊥ U r
}
.

(35)
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Then, for an arbitrary (generic) matrix M ∈ Rm1×m2 , its restriction on the subspace S(Θ)
and S⊥(Θ), denoted by MS(Θ) and MS⊥(Θ) respectively, are given by:

MSΘ
= U

[
M̃11 M̃12

M̃21 O

]
V ′ and MS⊥Θ

= U

[
O O

O M̃22

]
V ′,

where Θ = UΣV ′ and M̃ is defined and partitioned as

M̃ = U ′MV =

[
M̃11 M̃12

M̃21 M̃22

]
, where M̃11 ∈ Rr×r.

Note that by Lemma ??, MSΘ
+MS⊥Θ

= M . Moreover, when Θ is restricted to the subspace

induced by itself ΘSΘ
(and we write ΘS for short for this specific case), the following

decomposition for the nuclear norm holds:

|||Θ|||∗ = |||ΘS + ΘS⊥ |||∗ = |||ΘS |||∗ + |||ΘS⊥ |||∗.

Let J (Θ) be the set of indexes in which Θ is nonzero. Analogously, we define

RΘ :=
{

∆ ∈ Rm1×m2 |∆ij = 0 for (i, j) /∈ J (Θ)
}
,

RcΘ :=
{

∆ ∈ Rm1×m2 |∆ij = 0 for (i, j) ∈ J (Θ)
}
.

(36)

Then, for an arbitrary matrix M , MJΘ
∈ RΘ is obtained by setting the entries of M whose

indexes are not in J (Θ) to 0, and MJ c
Θ
∈ RcΘ is obtained by setting the entries of M whose

indexes are in J (Θ) to 0. Then, the following decomposition holds:∣∣∣∣MJΘ
+MJ c

Θ

∣∣∣∣
1

= ||MJΘ
||1 +

∣∣∣∣MJ c
Θ

∣∣∣∣
1
.

Proof [Proof of Theorem 15] Again for the ease of notation, in this proof, we drop the
superscript and use (B̂(0), Ĉ(0)) to denote (B̂, Ĉ) whenever there is no ambiguity. Define Q
to be the weighted regularizer:

Q(B,C) = |||B|||∗ + λC
λB
||C||1.

Note that (B?, C?) is always feasible, and by the optimality of (B̂, Ĉ), the following inequal-
ity holds:

1

T
|||ZT −W0(B̂aug + Ĉaug)|||

2

F+λB |||B̂|||∗+λC ||Ĉ||1 ≤
1

T
|||ZT −W0(B? + C?)|||2F+λB |||B?|||∗+λC ||C

?||1,

By defining ∆B
aug = B̂aug − B?

aug = [∆B, O], ∆C
aug = Ĉaug − C?aug = [O,∆C ], we obtain the

following basic inequality :

1
T

∣∣∣∣∣∣W0(∆B
aug + ∆C

aug)
∣∣∣∣∣∣2
F
≤ 2

T 〈〈∆
B
aug + ∆C

aug,W ′V〉〉+ λBQ(B?, C?)− λBQ(B̂, Ĉ). (37)

By Hölder’s inequality and Lemma 21, we have

1
T

∣∣∣∣∣∣W0(∆B
aug + ∆C

aug)
∣∣∣∣∣∣2
F
≤ 2

T

(∣∣∣∣∣∣∆B
SB?

∣∣∣∣∣∣
∗ + |||∆B

S⊥
B?
|||
∗

)
|||W ′V|||op + 2

T

(
||∆C
J c

C?
||
1

+ ||∆C
J c

C?
||
1

)
||W ′V||∞

+ λBQ(∆B
SB? ,∆

C
JC? )− λBQ(∆B

S⊥
B?
,∆C
J c

C?
). (38)
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With the specified choice of λB and λC , after some algebra, (38) is further bounded by

3λB
2
Q(∆B

SB? ,∆
C
JC? )− λB

2
Q(∆B

S⊥
B?
,∆C
J c
C?

).

By Lemma 22, and using this upper bound, we obtain

αRSC

2
(
∣∣∣∣∣∣∆B

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣∆C

∣∣∣∣∣∣2
F

)− λB
2
Q(∆B,∆C) ≤ 3λB

2
Q(∆B

SB? ,∆
C
JC? )− λB

2
Q(∆B

S⊥
B?
,∆C
J c
C?

).

By the triangle inequality, Q(∆B,∆C) ≤ Q(∆B
SB?

,∆C
JC?

) + Q(∆B
S⊥
B?
,∆C
J c
C?

), rearranging

gives
αRSC

2
(
∣∣∣∣∣∣∆B

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣∆C

∣∣∣∣∣∣2
F

) ≤ 2λBQ(∆B
SB? ,∆

C
JC? ). (39)

By Lemma ??, with N = B?, M1 = ∆B
SB?

, M2 = ∆B
S⊥
B?

, we get

rank(∆B
SB? ) ≤ 2r?B and 〈〈∆B

SB? ,∆
B
S⊥
B?
〉〉 = 0,

which implies |||∆B
SB?
|||
∗
≤ (
√

2r?B)|||∆B
SB?
|||
F
≤ (
√

2r?B)|||∆B|||F . Since ∆C
JC?

has at most s?C
nonzero entries, it follows that ‖∆C

JC?
‖1 ≤

√
s?C |||∆C

JC?
|||
F
≤
√
s?C |||∆C |||F . Therefore,

Q(∆B
SB? ,∆

C
JC? ) = λB

∣∣∣∣∣∣∆B
SB?

