
Towards Ultra-High Performance and Energy Efficiency of Deep Learning
Systems: An Algorithm-Hardware Co-Optimization Framework

Yanzhi Wang1, Caiwen Ding1, Zhe Li1, Geng Yuan1, Siyu Liao2,
Xiaolong Ma1, Bo Yuan2, Xuehai Qian3, Jian Tang1, Qinru Qiu1, Xue Lin4

1Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244
2Department of Electrical Engineering, City University of New York, New York, NY 10031

3Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089
4Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115

Abstract
Hardware accelerations of deep learning systems have been
extensively investigated in industry and academia. The aim
of this paper is to achieve ultra-high energy efficiency and
performance for hardware implementations of deep neural
networks (DNNs). An algorithm-hardware co-optimization
framework is developed, which is applicable to different
DNN types, sizes, and application scenarios. The algorithm
part adopts the general block-circulant matrices to achieve
a fine-grained tradeoff of accuracy and compression ratio.
It applies to both fully-connected and convolutional layers
and contains a mathematically rigorous proof of the effec-
tiveness of the method. The proposed algorithm reduces com-
putational complexity per layer from O(n2) to O(n logn)
and storage complexity from O(n2) to O(n), both for train-
ing and inference. The hardware part consists of highly effi-
cient Field Programmable Gate Array (FPGA)-based imple-
mentations using effective reconfiguration, batch processing,
deep pipelining, resource re-using, and hierarchical control.
Experimental results demonstrate that the proposed frame-
work achieves at least 152X speedup and 71X energy effi-
ciency gain compared with IBM TrueNorth processor under
the same test accuracy. It achieves at least 31X energy effi-
ciency gain compared with the reference FPGA-based work.

Introduction
The recent deep neural networks (DNNs), especially deep
convolutional neural networks (CNNs), have been able to
deliver remarkable success in visual and recognition tasks
(Deng et al.,Taigman et al.) and real-world applications (Hu-
val et al., Collobert and Weston, Burbidge et al.), by lever-
aging large-scale neural network sizes and learning from a
huge volume of data. Despite the advantage of improved
overall accuracy, the deep layered structure and large model
sizes increase the computational complexity and memory
requirements. It is projected that the majority of inference
tasks will be performed on embedded, IoT and mobile sys-
tems which are with limited power and computational re-
sources. In order to achieve higher scalability, performance,
and energy efficiency, two orthogonal research and develop-
ment trends have both attracted enormous interests.

The first is hardware accelerations of deep learning sys-
tems/applications, which have been extensively investigated

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in industry and academia (Farabet et al.,Suda et al.,Qiu et al.,
Zhang et al.,Zhang et al.,Han et al.,Zhao et al.,Zhang and Li,
Umuroglu et al.,com,com,Chen et al.,Han et al.,Chen et al.).
As a representative technique, FPGA-based accelerators can
offer the advantages of programmability, high degree of par-
allelism and short development cycle. Important progresses
have been reported on FPGA accelerations of original DNNs
(Farabet et al., Suda et al., Zhang et al., Zhang et al.), binary
neural networks (Zhao et al., Umuroglu et al.), and more re-
cently, on DNNs and recurrent neural networks (RNNs) with
model compression techniques (Qiu et al.,Han et al.). These
prior work mainly focus on the inference phase of DNNs,
and suffer from frequent access to off-chip memory systems
because the limited on-chip memory can hardly accommo-
date the large model sizes. Accessing off-chip memory is
highly energy inefficient. As pointed out in (Han et al., Han,
Mao, and Dally), the per-bit access energy of off-chip mem-
ory is 200X compared with on-chip memory storage, and
dominates the whole system power consumptions. Besides,
it is also desirable to achieve algorithmic-level accelerations
to accommodate the further scaling of DNNs, instead of sim-
ply adding more and more hardware devices.

The second important trend is the model size compression
and algorithmic-level acceleration of DNNs (with very mi-
nor accuracy loss), including weight quantization (Lin, Ta-
lathi, and Annapureddy, Lin et al.), sparsity regularization
(Feng and Darrell, Wen et al., Li, Park, and Tang), connec-
tion pruning (Han et al.,Han, Mao, and Dally), and low rank
approximation (Denil et al.,Denton et al.). These approaches
can offer a reasonable amount of parameter reduction (e.g.,
by 9× to 13× in (Han et al.,Han, Mao, and Dally)) and/or a
reasonable speedup (e.g., around 50% to 2× in (Wen et al.)).
However, they suffer from the following limitations: (i) the
sparsity regularization and pruning methods will likely re-
sult in an irregular and sparse network structure, thereby un-
dermining the compression ratio and increasing computation
time (especially inefficient on GPUs and dedicated hardware
which has high parallelism capability); (ii) the training com-
plexity will be increased by incorporating additional pruning
process (Han et al., Han, Mao, and Dally), additional low
rank approximation step (Denil et al., Denton et al.), or ex-
tra trade-off parameters (Wen et al.); (iii) the compression
or acceleration factors are heuristic numbers that cannot be
precisely controlled, not to mention a mathematically rigor-

ous proof of the effectiveness of these methods.
To combine these two directions, the aim of this paper is