∣∣∣∣∣∣
∗ + λC

∣∣∣∣∆C
JC?

∣∣∣∣
1
≤ λB(

√
2r?B)

∣∣∣∣∣∣∆B
∣∣∣∣∣∣
F

+ λC(
√
s?C)
∣∣∣∣∣∣∆C

∣∣∣∣∣∣
F

With an application of the Cauchy-Schwartz inequality, (39) yields:

αRSC

2
(
∣∣∣∣∣∣∆B

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣∆C

∣∣∣∣∣∣2
F

) ≤
√

2r?Bλ
2
B + s?Cλ

2
C ∗

√
|||∆B|||2F + |||∆C |||2F

and we obtain the following bound:∣∣∣∣∣∣∆B
∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣∆C

∣∣∣∣∣∣2
F
≤ 4

(
2r?Bλ

2
B + s?Cλ

2
C

)
/α2

RSC.

Proof [Proof of Theorem 5] At iteration 0, Â(0) solves the following optimization prob-
lem:

Â(0) = arg min
A∈Rp1×p1

{
1
T

∣∣∣∣∣∣X T −XA′∣∣∣∣∣∣2
F

+ λA|||A|||∗
}
.

By Theorem 14, its error bound is given by

||Â(0) −A?||1 ≤ 48s?AλA/αRSC,

provided that Γ̂
(0)
X = Ip1 ⊗ X ′X/T satisfies the RSC condition, and the regularization

parameter λA satisfies λA ≥ 4‖X ′U/T‖∞. For random realizations X and U , by Lemma 16
and Lemma 17, there exist constants ci and c′i such that for sample size T % s?A log p1, with
probability at least 1− c1 exp(−c2T min{1, ω−2}), where ω = c3µmax(A)/µmin(A)

(E1) Γ̂
(0)
X satisfies RSC condition with αRSC = Λmin(Σ?

u)/(2µmax(A)) ,
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and with probability at least 1− c′1 exp(−c′2 log p1),

(E2) ‖X ′U/T‖∞ ≤ C0

√
log p1

T
, for some constant C0.

Hence with probability at least 1− c1 exp(−c2T )− c′1 exp(−c′2 log p1),

‖Â(0) −A?‖1 = O
(
s?A

√
log p1

T

)
.

Moving onto Ω̂
(0)
u , which is given by

Ω̂(0)
u = arg min

Ωu∈S
p1×p1
++

{
log det Ωu − trace

(
Ŝ(0)
u Ωu

)
+ ρu‖Ωu‖1,off

}
,

where Ŝ
(0)
u = 1

T (X T − X Â(0)′)′(X T − X Â(0)′). By Theorem 1 in Ravikumar et al. (2011),

the error bound for Ω̂
(0)
u relies on how well Ŝ

(0)
u concentrates around Σ?

u, more specifically,

‖Ŝ(0)
u − Σ?

u‖∞. Note that

‖Ŝ(0)
u − Σ?

u‖∞ ≤ ‖Su − Σ?
u‖∞ + ‖Ŝ(0)

u − Su‖∞,

where Su = U ′U/T is the sample covariance based on true errors. For the first term, by
Ravikumar et al. (2011), there exists constant τ0 > 2 such that with probability at least
1− 1/pτ0−2

1 = 1− exp(−τ log p1) (τ > 0), the following bound holds:

(E3) ‖Su − Σ?
u‖∞ ≤ C1

√
log p1

T
, for some constant C1.

For the second term,

Ŝ(0)
u − Su = 2

T U
′X (A? − Â(0))′ + (A? − Â(0))

(
X ′X
T

)
(A? − Â(0))′ := I1 + I2,

For I1, based on the analysis of ||A? − Â(0)||1 and ||X ′U/T ||∞,

‖I1‖∞ ≤ 2|||A? − Â(0)|||∞||
1
T X
′U||∞ ≤ 2||A? − Â(0)||1||

1
T X
′U||∞ = O

(
s?A log p1

T

)
For I2,

‖(A? − Â(0))
(
X ′X
T

)
(A? − Â(0))′‖∞ ≤ |||A? − Â(0)|||∞|||A

? − Â(0)|||1||
X ′X
T ||∞

≤ ||A? − Â(0)||
2

1||
X ′X
T ||∞,

where by Proposition 2.4 in Basu and Michailidis (2015) and then taking a union bound,
with probability at least 1− c′′1 exp(−c′′2 log p1) (c′′1, c

′′
2 > 0),

(E4) ||X ′XT ||∞ ≤ C2

√
log p1

T
+ Λmax(ΓX), for some constant C2.
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Hence,

‖I2‖∞ = O
(

(s?A)2
( log p1

T

)3/2)
+O

(
(s?A)2 log p1

T

)
Combining all terms, and since we assume that T−1 log p1 is small, O(

√
T−1 log p1) becomes

the leading term, and the following bound holds with probability at least 1−c1 exp(−c2T )−
c′1 exp(−c′2 log p1)− c′′1 exp(−c′′2 log p1)− exp(−τ log p1):

‖Ŝ(0)
u − Σ?

u‖∞ = O
(√

log p1

T

)
.

Consequently,

‖Ω̂(0)
u − Ω?

u‖∞ = O
(√

log p1

T

)
.

At iteration 1, the vectorized Â(1) solves

β̂
(1)
A = arg min

β∈Rp2
1

{
− 2β′γ̂

(1)
X + β′Γ̂

(1)
X β + λA‖β‖1

}
,

where

γ̂
(1)
X = 1

T

(
Ω̂(0)
u ⊗X ′

)
vec(X T ), Γ̂

(1)
X = Ω̂(0)

u ⊗ X
′X
T .

The error bound for β̂
(1)
A relies on (1) Γ̂

(1)
X satisfying the RSC condition, which holds for

sample size T % (dmax
Ω?

u
)2 log p1 upon ‖Ω̂(0)

u − Ω?
u‖∞ = O(

√
T−1 log p1); and (2) a bound for

‖X ′UΩ̂
(0)
u /T‖∞. For ‖X ′UΩ̂

(0)
u /T‖∞,

1
T X
′UΩ̂(0)

u = 1
T X
′UΩ?

u + 1
T X
′U(Ω̂(0)

u − Ω?
u) := I3 + I4.

For I3, by Lemma 3 in Lin et al. (2016) and with the aid of Proposition 2.4 in Basu and
Michailidis (2015), again with probability at least 1− c′′′1 exp(−c′′′2 log p1) we get

(E5)
∣∣∣∣ 1
T X
′UΩ?

u

∣∣∣∣
∞ ≤ C3

√
log p1

T
, for some constant C3.

For I4, by Corollary 3 in Ravikumar et al. (2011), we get∣∣∣∣∣∣ 1
T X
′U(Ω̂(0)

u − Ω?
u)
∣∣∣∣∣∣
∞
≤ dmax

Ω?
u
|| 1T X

′U||∞||Ω̂
(0)
u − Ω?

u||∞ = O
(

log p1

T

)
.

Combining all terms and taking the leading one, once again we have

‖Â(1) −A?‖1 = O
(
s?A

√
log p1

T

)
,

which holds with probability at least 1− c1 exp(−c2T )− c̃1 exp(−c̃2 log p1)− exp(−τ log p1),
by letting c̃1 = max{c′1, c′′1, c′′′1 } and c̃1 = min{c′2, c′′2, c′′′2 }. It should be noted that up to this
step, all sources of randomness from the random realizations have been captured by events

from E1 to E5; thus, for Ω̂
(1)
u and iterations thereafter, the probability for which the bounds

hold will no longer change, and the same holds for the error bounds for Â(k) and Ω̂
(k)
u in
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terms of the relative order with respect to the dimension p1 and sample size T . Therefore,
we conclude that with high probability, for all iterations k,

‖X ′UΩ̂(k)
u /T‖∞ = O

(√
log p1

T

)
, ‖Ŝ(k)

u − Σ?
u‖∞ = O

(√
log p1

T

)
.

With the aid of Theorem 14, it then follows that

|||Â(k) −A?|||F = O
(√

s?A log p1

T

)
, |||Ω̂(k)

u − Ω?
u|||F = O

(√
(sΩ?

u
+p1) log p1

T

)
.

Proof [Proof of Theorem 6] At iteration 0, (B̂(0), Ĉ(0)) solves the following optimization:

(B̂(0), Ĉ(0)) = arg min
(B,C)

{
1
T

∣∣∣∣∣∣ZT −XB′ −ZC ′∣∣∣∣∣∣2
F

+ λB|||B|||∗ + λC ||C||1
}
.

Let Wt = (X ′t, Z
′
t)
′ ∈ Rp1+p2 be the joint process and W be the realizations, with operators

W0 identically defined to that in Theorem 15 . By Theorem 15,

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F ≤ 4(2r?Bλ
2
B + s?Cλ

2
C)/α2

RSC,

provided that W satisfies the RSC condition and λB, λC respectively satisfy

λB ≥ 4
∣∣∣∣∣∣W ′V/T ∣∣∣∣∣∣

op
and λC ≥ 4

∣∣∣∣W ′V/T ∣∣∣∣∞.
In particular, by Lemma 18 for random realizations of X , Z and V, for sample size T %
c0(p1 + 2p2), with probability at least 1− c1 exp{−c2(p1 + p2)},

(E′1) W0 satisfies the RSC condition.

By Lemma 19, for sample size T % (p1 + 2p2) and some constant C1, C2 > 0,

(E′2)
∣∣∣∣∣∣W ′V/T ∣∣∣∣∣∣

op
≤ C1

√
p1 + 2p2

T
and

∣∣∣∣W ′V/T ∣∣∣∣∞ ≤ C2

√
log(p1 + p2) + log p2

T
,

with probability at least 1 − c′1 exp{−c′2(p1 + 2p2)} and 1 − c′′1 exp{−c′′2 log[p2(p1 + p2)]},
respectively. Hence, with probability at least

1− c1 exp{−c2(p1 + p2)} − c′1 exp{−c′2(p1 + 2p2)} − c′′1 exp{−c′′2 log[p2(p1 + p2)]},

the following bound holds for the initializers as long as sample size T % (p1 + 2p2):

|||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F = O
(
p1+2p2

T

)
+O

(
log(p1+p2)+log p2

T

)
. (40)

Considering the estimation of Ω̂
(0)
v , it solves a graphical Lasso problem:

Ω̂(0)
v = arg min

Ωv∈S
p2×p2
++

{
log det Ωv − trace

(
Ŝ(0)
u Ωv

)
+ ρv‖Ωv‖1,off

}
,
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where Ŝ
(0)
v = 1

T (ZT − X B̂(0)′ − ZĈ(0)′)′(ZT − X B̂(0)′ − ZĈ(0)′). Similar to the proof of

Theorem 5, the error bound for Ω̂
(0)
v depends on ‖Ŝ(0)

v −Σ?
v‖∞, which can be decomposed as

‖Ŝ(0)
v − Σ?

v‖∞ ≤ ‖Sv − Σ?
v‖∞ + ‖Ŝ(0)

v − Sv‖∞,

where Sv = V ′V/T is the sample covariance based on the true errors. For the first term, by
Lemma 1 in Ravikumar et al. (2011), there exists constant τ0 > 2 such that with probability
at least 1− 1/pτ0−2

2 = 1− exp(−τ log p2) (τ > 0), the following bound holds:

(E′3) ‖Sv − Σ?
v‖∞ ≤ C3

√
log p1

T
, for some constant C3.

For the second term, let Π = [B,C] ∈ Rp2×(p1+p2), then

Ŝ(0)
v − Sv =

2

T
V ′W(Π? − Π̂(0))′ + (Π? − Π̂(0))

(
W ′W
T

)
(Π? − Π̂(0))′ := I1 + I2,

For I1, we have

|| 2T V
′W(Π? − Π̂(0))′||∞ ≤ ||

2
T V
′W(Π? − Π̂(0))′||

F
≤ 2||| 1TW

′V|||
op
|||Π? − Π̂(0)|||F .

Consider the leading term of |||Π? − Π̂(0)|||F as in (40), whose rate is O(
√
T−1(p1 + 2p2)).

We therefore obtain
‖I1‖∞ ≤ ‖I1‖F = O

(
p1+2p2

T

)
.

Similarly for I2,

‖I2‖∞ ≤ ‖I2‖F ≤ |||Π? − Π̂(0)|||
2

F |||
W ′W
T |||op,

where with a similar derivation to that in Lemma 23, for sample size T % (p1 + p2), with
probability at least 1− c′′′1 exp{−c′′′2 (p1 + p2)}, we get

(E′4) |||W ′WT |||op ≤ C4

√
p1 + 2p2

T
+ Λmax(ΓX), for some constant C4.

Hence,

‖I2‖∞ ≤ ‖I2‖F ≤= O
((p1 + 2p2

T

)3/2)
.

Combining all terms and then taking the leading one, with probability at least

1− c1 exp{−c2(p1 + p2)} − c′1 exp{−c′2(p1 + 2p2)} − c′′1 exp{−c′′2 log[p2(p1 + p2)]}
−c′′′1 exp{−c′′′2 (p1 + p2)} − exp(−τ log p2),

we obtain

‖Ŝ(0)
v − Σ?

v‖∞ = O
(√

p1+2p2

T

)
.

Note that here with the required sample size, (p1 +2p2)/T is a small quantity, and therefore

O
((p1+2p2

T

)3/2) ≤ O(p1+2p2

T

)
≤ O

(√
p1+2p2

T

)
.
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At iteration 1, the bound of |||B̂(1) −B?|||
2

F + |||Ĉ(1) − C?|||
2

F relies on the following two
quantities: ∣∣∣∣∣∣∣∣∣ 1

TW
′VΩ̂(0)

v

∣∣∣∣∣∣∣∣∣
op

and
∣∣∣∣∣∣ 1
TW

′VΩ̂(0)
v

∣∣∣∣∣∣
∞
.

Using a similar derivation to that in the proof of Theorem 5,∣∣∣∣∣∣ 1
TW

′VΩ̂(0)
v

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣ 1
TW

′V(Ω̂(0)
v − Ω?

v)
∣∣∣∣∣∣
∞

+
∣∣∣∣ 1
TW

′VΩ?
v

∣∣∣∣
∞, (41)

where by viewing VΩ?
v as some random realization coming from a certain sub-Gaussian

process, with probability at least 1− c̄′′1 exp{−c̄′′2 log[p2(p1 + p2)]}, we get

(E′5)
∣∣∣∣ 1
TW

′VΩ?
v

∣∣∣∣
∞ ≤ C5

√
log(p1 + p2) + log p2

T
, for some constant C5,

and ∣∣∣∣∣∣ 1
TW

′V(Ω̂(0)
v − Ω?

v)
∣∣∣∣∣∣
∞
≤ dΩ?

v
max|| 1TW

′V||∞||Ω̂
(0)
v − Ω?

v||∞

= O
(√

log(p1+p2)+log p2

T

)
·O
(√

p1+2p2

T

)
.

For ||| 1TW
′VΩ̂

(0)
v |||op, similarly we have∣∣∣∣∣∣∣∣∣ 1

TW
′VΩ̂(0)

v

∣∣∣∣∣∣∣∣∣
op
≤ ||| 1TW

′V(Ω̂(0)
v − Ω?

v)|||op
+ ||| 1TW

′VΩ?
v|||op

, (42)

where with probability at least 1− c̄′1 exp{−c̄′2(p1 + p2)},

(E′6)
∣∣∣∣∣∣ 1
TW

′VΩ?
v

∣∣∣∣∣∣
op
≤ C6

√
p1 + 2p2

T
for some constant C6,

and ∣∣∣∣∣∣∣∣∣ 1
TW

′V(Ω̂(0)
v − Ω?

v)
∣∣∣∣∣∣∣∣∣
op
≤ ||| 1TW

′V|||
op
|||Ω̂(0)

v − Ω?
v|||op

≤ ||| 1TW
′V|||

op

[
dΩ?