to address the limitations of existing model size compres-
sion and acceleration work and to achieve ultra-high energy
efficiency and performance for FPGA-based hardware im-
plementations of DNNs, by (i) deriving a highly suitable
algorithm for efficient computation and storage reduction
without significant accuracy loss, and (ii) deriving the corre-
sponding optimized hardware implementations. We develop
an algorithm-hardware co-optimization framework, which is
applicable to different DNN types, sizes, and application
scenarios. The proposed framework comprises algorithm
and hardware parts. The algorithm part extends reference
(Cheng et al.), which applies circulant matrices to the whole
fully-connected (FC) layer for model compression, to (i) the
adoption of the general block-circulant matrices to achieve
fine-grained tradeoff of accuracy and compression ratio, (ii)
the generalization to the convolutional (CONV) layers for
significant acceleration as CONV layers dominate the com-
putation of DNNs (Krizhevsky, Sutskever, and Hinton, He
et al.), (iii) providing a mathematically rigorous proof that
the proposed algorithm will asymptotically converge to the
same “effectiveness” as DNNs without compression, and
(iv) decoupling the fast Fourier transform (FFT) and in-
verse FFT computations in the framework for accelerating
computation and facilitating hardware implementations. The
proposed algorithm reduces computational complexity per
layer from O(n2) to O(n log n) and storage complexity from
O(n2) to O(n), both for training and inference, with negligi-
ble degradation in DNN accuracy. The hardware part con-
sists of highly efficient FPGA-based implementations us-
ing effective reconfiguration, batch processing, deep pipelin-
ing technique, effective resource re-using, and a hierarchical
control framework. The proposed FPGA-based implementa-
tion can accommodate the whole DNN model using on-chip
block memory, thereby significantly improving the over-
all energy efficiency. Finally, a comprehensive algorithm-
hardware co-optimization is proposed which comprises (i)
model selection and optimization, (ii) hardware optimiza-
tion, and (iii) variational inference-based Bayesian learning
for enhancing accuracy and robustness. In summary, the ma-
jor contributions of this work include both algorithm and
hardware parts. The algorithm part adopts block-circulant
matrices for weight representation, which could achieve a
significant model compression ratio with minor accuracy
degradation. It applies to the whole network, both fully-
connected and convolutional layers. The hardware part con-
sists of highly efficient FPGA-based implementations with
multiple innovative parts of reconfiguration, batch process-
ing, deep pipelining, resource re-using, etc.

Please note that the proposed framework is distinct from
the prior work (Mathieu, Henaff, and LeCun), which applies
FFTs to accelerate the computations in the CONV layers.
The prior work applies only to a single filter in the CONV
layer and achieves no storage reduction (in fact it results in
storage increase), whereas the proposed method applies both
to CONV and FC layers and achieves simultaneous acceler-
ation and storage reduction.

Because we focus on highly energy-efficient FPGA-

based implementations for low-power embedded applica-
tions, we focus on the inference phase of small to medium-
scale DNNs (e.g., for MNIST, SVHN, CIFAR datasets)
on high energy-efficiency FPGAs. Compared with the
IBM TrueNorth neurosynapstic processor (Merolla et al.),
our FPGA-based implementation achieves at least 152X
speedup in throughput and 71X energy efficiency gain under
the same test accuracy. Similarly, our actual FPGA imple-
mentations outperform (in performance) the state-of-the-art
analog-based and emerging device-based implementations.
Our framework achieves at least 31X gain in equivalent en-
ergy efficiency compared with the reference FPGA-based
work that achieves the best efficiency.

Related Works
FPGA Accelerations of DNNs. FPGA-based accelerations
of DNNs have been extensively investigated recently due
to the advantages of programmability, high degree of par-
allelism and short development cycle. Based on the early
work of direct acceleration of FPGAs (Farabet et al.), re-
cently researchers have investigated energy-efficient imple-
mentations using the batch processing technique (Zhang et
al., Zhang et al.) or on compressed models using singular
value decomposition (SVD) (Qiu et al.). In this year the re-
search on this topic has exploded, including accelerations of
DNNs with weight pruning (Han et al.), binary neural net-
works (Zhao et al., Umuroglu et al.), and high-level synthe-
sis for fast generation of FPGA implementations (Zhao et
al.,Zhang and Li). These work typically suffer from frequent
access to off-chip memory systems because their model
sizes cannot be effectively reduced for on-chip memory stor-
age, thereby resulting in high energy consumptions. The typ-
ical (equivalent) energy efficiency range is from 7 GOPS/W
to less than 1 TOPS/W, depending on the testing FPGA plat-
form, implementation details, and compression techniques.

Connection Pruning and Weight Sparsifying. Han et al.
(Han et al.,Han, Mao, and Dally) reduced the number of pa-
rameters by 9X - 13X using connection pruning. Since most
reduction is achieved on FC layers, no significant speedups
of CONV layers can be observed (Wen et al.). As CONV
layers have become the computational bottleneck, compres-
sion and acceleration on CONV layers become essential. Liu
et al. achieved layer-wise 4.59X speedup on the CONV lay-
ers of AlexNet with 2% accuracy loss. Recently, (Wen et al.)
adopts a structured sparsity learning method and derives an
effective tradeoff between acceleration on CPU/GPU and
test accuracy for the CONV layers. More specifically, for
ResNet-20 on CIFAR-10 and AlexNet on ImageNet bench-
marks, more than 50% acceleration can be achieved without
any accuracy loss, while around 3X acceleration is achieved
with an acceptable accuracy loss of 2%.

FFTs for CONV Layer Accelerations. LeCun et al. have
proposed using FFTs to accelerate the computations in the
CONV layers, which applies only to a single filter in the
CONV layer (Mathieu, Henaff, and LeCun). It uses FFT
to calculate the traditional inner products of filters and in-
put feature maps, and can achieve speedup for large fil-
ter sizes. The underlying neural network structure remains

Figure 1: Block-circulant matrix-vector multiplication in the
proposed framework.

unchanged. The speedup is due to filter reuse and it can-
not achieve either asymptotic speedup in Big-O notation or
weight compression.