v
max||Ω̂(0)

v − Ω?
v||∞

]
= O

(
p1+2p2

T

)
,

where the second inequality follows from Corollary 3 of Ravikumar et al. (2011). Combining
all terms from (41) and (42), the leading term gives the following bound:

|||B̂(1) −B?|||
2

F + |||Ĉ(1) − C?|||
2

F ≤ C7

(p1 + 2p2

T

)
for some constant C7,

and this error rate coincides with that in the bound of |||B̂(0) −B?|||
2

F + |||Ĉ(0) − C?|||
2

F . This

implies that for Ω̂
(1)
v and iterations thereafter, the error rate remains unchanged. Moreover,

all sources of randomness have been captured up to this step in events E′1 to E′6, and
therefore the probability for the bounds to hold no longer changes. Consequently, the
following bounds hold for all iterations k:

‖W ′VΩ̂(k)
v /T‖∞ = |||W ′VΩ̂(k)

v /T |||op = O
(√

p1+2p2

T

)
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and

‖Ŝ(k)
v − Σ?

v‖∞ = O
(√

p1+2p2

T

)
,

with probability at least

1−c0 exp{−c̃0(p1+p2)}−c1 exp{−c̃1(p1+2p2)}−c2 exp{−c̃2 log[p2(p1+p2)]}−exp{−τ log p2}.

for some new positive constants ci, c̃i (i = 0, 1, 2) and τ .2 The above bounds directly imply
the bound in the statement in Theorem 6, with the aid of Theorem 15.

Appendix B. Key Lemmas and Their Proofs.

In this section, we verify the conditions that are required for establishing the consistency
results in Theorem 14 and 15, under random realizations of X , Z, U and V.

The following two lemmas verify the conditions for establishing the consistency proper-
ties for Â(0). Specifically, Lemma 16 establishes that with high probability, X0 satisfies the
RSC condition. Further, Lemma 17 gives a high probability upper bound for ‖X ′U/T‖∞
for random X and U .

Lemma 16 (Verification of the RSC condition) For the VAR(1) model {Xt} posited
in (1), there exist ci > 0 (i = 1, 2, 3) such that for sample size T % max{ω2, 1}s?A log p1,
with probability at least

1− c1 exp
[
−c2T min{1, ω−2}

]
, ω = c3

Λmax(Σu)µmax(A)

Λmin(Σu)µmin(A)
,

the following inequality holds

1

2T
|||X0(∆)|||2F ≥ αRSC|||∆|||2F − τ ||∆||

2
1, for ∆ ∈ Rp1×p1 ,

where αRSC = Λmin(Σu)
µmax(A) , τ = 4αRSC max{ω2, 1} log p1/T .

Proof [Proof of Lemma 16] For the specific VAR(1) process {Xt} given in (1), using
Proposition 4.2 in Basu and Michailidis (2015) with d = 1 directly gives the result. Specif-
ically, we note that by letting θ = vec(∆),

1
T |||X0(∆)|||2F = θ′Γ̂

(0)
X θ,

where Γ̂
(0)
X = Ip1 ⊗ (X ′X/T ), and ‖θ‖22 = |||∆|||2F , ‖θ‖1 = ||∆||1.

Lemma 17 (Verification of the deviation bound) For the model in (1), there exist
constants ci > 0, i = 0, 1, 2 such that for T % 2 log p1, with probability at least 1 −
c1 exp(−2c2 log p1), the following bound holds:

‖X ′U/T‖∞ ≤ c0Λmax(Σu)

[
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

]√
2 log p1

T
. (43)

2. Here we slightly abuse the notations and redefine c0 := max{c1, c
′′′
1 }, c1 := max{c′1, c̄′1}, c̃1 := min{c′2, c̄′2},

c2 = max{c′′1 , c̄′′1}, c̃2 := min{c′′2 , c̄′′2}.
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Proof [Proof of Lemma 17] First, we note that,∣∣∣∣X ′U/T ∣∣∣∣∞ = max
1≤i≤p1
1≤j≤p1

∣∣e′i (X ′U/T ) ej∣∣ .
Applying Proposition 2.4(b) in Basu and Michailidis (2015) for an arbitrary pair of (i, j)
gives:

P
(∣∣e′i (X ′U/T ) ej∣∣ > η

[
Λmax(Σu)

(
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

)])
≤ 6 exp[−cT min{η, η2}].

Setting η = c0

√
2 log p1/T and taking a union bound over all 1 ≤ i ≤ p1, 1 ≤ j ≤ p1, we get

that for some c1, c2 > 0, with probability at least 1− c1 exp[−2c2 log p1],

max
1≤i≤p1
1≤j≤p1

∣∣e′i (X ′U/T ) ej∣∣ ≤ c0Λmax(Σu)

[
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

]√
2 log p1

T
.

In the next two lemmas, Lemma 18 gives an RSC curvature that holds with high probability
for W induced by a random W, and Lemma 19 gives a high probability upper bound for
|||W ′V/T |||op and ||W ′V/T ||∞.

Lemma 18 (Verification of the RSC condition) Consider the covariance stationary
process Wt = (X ′t, Z

′
t)
′ ∈ Rp1+p2 whose spectral density exists. Suppose m(fW ) > 0. There

exist constants ci > 0, i = 1, 2, 3 such that with probability at least 1−2c1 exp(−c2(p1 +p2)),
the RSC condition for W induced by a random W holds for αRSC and tolerance 0, where

αRSC = πm(fW )/4,

whenever T % c3(p1 + p2).