Structured Matrices in FC Layers for Model Compres-
sion. The most relevant work to this paper is (Cheng et al.),
which directly applies circulant matrices to the FC layers for
model compression. As an example, an FC layer of DNN
can be represented as y = ψ(Wx+θ), where vectors x and
y represent the outputs of all neurons in the previous layer
and the current layer, respectively; W is an n-by-n weight
matrix; and ψ(·) is the activation function. When W is a
circulant matrix, the fast Fourier transform (FFT)-based fast
multiplication method can be utilized, and the computational
complexity and weight storage complexity will be reduced
from O(n2) to O(n log n) and from O(n2) to O(n), respec-
tively. Despite the significant reduction in computation and
weight storage, this approach has the limitations of (i) re-
sulting in a huge number of padding 0’s when the numbers
of inputs and outputs are not equal, (ii) resulting in certain
accuracy degradation for large-scale FC layers because of
the aggressive weight reduction, and (iii) only applicable to
the FC layer, whereas the CONV layers are the most com-
putationally intensive in DNNs.

Algorithm Development of Block-Circulant
Matrix-Based DNNs

In this section, we develop the algorithmic framework of
block-circulant matrix-based DNNs for simultaneous ac-
celeration and model compression, for both inference and
training phases. The proposed framework is able to ac-
commodate arbitrary size and aspect ratio of weight matri-
ces, and achieves a fine-grained tradeoff between test accu-
racy and compression/acceleration ratio (Ding et al.). Un-
like (Cheng et al.), we develop algorithms for both FC and
CONV layers as shown in the following. We provide a math-
ematically rigorous proof of the proposed algorithm that it
satisfies the universal approximation property as uncom-
pressed DNNs. Finally, we develop decoupling technique
for FFT/IFFT pairs for further acceleration and facilitating
hardware (FPGA) implementations.

Inference and Training Algorithms for FC Layers
The key idea of block-circulant matrix-based FC layers is to
partition the original arbitrary-size unstructured weight ma-
trix W ∈ Rm×n into 2D blocks of square sub-matrices. Such
partitioning strategy has two advantages: 1) It is suitable for
arbitrary-size weight matrices without any requirement on
the aspect ratio of W; and 2) it is an adjustable approach that
can conveniently control the compression ratio and potential
accuracy loss by only changing the size of sub-matrices.

For formal discussions on the proposed inference and
training procedures, let k denote the block size (size of each
sub-matrix) and there are p × q blocks after partitioning
W, where p = m ÷ k and q = n ÷ k. Zero padding
is required if k does not directly divide m or n, but the
amount of zero padding will be significantly reduced com-
pared with (Cheng et al.). Then W = [Cij], i ∈ {1 . . . p},
j ∈ {1 . . . q}. Correspondingly, the input x is also parti-
tioned as x = [xT

1 ,x
T
2 , . . . ,x

T
q]

T . Then the forward propa-
gation process in the inference phase is given by:

a = Wx =


∑q

j=1 C1jxj∑q
j=1 C2jxj

. . .∑q
j=1 Cpjxj

 =

a1a2. . .
ap

 , (1)

where ai ∈ Rk is a column vector. Assume each circu-
lant matrix Cij is defined by a vector wij , i.e., wij is the
first row vector of Cij . Then according to the circulant
convolution theorem (Pan, Bini, Pan, and Eberly), the cal-
culation of Cijxj can be performed as IFFT

(
FFT(wij) ◦

FFT(xj)
)
, where ◦ denotes element-wise multiplications.

The operation procedure is shown in Fig. 1. For the infer-
ence phase, the computational complexity of this FC layer
will be O(pqk log k), which is equivalent to O(n log n) for
small p, q values. Similarly, the storage complexity will be
O(pqk) because we only need to store wij or FFT(wij) for
each submatrix, which is equivalent to O(n) for small p, q
values. Simultaneous acceleration and model compression
compared with the original DNN can be achieved.

Now consider the backward propagation process in the
training phase. Let ail be the l-th output element in ai. Then
by using the chain rule we can derive the backward propa-
gation process as follows:

∂L

∂wij
=

k∑
l=1

∂L

∂ail

∂ail
∂wij

=
∂L

∂ai

∂ai
∂wij

, (2)

∂L

∂xj
=

p∑
i=1

k∑
l=1

∂L

∂ail

∂ail
∂xj

=

p∑
i=1

∂L

∂ai

∂ai
∂xj

. (3)

We have proved that ∂ai

∂wij
and ∂ai

∂xj
are block-circulant ma-

trices. Therefore, ∂L
∂wij

and ∂L
∂ai

∂ai

∂xj
can be calculated as the

“FFT→element-wise multiplication→IFFT” procedure and
is equivalent to O(n log n) computational complexity per
layer. Due to space limitation, the algorithmic descriptions
of forward and backward propagations are omitted.

Please note that there is no special need to translate into
or approximate each sub-matrix of W. Instead, as shown in

HC

W
C

r
r

r C2

(H
-r+

1)
(W

-r+
1)

X

x *

C
r C2

(H
-r+

1)
(W

-r+
1)

(W
-r+

1)

(H-r+1)

=

=

P P

yF

YF

P

P

...

...

...

...

r r

...

Figure 2: Reformulation of Eqn. (4) to matrix multiplication.

Eqns. (2) and (3), we directly learn the vector wij (the first-
row vector) of each sub-matrix of W in the training process.
The assumption is that the other rows of the sub-matrix fol-
low the circulant formulation. In other words, when follow-
ing the learning process Eqns. (2) and (3), the learnt weight
matrices naturally follow the block-circulant format. In fact,
this is a key advantage of this proposed method in that there
is no need for additional “translation” or “approximation”
steps.

Inference and Training for CONV Layers
We generalize the inference and training algorithms to
CONV layers, which have become the computation bottle-
neck of the whole DNN. The CONV layers are often associ-
ated with multiple input and multiple output feature maps:

Y(x, y, p) =

r∑
i=1

r∑
j=1

C∑
c=1

F(i, j, c, p)X (x+i−1, y+j−1, c),

(4)
where X ∈ R

W×H×C , Y ∈ R
(W−r+1)×(H−r+1)×P , F ∈

R
r×r×C×P represent the input, output, and weight tensors

of the CONV layer, respectively. Here W and H are the spa-
tial dimensions of the input feature maps, C is the number of
input feature maps, r is the size of the convolutional kernel,
and P is the number of output feature maps.

Efficient software tools such as Caffe provide an efficient
methodology of transforming tensor-based operations in the
CONV layer to matrix-based operations (Jia et al., Vedaldi
and Lenc), in order to enhance the implementation effi-
ciency (GPUs are optimized for matrix operations.) Fig.
2 illustrates the application of the method to reformulate
Eqn. (4) to the matrix multiplication Y = XF, where

X ∈ R
(W−r+1)(H−r+1)×Cr2 , Y ∈ R

(W−r+1)(H−r+1)×P ,

and F ∈ R
Cr2×P .

We generalize the concept of “block-circulant structure”
to the rank-4 tensor (F) in the CONV layer, i.e., all the
slices of the form F(·, ·, c, p) are block-circulant matrices.
Then we can prove that F is actually a block-circulant
matrix. Hence the fast multiplication approach for block-
circulant matrices, as the “FFT→component-wise multipli-
cation →IFFT” procedure, can now be applied to accelerate
Y = XF, thereby resulting in the acceleration of (4). The

SVHN
CNN

CIFAR
Narrow
ResNet

CIFAR
Wide
ResNet

ImageNet
AlexNet

MNIST
MLP

TIMIT
RNN

DRL
Medical

MNIST
CNN

DataSet:
Network:

Figure 3: Weight storage reduction results.

training phase can be derived similarly. The overall degrees
of reduction in computational and storage complexities are
similar to those in FC layers.

Theoretical Foundation and Software Results

With the substantial reduction of weight storage and compu-
tations, we also attempt to prove that the proposed block-
circulant matrix-based framework will consistently yield
the similar overall accuracy compared with DNNs without
compression. The theoretical proof will make the proposed
method theoretically rigorous and distinct from prior work.

In the theory of neural networks, the universal approx-
imation property states that a neural network should be
able to approximate any continuous or measurable func-
tion with arbitrary accuracy provided that an enough large
number of parameters are available. This property pro-
vides the theoretical guarantee of using neural networks
to solve machine learning problems, since machine learn-
ing tasks can be formulated as finding a proper ap-
proximation of an unknown, high-dimensional function.
We have proved the universal approximation property of bl-
ock circulant matrix-based neural networks, and more gen-
erally, for arbitrary structured matrices satisfying the low
displacement rank γ. As a result, we can guarantee the uni-
versal “effectiveness” of the proposed framework on differ-
ent DNN types and sizes, application domains, and hard-
ware/software platforms. Detailed proof procedure is pro-
vided in the supplementary file (pro).

Fig. 3 shows the model compression results on MNIST,
SHVN, CIFAR-10, ImageNet, TIMIT (speech recognition)
benchmarks, etc., using various DNN models. The accu-
racy degradations are constrained to be 1% to 2% between
the original models and block-circulant matrix-based mod-
els. The overall model compression is contributed by both
weight parameter reduction and bit quantization. It can be
observed that a significant model size compression, and
therefore acceleration, can be achieved using the proposed
framework.

Accelerating Computation and Facilitating
Hardware Implementations
We propose the decoupling technique of FFTs and IFFTs,
which applies to both inference and training phases. We take
the inference phase of FC layer as an illustrative example.
First, we make the observation that the FFT results of xj ,
i.e., FFT(xj), need to be utilized to calculate all ai vectors.
Similar observation also holds for wij . Hence, we could per-
form pre-calculation of FFT(xj) and FFT(wij) and store
them in memory for effective re-use. The FFT(wij) values
can even be pre-calculated and stored in memory before the
inference phase because they are fixed after training. By per-
forming such pre-calculation of FFT(xj), the total number
of FFTs needed to calculate Wx reduces from p · q to q
(assuming FFT(wij)’s are calculated and stored in prior),
achieving a significant reduction in total computations.

Similarly, each vector ai to be calculated in Eqn. (1) is
given by

∑q
j=1 IFFT

(
FFT(wij)◦FFT(xj)

)
, which requires

q IFFT calculations. Because FFTs and IFFTs are linear op-
erations (Oppenheim), we can calculate IFFT in the last step,
i.e., calculate ai as IFFT

(∑q
j=1 FFT(wij) ◦ FFT(xj)

)
. In

this way the total number of IFFT calculations can be re-
duced by q times.

High Energy Efficiency and Performance
Implementation in FPGAs

Based on the algorithmic framework, we describe the
developed high-efficiency FPGA-based implementation of
DNNs. Since the target is low-power embedded applica-
tions, we focus on the inference phase of small to medium-
scale DNNs, e.g., for MNIST, SVHN, CIFAR datasets. We
leave the large-scale DNNs, e.g., for ImageNet dataset, for
future investigation because they do not target at embed-
ded applications. We first describe the proposed FPGA im-
plementations using a set of reconfiguration and perfor-
mance/efficiency enhancement techniques, then present the
algorithm-hardware co-optimization framework.