Proof [Proof of Lemma 18] First ,we note that the following inequality holds, for any
W:

1

2T
|||W0(∆)|||2F =

1

2T

∣∣∣∣∣∣W ′∆∣∣∣∣∣∣2
F

=
1

2T

p2∑
j=1

∣∣∣∣[W ′∆]j
∣∣∣∣2

2
≥ 1

2
Λmin

(
Γ̂

(0)
W

)
|||∆|||2F . (44)

where Γ̂
(0)
W = W ′W/T . Applying Lemma 4 in Negahban and Wainwright (2011) on W

together with Proposition 2.3 in Basu and Michailidis (2015), the following bound holds
with probability at least 1− 2c1 exp[−c2(p1 + p2)], as long as T % c3(p1 + p2):

Λmin

(
Γ̂

(0)
W

)
≥ Λmin(ΓW (0))

4
≥ π

2
m(fW ),

where ΓW (0) = EWtW
′
t . Combining with (44), the RSC condition holds with κ(W) =

πm(fW )/4.
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Lemma 19 (Verification of the deviation bound) There exist constants ci > 0 and
c′i > 0, i = 1, 2, 3 such that the following statements hold:

(a) With probability at least 1− c1 exp[−c2(p1 + 2p2)], as long as T % c3(p1 + 2p2),

∣∣∣∣∣∣W ′V/T ∣∣∣∣∣∣
op
≤ c0

[
M(fW ) + 1

2πΛmax(Σv) +M(fW,V )
]√p1 + 2p2

T
. (45)

(b) With probability at least 1−c′1 exp(−c′2 log(p1+p2)−c′2 log p2), as long as T % c′3 log[(p1+
p2)p2],

∣∣∣∣W ′V/T ∣∣∣∣∞ ≤ c′0 [M(fW ) + 1
2πΛmax(Σv) +M(fW,V )

]√ log(p1 + p2) + log p2

T
. (46)

Proof [Proof of Lemma 19] (a) is a direct application of Lemma 23 on processes
{Wt} ∈ R(p1+p2) and {Vt} ∈ Rp2 , and (b) is a direct application of Lemma 17.

Appendix C. Auxiliary Lemmas and Their Proofs.

Lemma 20 Consider two centered stationary Gaussian processes {Xt} and {Zt}. Further,
assume that the spectral density of the joint process {(X ′t, Z ′t)′} exists. Denote their cross-
covariance by ΓX,Z(`) := Cov(Xt, Zt+`), and their cross-spectral density is defined as

fX,Z(θ) :=
1

2π

∞∑
`=−∞

ΓX,Z(`)e−i`θ, θ ∈ [−π, π],

whose upper extreme is given by:

M(fX,Z) = esssupθ∈[−π,π]

√
Λmax

(
f∗X,Z(θ)fX,Z(θ)

)
.

Let X and Z be data matrices with sample size n. Then, there exists a constant c > 0, such
that for any u, v ∈ Rp with ‖u‖ ≤ 1, ‖v‖ ≤ 1, we have

P
[∣∣∣∣u′(X ′ZT − Cov(Xt, Zt)

)
v

∣∣∣∣ > 2π (M(fX) +M(fZ) +M(fX,Z)) η

]
≤ 6 exp

(
−cT min{η, η2}

)
.

Proof Let ξt = 〈u,Xt〉, ηt = 〈v, Zt〉. Let fX(θ), fZ(θ) denote the spectral density of
{Xt} and {Zt}, respectively. Then, the spectral density of {ξt} and {ηt}, respectively, is
fξ(θ) = u′fX(θ)u, fη(θ) = v′fZ(θ)v. Also, we note thatM(fξ) ≤M(fX),M(fη) ≤M(fZ).
Then,

2

T

[
T∑
t=0

ξtηt − Cov(ξt, ηt)

]
=

[
1

T

T∑
t=0

(ξt + ηt)
2 −Var(ξt + ηt)

]

−

[
1

T

T∑
t=0

(ξt)
2 −Var(ξt)

]
−

[
1

T

T∑
t=0

(ηt)
2 −Var(ηt)

]
.

(47)
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By Proposition 2.7 in Basu and Michailidis (2015),

P

(∣∣∣∣∣ 1

T

T∑
t=0

(ξt)
2 −Var(ξt)

∣∣∣∣∣ > 2πM(fX)η

)
≥ 2 exp

[
−cnmin(η, η2)

]
,

and

P

(∣∣∣∣∣ 1

T

T∑
t=0

(ηt)
2 −Var(ηt)

∣∣∣∣∣ > 2πM(fZ)η

)
≥ 2 exp

[
−cnmin(η, η2)

]
.

What remains to be considered is the first term in (47), whose spectral density is given by

fξ+η(θ) = u′fX(θ)u+ v′fZ(θ)z + u′fX,Z(θ)v + v′f∗X,Z(θ)u,

and its upper extreme satisfies

M(fξ+η) ≤M(fX) +M(fZ) + 2M(fX,Z).

Hence, we get:

P

(∣∣∣∣∣ 1

T

T∑
t=0

(ξt + ηt)
2 −Var(ξt + ηt)

∣∣∣∣∣ > 2π[M(fX) +M(fZ) + 2M(fX,Z)]η

)
≥ 2 exp[−cnmin(η, η2)].