FPGA Implementations: Reconfigurability,
In-Place Computation, Batch Processing, Deep
Pipelining, and Resource Re-Use
Reconfigurability, In-Place Computation, and Batch Pro-
cessing. In order to accommodate different DNN models,
sizes, and application scenarios, the proposed FPGA im-
plementation possesses reconfigurability for different layer
sizes and layer types (FC or CONV layers). The reconfig-
urability is achieved because (i) both FC and CONV layers
are formulated as the “FFT→component-wise multiplica-
tion→IFFT” procedure; (ii) IFFT can be implemented using
the FFT structure with simple pre-processing step (Salehi,
Amirfattahi, and Parhi); and (iii) the FFT structure possesses
inherent recursive property in that small-scale FFTs can be
implemented in parallel in larger-scale FFT structures (Op-
penheim). More specifically, the first and second properties
enable the implementation of a single FFT structure in a
time-multiplexed manner for both FFTs and IFFTs and both
FC and CONV layers. For instance, a 128-input FFT struc-
ture can be implemented in FPGA if a block size of 128 is

Figure 4: The execution of the whole DNN inference phase in
FPGA.

utilized. The third property enables that a single FFT struc-
ture can be utilized even if we use different block sizes for
FC and CONV layers. Finally, in-place computation is uti-
lized such that the same memory space can be utilized to
store the outputs of every layer in the DNN, i.e., the out-
puts of each neuron layer i will replace the inputs (outputs
of layer i − 1). In this way, the execution of an overall
DNN will use the single FFT structure in a sequential, time-
multiplexed manner without extra memory requirements.

The execution of the inference phase of the whole DNNs
is shown in Fig. 4. The batch processing technique is uti-
lized, in that a batch of input pictures are processed in an in-
terleaved manner in the FPGA. As shown in Fig. 4, we first
compute the first layer of all input pictures in this batch, then
the second layer, and so on. Different layers of a neural net-
work will be time-multiplexed on the basic block. The com-
putations are all based on the implemented FFT structure
discussed previously in a time-multiplexed manner. All op-
erations will be pipelined on the basic computing block. The
reason of batch processing is the deep pipelining (to be dis-
cussed later) utilized in the hardware implementation. Oth-
erwise, pipeline bubbles have to be injected when computing
all layers for one input picture consecutively, which results
in timing overheads. A typical batch consists of around 50-
100 pictures, because (i) state-of-the-art FPGAs have more
than 2MB on-chip memory storage (e.g., Intel (Altera) Cy-
Clone V 5CEA9, Xilinx Kintex-7 XC7K325T) and (ii) the
intermediate results of small to medium-scale DNNs (e.g.,
DNNs for CIFAR-10) typically take several KBs per picture.

Three-Phase Operations, Deep Pipelining, and Re-
source Re-Use. As described before, the calculation of
Wx consists of three phases: calculation of FFT(xj) vec-
tors for each j, calculation of element-wise multiplications
FFT(wij) ◦ FFT(xj) for each i, j (and corresponding addi-
tions), and IFFTs for each i. For example, if W is 1024-by-
1024 and the block size is 128, a total of 8 FFTs, 8 IFFTs,
and 64 groups of element-wise multiplications will be per-
formed. As shown in Fig. 4, the three-phase operations are

Outer Loop:

Inner Loop:

Optimize model & block size

Variational inference of
Bayesian training

Software-Hardware Co-Optimization

Evaluate performance
and constraints

Figure 5: The software-hardware co-optimization of model
and block size, and Bayesian training.

integrated with batch processing. More specifically, an outer
loop iterates on all layers of the DNN. Within the outer loop
is the three calculation phases. Within each phase is the cal-
culations for every i, j in each picture and for all pictures.
In this way the timing overheads can be minimized to close
to zero.

The deep pipelining technique is utilized for FFTs and
IFFTs in order to improve throughput and energy efficiency,
as illustrated in Fig. 4. For example, if a 128-point FFT
is implemented as the basic computing block in FPGA, it
needs 7 pipeline stages plus 4 additional stages correspond-
ing to memory reading and writing. When IFFT is imple-
mented on such basic computing block, 2 additional stages
are needed corresponding to the preprocessing, and biasing
and ReLU activation. The element-wise multiplications and
additions in the second phase are also pipelined.

One clear advantage of the FPGA-based hardware imple-
mentation is the ability of resource re-use. Besides the effec-
tive time multiplexing of FFTs and IFFTs on the same hard-
ware, the hardware multipliers utilized in the second phase
can also re-use those in the FFT computing block. This ef-
fective resource re-use can be automatically determined in
the FPGA synthesis process (qua), which could improve the
area and energy efficiency of FPGA implementations.

Algorithm-Hardware Co-Optimizations
Finally, an algorithm-hardware co-optimization framework
is developed, which comprises (i) model selection and op-
timization, (ii) hardware optimization, and (iii) variational
inference-based Bayesian learning. The overall objective is
to maximize the performance (throughput) and energy ef-
ficiency of FPGA hardware implementation subject to cer-
tain accuracy requirements. More specifically, the first as-
pect determines the proper block size and weight matrix
size, in order to facilitate FPGA-based FFT implementations
while satisfying the overall accuracy requirement. For state-
of-the-art FPGAs, a proper block size ranges from 64 to 256
(should better be a power of 2) for FC layers and may be
smaller for CONV layers. The second aspect includes the
exploitation of FFTs with real-valued inputs, i.e., the FFT
results of a real-valued vector is symmetric except for the
base (first) component (Oppenheim). Because both xj and
wij are real-valued vectors, we only need to store the first

half of vectors FFT(xj) and FFT(wij), which significantly
reduce the storage requirement and computations required in
element-wise multiplications. The last aspect uses the varia-
tional inference process of Bayesian learning (Blei, Jordan,
and others), which is compatible with the proposed frame-
work and can result in accuracy and robustness enhance-
ments. Bayesian training using variational inference (Blei,
Jordan, and others) is an effective training method to en-
hance accuracy and robustness of machine learning systems,
including neural networks. During training phase, it assumes
that each weight is a variable that satisfies certain prior dis-
tribution at the beginning. For each training sample, it gen-
erates a collection of random weights based on the distri-
bution, and learns both the average and variance of each
weight variable. The inference phase (implemented in hard-
ware) will be the same, using the average estimate of each
weight. Based on our results, Bayesian training is the most
effective for small data training and small-to-medium neural
networks. The algorithm-hardware co-optimization frame-
work is shown in Fig. 5. Overall, the proposed FPGA-based
implementation can accommodate the whole DNN model
using on-chip block memory, thereby significantly improv-
ing the overall energy efficiency.