Combining all three terms yields the desired result.

Lemma 21 Define the error matrix by ∆B = B̂ − B? and ∆C = Ĉ − C?, and let the
weighted regularizer Q be defined as

Q(B,C) = |||B|||∗ +
λC
λB
||C||1.

With the subspaces defined in (35) and (36), the following inequality holds:

Q(B?, C?)−Q(B̂, Ĉ) ≤ Q(∆B
SB? ,∆

C
JC? )−Q(∆B

S⊥
B?
,∆C
J c
C?

).

Proof First, from definitions (35) and (36), we know that B?
S⊥ = 0 and C?J c

C?
= 0. Using

the definition of Q, we obtain

Q(B?, C?) =
∣∣∣∣∣∣B?
S +B?

S⊥
∣∣∣∣∣∣
∗ +

λC
λB

∣∣∣∣∣∣C?J ?
C

+ C?J c
C?

∣∣∣∣∣∣
1

= |||B?
S |||∗ +

λC
λB

∣∣∣∣∣∣C?J ?
C

∣∣∣∣∣∣
1
,

and

Q(B̂, Ĉ) = Q(B? + ∆B , C? + ∆C)

=
∣∣∣∣∣∣∣∣∣B?S + ∆B

S⊥
B?

+ ∆B
SB? +B?S⊥

∣∣∣∣∣∣∣∣∣
∗

+
λC
λB

∣∣∣∣∣∣C?J ?
C

+ ∆C
JC? + C?J c

C?
+ ∆C

J c
C?

∣∣∣∣∣∣
1

≥
∣∣∣∣∣∣∣∣∣B?S + ∆B

S⊥
B?

∣∣∣∣∣∣∣∣∣
∗
−
∣∣∣∣∣∣∆B

SB?

∣∣∣∣∣∣
∗ +

λC
λB

(∣∣∣∣∣∣C?J ?
C

+ ∆C
JC?

∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∆C
J c

C?

∣∣∣∣∣∣
1

)
≥ |||B?S |||∗ +

∣∣∣∣∣∣∣∣∣∆B
S⊥
B?

∣∣∣∣∣∣∣∣∣
∗
−
∣∣∣∣∣∣∆B

SB?

∣∣∣∣∣∣
∗ +

λC
λB

(∣∣∣∣∣∣C?J ?
C

∣∣∣∣∣∣
1

+
∣∣∣∣∆C
JC?

∣∣∣∣
1
−
∣∣∣∣∣∣∆C
J c

C?

∣∣∣∣∣∣
1

)
.
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The decomposition of the first term comes from the construction of ∆B
S⊥
B?

. It then follows

that

Q(B?, C?)−Q(B̂, Ĉ) ≤ λC
λB

∣∣∣∣∣∣C?J ?
C

∣∣∣∣∣∣
1

+
∣∣∣∣∣∣∆B

SB?

∣∣∣∣∣∣
∗ −

∣∣∣∣∣∣∣∣∣∆B
S⊥
B?

∣∣∣∣∣∣∣∣∣
∗

+
λC
λB

(∣∣∣∣∆C
JC?

∣∣∣∣
1
−
∣∣∣∣∣∣∆C
J c

C?

∣∣∣∣∣∣
1
−
∣∣∣∣∣∣C?J ?

C

∣∣∣∣∣∣
1

)
=
∣∣∣∣∣∣∆B

SB?

∣∣∣∣∣∣
∗ +

λC
λB

∣∣∣∣∆C
JC?

∣∣∣∣
1
−
(∣∣∣∣∣∣∣∣∣∆B

S⊥
B?

∣∣∣∣∣∣∣∣∣
∗

+
λC
λB

∣∣∣∣∣∣∆C
J c

C?

∣∣∣∣∣∣
1

)
= Q(∆B

SB? ,∆
C
JC? )−Q(∆B

S⊥
B?
,∆C
J c

C?
).

Lemma 22 Under the conditions of Theorem 15, the following bound holds:

1

T

∣∣∣∣∣∣W0(∆B
aug + ∆C

aug)
∣∣∣∣∣∣2
F
≥ αRSC

2
(
∣∣∣∣∣∣∆B

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣∆C

∣∣∣∣∣∣2
F

)− λB
2
Q(∆B,∆C).

Proof This lemma directly follows from Lemma 2 in Agarwal et al. (2012), by setting
Θ? = B?, Γ? = C?, with the regularizer R(·) being the element-wise `1 norm. Note that
σj(B

?) = 0 for j = r + 1, · · · ,min{p1, p2} since rank(B) = r. For our problem, it suffices
to set M⊥ as J cC? , and therefore ‖C?J c

C?
‖1 = 0.

Lemma 23 Consider the two centered Gaussian processes {Xt} ∈ Rp1 and {Zt} ∈ Rp2,
and denote their cross covariance matrix by ΓX,Z(h) = (Xt, Zt+h) = E(XtZ

′
t+h). Let X

and Z denote the data matrix. There exist positive constants ci > 0 such that whenever
T % c3(p1 + p2), with probability at least

1− c1 exp[−c2(p1 + p2)],

the following bound holds:

1

T

∣∣∣∣∣∣X ′Z∣∣∣∣∣∣
op
≤ QX,Z

√
p1 + p2

T
+ 4|||ΓX,Z(0)|||op,

where
QX,Z = c0 [M(fX) +M(fZ) +M(fX,Z)] .

Proof The main structure of this proof follows from that of Lemma 3 in Negahban and
Wainwright (2011), and here we focus on how to handle the temporal dependency present
in our problem. Let Sp = {u ∈ Rp|‖u‖ = 1} denote the p-dimensional unit sphere. The
operator norm has the following variational representation form:

1

T

∣∣∣∣∣∣X ′Z∣∣∣∣∣∣
op

=
1

n
sup
u∈Sp1

sup
v∈Sp2

u′X ′Zv.

For positive scalars s1 and s2, define

Ψ(s1, s2) = sup
u∈s1Sp1

sup
v∈s2Sp2

〈Xu,Zv〉,
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and the goal is to establish an upper bound for Ψ(1, 1)/T . Let A = {u1, · · · , uA} and
B = {v1, · · · , vB} denote the 1/4 coverings of Sp1 and Sp2 , respectively. Negahban and
Wainwright (2011) showed that

Ψ(1, 1) ≤ 4 max
ua∈A,vb∈B

〈Xua,Zvb〉,

and by Anderson et al. (1998) and Anderson (2011), there exists a 1/4 covering of Sp1 and
Sp2 with at most A ≤ 8p1 and B ≤ 8p2 elements, respectively. Consequently,

P
[∣∣∣∣ 1

T
Ψ(1, 1)

∣∣∣∣ ≥ 4δ

]
≤ 8p1+p2 max

ua,vb
P
[
|(ua)′XZ(vb)|

T
≥ δ
]
.

What remains to be bounded is

1

T
u′X ′Zv, for an arbitrary fixed pair of (u, v) ∈ Sp1 × Sp2 .

By Lemma 20, we have

P
[∣∣∣∣u′(X ′ZT

)
v

∣∣∣∣ > 2π (M(fX) +M(fZ) +M(fX,Z)) η + |||ΓX,Z(0)|||op

]
≤ 6 exp

(
−cT min{η, η2}

)
.

Therefore, we have

P
[∣∣∣∣ 1

T
Ψ(1, 1)

∣∣∣∣ ≥ 8π (M(fX) +M(fZ) +M(fX,Z)) η + 4|||ΓX,Z(0)|||op

]
≤ 6 exp

[
(p1 + p2) log 8− cT min{η, η2}

]
.

With the specified choice of sample size T , the probability vanishes by choosing η =

c0

√
p1+p2

T , for c0 large enough, and we yield the conclusion in Lemma 23.

Lemma 24 Let {Xt} and {εt} be two generic processes, where εt = (U ′t , V
′
t )′. Suppose the

spectral density of the joint process (X ′t, ε
′
t) exists. Then, the following inequalities hold

m(fX,V ) ≥ m(fX,ε), M(fX,V ) ≤M(fX,ε).

Proof By definition, the spectral density fX,ε(θ) can be written as

fX,ε(θ) =

(
1

2π

) ∞∑
`=−∞

ΓX,ε(`)e
−i`θ, θ ∈ [−π, π]

=

(
1

2π

) ∞∑
`=−∞

(EXtUt+`, EXtVt+`) e
−i`θ

= (fX,U (θ), fX,V (θ)).

It follows that

M(fX,ε) = ess sup
θ∈[−π,π]

√
Λmax(H(θ)),
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where

H(θ) =

[
f∗X,U (θ)

f∗X,V (θ)

] [
fX,U (θ) fX,V (θ)

]
=

[
f∗X,U (θ)fX,U (θ) f∗X,U (θ)fX,V (θ)

f∗X,V (θ)fX,U (θ) f∗X,V (θ)fX,V (θ)

]
.

Note that

M(fX,V ) = ess sup
θ∈[−π,π]

√
Λmax(f∗X,V (θ)fX,V (θ)).

By Lemma ??, ∀θ, Λmin(f∗X,V (θ)fX,V (θ)) ≥ Λmin(H(θ)) and Λmax(f∗X,V (θ)fX,V (θ)) ≤ Λmax(H(θ)),
hence

m(fX,V ) ≥ m(fX,ε), M(fX,V ) ≤M(fX,ε).

Appendix D. Proof of Proposition(s).

Proof [Proof of Proposition 9] The joint process Wt = {(X ′t, Z ′t)′} is a stationary VAR(1)
process, and it follows that

Sw(h) :=

[
Sx(h) Sx,z(h)
Sz,x(h) Sz(h)

]
=

1

T

T∑
t=1

wtw
′
t+h

p→ ΓW (h) := EWtW
′
t+h, as T →∞,

which implies

Sx
p→ ΓX , Sz

p→ ΓZ , Sx,z
p→ ΓX,Z , Sx,z(1)

p→ ΓX,Z(1).

Note that sample partial regression residual covariances can be obtained by

S00 = Sz − Sz(1)S−1
z S′z(1), S11 = Sx − Sx,zS−1

z S′x,z, S10 = Sx,z(1)− Sz(1)S−1
z S′x,z.

An application of the Continuous Mapping Theorem yields

S00
p→ Σ00, S10

p→ Σ10, S11
p→ Σ11.

By Hsu (1941a,b), the limiting behavior of TΨr is given by

TΨr ∼ χ2
(p1−r)(p2−r), as T →∞.

Note that since µ is of multiplicity one and the ordered eigenvalues are continuous functions
of the matrices, the following holds:

φk
p→ µk, ∀ k = 1, . . . ,min(p1, p2).
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