Experimental Results
In this section, we provide the experimental results on FPGA
implementations of the proposed framework on small to
medium-scale DNNs, using MNIST, SVHN, and CIFAR-
10 benchmarks. Our FPGAs for implementation include the
low-power FPGA Intel (Altera) CyClone V 5CEA9, and the
one with higher performance Xilinx Kintex-7 XC7K325T.
The former one is the default FPGA used in experiments. We
compare the performance (throughput), energy efficiency,
and accuracy with the best state-of-the-arts including IBM
TrueNorth neurosynaptic processor, emerging device (e.g.,
memristor crossbar) based neuromorphic systems, analog-
based neuromorphic systems, and reference FPGA imple-
mentations. IBM TrueNorth (Esser et al., Esser et al.) is a
neuromorphic CMOS chip fabricated in 28nm technology,
with 4096 cores each simulating 256 programmable silicon
neurons in a time-multiplexed manner. It implements the
spiking neural network, which is a bio-inspired type of neu-
ral networks and benefits from the ability of globally asyn-
chronous implementations. It can accommodate MNIST,
SVHN, and CIFAR-10 benchmarks1 in the experiments.

First, we provide the comparison results on accuracy, per-
formance (throughput, in kilo-frames per second (kFPS)),
and energy efficiency (in kFPS/W) on the three benchmarks,
as shown in Table 1. The baselines include IBM TrueNorth
processor and reference FPGA implementations of these
benchmarks. We provide results of the proposed framework
on three DNNs of MNIST data set with different target ac-
curacies, one for SVHN, and two for CIFAR-10 data set.
The first two DNNs of the MNIST data set are multi-layer
perceptron (MLP) models that achieve 92.9% and 95.6% ac-
curacies, respectively. Prior pooling is applied to reduce the

1Please note that ImageNet is not currently supported by IBM
TrueNorth due to the high-degree neural connections.

input size to 256 and 128, respectively. The third DNN of
the MNIST data set is a CNN similar to the LeNet-5 struc-
ture (LeCun et al.). The baseline IBM TrueNorth processor
also has different implementations with different accuracy
levels for the MNIST data set. For the CIFAR-10 data set,
the first DNN is a simple CNN structure, whereas the sec-
ond is a wide ResNet model (He et al.) that can achieve
94.75% accuracy, only 0.75% lower than the best state-of-
the-art software implementation. We can observe that under
the similar accuracy level, the speedup and energy efficiency
gain compared with IBM TrueNorth are at least 152X and
71X, respectively. Under the similar accuracy level, the en-
ergy efficiency gain is at least 31X compared with the ref-
erence FPGA-based implementation that achieves the high-
est energy efficiency (Umuroglu et al.) (using binary neural
networks). Besides the reduction in computational complex-
ity, the high suitability of the proposed framework for hard-
ware implementation, and the highly efficient deep pipelined
hardware structure, the reasons for such significant gains
also include the requirement of increasing neuron numbers
for spiking or binary neural networks to achieve the same
accuracy as MLP or CNN, and the inherent long latency in
spiking neural networks.

Next, we provide sample comparison results with emerg-
ing device and analog-based implementations. Because the
neural networks and applications may be different, we use
the equivalent performance in giga-operations per second
(GOPS) and energy efficiency in GOPS/W for fair com-
parisons. The term “equivalent” is utilized because we nor-
malize the number of (multiplication and addition) oper-
ations to the original matrix-vector multiplication format.
The proposed framework achieves around 5.14 Tera OPS/W
(TOPS/W) energy efficiency, which outperforms represen-
tative latest results using analog computing and emerging
devices. For example, (Shafiee et al., Song et al., Lu et al.)
achieve 380.7 GOPS/W, 142.9 GOPS/W, and 1.04 TOPS/W,
respectively. The reference work can be either manufactured
or device modeling based. Performance wise, as analyzed
in (Bayat et al., Liu et al., Li et al.), a matrix-vector multi-
plication will take around 100ns and it takes around 1µs to
perform one inference sample on the MNIST data set (with
90% - 94% accuracy). Our achieved highest performance
(throughput) for the MNIST data set, i.e., 11.6ns per image
recognition in CyClone V FPGA or around 4ns per image in
Kintex-7 FPGA, is difficult to achieve even using emerging
devices and technology.

Finally, we provide the comparison results with other
FPGA implementations in terms of the equivalent perfor-
mance (in GOPS) and energy efficiency (in GOPS/W), as
shown in Fig. 6. These metrics are relatively fair compar-
isons although the DNNs for implementations may be dif-
ferent. The baseline FPGA implementations include high-
level synthesis-based implementations, implementations of
compressed models, etc. A minimum of more than 84X en-
ergy efficiency gain can be achieved compared with the ref-
erence FPGA implementations. Besides the reduced com-
putational complexity and the high-efficiency hardware im-
plementation, another key reason for such significant energy
efficiency gain is because the proposed FPGA-based imple-

1

10

100

1000

10000

1 10 100 1000 10000

Our FPGA

Performance (GOPS)

Energy Efficiency (GOPS/W)

[Zhao et al.]
[Qiu et al.]

[Zhang et al.]
 (ICCAD)

[Han et al.]

[Zhang et al.]
 (FPGA)

Figure 6: Comparisons of different FPGA implementations on
performance (throughput) and energy efficiency.

mentation can accommodate the whole DNN model using
on-chip block memory, thereby significantly improving the
overall energy efficiency.

Conclusion
This paper presents an algorithm-hardware co-optimization
framework to facilitate ultra high-performance and high en-
ergy efficiency hardware implementations of DNNs on FP-
GAs. The algorithm part adopts the general block-circulant
matrices to achieve a fine-grained tradeoff of accuracy and
compression ratio. It applies to both FC and CONV layers
and contains a mathematically rigorous proof. The proposed
algorithm reduces computational complexity per layer from
O(n2) to O(n log n) and storage complexity from O(n2)
to O(n), both for training and inference phases. The hard-
ware part consists of highly efficient FPGA-based imple-
mentations using effective reconfiguration, batch process-
ing, deep pipelining, resource re-using, and a hierarchical
control framework. Experimental results demonstrate that
the proposed framework achieves at least 152X speedup in
throughput and 71X energy efficiency gain compared with
IBM TrueNorth processor under the same test accuracy. It
achieves at least 31X energy efficiency gain compared with
the reference FPGA-based work.

Acknowledgement
This work is funded by the National Science Founda-
tion Awards CNS-1650469, CCF-1733701, CNS-1704662,
CCF-1657333, CNS-1739748, and CCF-1733834.

References
Alemdar, H.; Caldwell, N.; Leroy, V.; Prost-Boucle, A.; and
Pétrot, F. 2016. Ternary neural networks for resource-
efficient ai applications. arXiv preprint arXiv:1609.00222.
Bayat, F. M.; Guo, X.; Klachko, M.; Prezioso, M.; Likharev,
K.; and Strukov, D. 2016. Sub-1-us, sub-20-nj pattern
classification in a mixed-signal circuit based on embedded
180-nm floating-gate memory cell arrays. arXiv preprint
arXiv:1610.02091.

Table 1: Comparison results on accuracy, performance, and energy efficiency of the proposed FPGA designs and baselines.
Name Dataset Platform Precision Accuracy Performance Energy eff.

(kFPS) (kFPS/W)

Proposed MNIST 1 MNIST CyClone V 12 92.9% 8.6× 104 1.57× 105

Proposed MNIST 2 MNIST CyClone V 12 95.6% 2.9× 104 5.2× 104

Proposed MNIST 3 MNIST CyClone V 12 99.0% 363 659.5
Proposed SVHN SVHN CyClone V 12 96.2% 384.9 699.7
Proposed CIFAR-10 1 CIFAR-10 CyClone V 12 80.3% 1383 2514
Proposed CIFAR-10 2 CIFAR-10 CyClone V 12 94.75% 13.95 25.4

TrueNorth (Esser et al.) MNIST TrueNorth 2 99%+ 1.0 9.26
TrueNorth (Esser et al.) MNIST TrueNorth 2 95% 1.0 250
TrueNorth (Esser et al.) SVHN TrueNorth 2 96.7% 2.53 9.85
TrueNorth (Esser et al.) CIFAR-10 TrueNorth 2 83.4% 1.25 6.11

Umuroglu et al. (Umuroglu et al.) MNIST ZC706 1 95.8% 1.23× 104 1693
Umuroglu et al. (Umuroglu et al.) SVHN ZC706 1 94.9% 21.9 6.08
Umuroglu et al. (Umuroglu et al.) CIFAR-10 ZC706 1 80.1% 21.9 6.08
Alemdar et al. (Alemdar et al.) MNIST Kintex-7 2 98.3% 255.1 92.59

Bini, D.; Pan, V.; and Eberly, W. 1996. Polynomial and ma-
trix computations volume 1: Fundamental algorithms. SIAM
Review.
Blei, D. M.; Jordan, M. I.; et al. 2006. Variational inference
for dirichlet process mixtures. Bayesian analysis 1(1):121–
143.
Burbidge, R.; Trotter, M.; Buxton, B.; and Holden, S. 2001.
Drug design by machine learning: support vector machines
for pharmaceutical data analysis. Computers & chemistry
26(1):5–14.
Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.;
and Temam, O. 2014. Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning. In
ACM Sigplan Notices.
Chen, Y.-H.; Krishna, T.; Emer, J. S.; and Sze, V. 2017.
Eyeriss: An energy-efficient reconfigurable accelerator for
deep convolutional neural networks. IEEE Journal of Solid-
State Circuits 52(1).
Cheng, Y.; Yu, F. X.; Feris, R. S.; Kumar, S.; Choudhary,
A.; and Chang, S.-F. 2015. An exploration of parameter
redundancy in deep networks with circulant projections. In
ICCV, 2857–2865.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In ICML, 160–167. ACM.
http://www.techradar.com/news/computing-
components/processors/google-s-tensor-
processing-unit-explained-this-is-what-
the-future-of-computing-looks-like-
1326915.
https://www.sdxcentral.com/articles/
news/intels-deep-learning-chips-will-
arrive-2017/2016/11/.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR, 248–255. IEEE.

Denil, M.; Shakibi, B.; Dinh, L.; de Freitas, N.; et al. 2013.
Predicting parameters in deep learning. In NIPS, 2148–
2156.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convo-
lutional networks for efficient evaluation. In NIPS, 1269–
1277.
Ding, C.; Liao, S.; Wang, Y.; Li, Z.; Liu, N.; Zhuo, Y.; Wang,
C.; Qian, X.; Bai, Y.; Yuan, G.; et al. 2017. C ir cnn: accel-
erating and compressing deep neural networks using block-
circulant weight matrices. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
395–408. ACM.
Esser, S. K.; Appuswamy, R.; Merolla, P.; Arthur, J. V.; and
Modha, D. S. 2015. Backpropagation for energy-efficient
neuromorphic computing. In NIPS, 1117–1125.
Esser, S. K.; Merolla, P. A.; Arthur, J. V.; Cassidy, A. S.;
Appuswamy, R.; Andreopoulos, A.; Berg, D. J.; McKinstry,
J. L.; Melano, T.; Barch, D. R.; et al. 2016. Convolutional
networks for fast, energy-efficient neuromorphic computing.
NAS 201604850.
Farabet, C.; Poulet, C.; Han, J. Y.; and LeCun, Y. 2009.
Cnp: An fpga-based processor for convolutional networks.
In FPL, 32–37.
Feng, J., and Darrell, T. 2015. Learning the structure of deep
convolutional networks. In ICCV, 2749–2757.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
In NIPS, 1135–1143.
Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz,
M. A.; and Dally, W. J. 2016. Eie: efficient inference en-
gine on compressed deep neural network. In ISCA, 243–254.
IEEE Press.
Han, S.; Kang, J.; Mao, H.; Hu, Y.; Li, X.; Li, Y.; Xie, D.;
Luo, H.; Yao, S.; Wang, Y.; et al. 2017. Ese: Efficient speech
recognition engine with sparse lstm on fpga. In FPGA, 75–
84. ACM.

Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.;
Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.; Migi-
matsu, T.; Cheng-Yue, R.; et al. 2015. An empirical eval-
uation of deep learning on highway driving. arXiv preprint
arXiv:1504.01716.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
MM, 675–678. ACM.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS.
LeCun, Y.; Jackel, L.; Bottou, L.; Brunot, A.; Cortes, C.;
Denker, J.; Drucker, H.; Guyon, I.; Muller, U.; Sackinger, E.;
et al. 1995. Comparison of learning algorithms for handwrit-
ten digit recognition. In ICANN, volume 60, 53–60. Perth,
Australia.
Li, S.; Liu, X.; Mao, M.; Li, H. H.; Chen, Y.; Li, B.; and
Wang, Y. 2016. Heterogeneous systems with reconfigurable
neuromorphic computing accelerators. In ISCAS, 125–128.
IEEE.
Li, S.; Park, J.; and Tang, P. T. P. 2017. Enabling sparse
winograd convolution by native pruning. arXiv preprint
arXiv:1702.08597.
Lin, Z.; Courbariaux, M.; Memisevic, R.; and Bengio, Y.
2015. Neural networks with few multiplications. arXiv
preprint arXiv:1510.03009.
Lin, D.; Talathi, S.; and Annapureddy, S. 2016. Fixed
point quantization of deep convolutional networks. In ICML,
2849–2858.
Liu, X.; Mao, M.; Liu, B.; Li, B.; Wang, Y.; Jiang, H.;
Barnell, M.; Wu, Q.; Yang, J.; Li, H.; et al. 2016. Har-
monica: A framework of heterogeneous computing systems
with memristor-based neuromorphic computing accelera-
tors. IEEE Transactions on Circuits and Systems I: Regular
Papers 63(5):617–628.
Lu, J.; Young, S.; Arel, I.; and Holleman, J. 2015. A 1
tops/w analog deep machine-learning engine with floating-
gate storage in 0.13 µm cmos. IEEE Journal of Solid-State
Circuits 50(1).
Mathieu, M.; Henaff, M.; and LeCun, Y. 2013. Fast train-
ing of convolutional networks through ffts. arXiv preprint
arXiv:1312.5851.
Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy,
A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.;
Guo, C.; Nakamura, Y.; et al. 2014. A million spiking-
neuron integrated circuit with a scalable communication net-
work and interface. Science 345(6197):668–673.
Oppenheim, A. V. 1999. Discrete-time signal processing.
Pearson Education India.

Pan, V. 2012. Structured matrices and polynomials: unified
superfast algorithms. Springer Science & Business Media.
https://drive.google.com/open?id=
0B19Xkz1gXlwAYjVjWC1Kc2xSRm8.
Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.;
Tang, T.; Xu, N.; Song, S.; et al. 2016. Going deeper with
embedded fpga platform for convolutional neural network.
In FPGA, 26–35.
https://dl.altera.com.
Salehi, S. A.; Amirfattahi, R.; and Parhi, K. K. 2013.
Pipelined architectures for real-valued fft and hermitian-
symmetric ifft with real datapaths. IEEE Transactions on
Circuits and Systems II: Express Briefs 60(8):507–511.
Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian,
R.; Strachan, J. P.; Hu, M.; Williams, R. S.; and Srikumar,
V. 2016. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. In ISCA, 14–26.
IEEE Press.
Song, L.; Qian, X.; Li, H.; and Chen, Y. 2017. Pipelayer:
A pipelined reram-based accelerator for deep learning. In
HPCA.
Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.;
Vrudhula, S.; Seo, J.-s.; and Cao, Y. 2016. Throughput-
optimized opencl-based fpga accelerator for large-scale con-
volutional neural networks. In FPGA, 16–25. ACM.
Taigman, Y.; Yang, M.; Ranzato, M.; and Wolf, L. 2014.
Deepface: Closing the gap to human-level performance in
face verification. In CVPR, 1701–1708.
Umuroglu, Y.; Fraser, N. J.; Gambardella, G.; Blott, M.;
Leong, P.; Jahre, M.; and Vissers, K. 2016. Finn: A frame-
work for fast, scalable binarized neural network inference.
arXiv preprint arXiv:1612.07119.
Vedaldi, A., and Lenc, K. 2015. Matconvnet: Convolutional
neural networks for matlab. In MM, 689–692. ACM.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. In
NIPS, 2074–2082.
Zhang, J., and Li, J. 2017. Improving the performance of
opencl-based fpga accelerator for convolutional neural net-
work. In FPGA.
Zhang, C.; Fang, Z.; Zhou, P.; Pan, P.; and Cong, J. 2016a.
Caffeine: towards uniformed representation and acceleration
for deep convolutional neural networks. In ICCAD, 12.
ACM.
Zhang, C.; Wu, D.; Sun, J.; Sun, G.; Luo, G.; and Cong,
J. 2016b. Energy-efficient cnn implementation on a deeply
pipelined fpga cluster. In ISLPED, 326–331. ACM.
Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.-H.; Sri-
vastava, M.; Gupta, R.; and Zhang, Z. 2017. Accelerat-
ing binarized convolutional neural networks with software-
programmable fpgas. In FPGA, 15–24. ACM.

