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Abstract— We introduce an interactive system for extracting
the geometries of generalized cylinders and cuboids from single-
or multiple-view point clouds. Our proposed method is intuitive
and only requires the object’s silhouettes to be traced by the
user. Leveraging the user’s perceptual understanding of what an
object looks like, our proposed method is capable of extracting
accurate models, even in the presence of occlusion, clutter
or incomplete point cloud data, while preserving the original
object’s details and scale. We demonstrate the merits of our
proposed method through a set of experiments on a public RGB-
D dataset. We extracted 16 objects from the dataset using at
most two views of each object. Our extracted models represent
a high degree of visual similarity to the original objects. Further,
we achieved a mean normalized Hausdorff distance of 5.66%
when comparing our extracted models with the dataset’s ground
truths.

I. INTRODUCTION

Recent advancements in the field of robotic research are
propelled by 3D sensors and their ability to provide accurate
measurements which are in turn used to geometrically model
the objects or the environment surrounding a robot. Methods
that use such models to aid perception fall under the category
of model based generative approaches [1], [2], [3], [4]. These
approaches use mesh models that are either synthetically
designed using CAD tools or created by scanning real scenes.
Further, object geometries are becoming a necessary prior
information for grasping and manipulation [5]. Often times,
object geometries are required to perform reliable grasping
and manipulation actions on the object. Designing suitable
models from scratch is a challenging endeavor.

Although automatic object scanning methods which typi-
cally rely on real-time surface reconstruction [6], [7], have
gained interest in recent years, they are not without their
own problems: their outputs may contain noise, holes and
other imperfections which are usually caused by hardware
limitations or inherent object or surface properties (transparen-
cies, reflections, etc.). Concurrently, a variety of methods that
leverage the human’s cognitive ability in the task of 3D
geometry extraction have been proposed in the literature [8],
[9], [10], [11]. Inspired by the success of these human-in-the-
loop methods, this paper is an effort towards reliable geometry
extraction that can be used in model based generative
algorithms geared towards robot manipulation.

In this paper, we introduce GemSketch: a human-in-the-
loop system that can extract the 3D models of generalized
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Fig. 1: Geometry extraction of and occluded candlestick (top) and a
transparent grinder (bottom) using GemSketch. (a) Sideways single-view
point cloud data. (b) User-traced silhouettes on the RGB image (users
may use their intuition to trace the occluded object parts) (c) 3D mesh
superimposed on the point cloud. (d) Fully extracted at-scale texture-mapped
3D model. The grinder in (d) is texture mapped. Checkered pattern indicates
missing point cloud data. Note that in the final result, small deviations from
the user input are expected due to smoothing.

cuboids and generalized cylinders from single- or multi-view
point cloud data. By tracing the outlines of an object of
interest with a mouse or a stylus on the 2D image of the object,
GemSketch can extract complete mesh models of objects
from point clouds, while preserving object scales as well as
their details. Armed with the perceptual understanding of
humans, GemSketch facilitates robust and reliable extraction,
even in the presence of occlusion, and clutter as well as
noisy or incomplete point clouds (see Figure 1). Through a
series of experiments we demonstrate the power and the
accuracy of GemSketch in 3D geometry extraction. Our
results demonstrate that with usually one and at most two
point cloud views, GemSketch is a viable tool for extracting
accurate 3D geometries.

Contributions. First, we introduce an interactive geometry
extraction system designed to work with noisy and unreliable
3D point cloud data. Second, we develop a minimalistic,
yet intuitive user interface that enables our computational
methods to overcome limitations caused by occlusions, clutter
and other imperfections. The last contribution is the evaluation
of our proposed approach on a public RGB-D dataset.



II. RELATED WORK

Automatic Shape Extraction or Completion. Schnabel et
al. [12] proposed an efficient RANSAC-based method for
automatically extracting geometries that have analytical
representations (e.g. planes, cylinders, tori, etc.) from point
clouds. Their method is fast but may require post processing
to merge together multiple partial-shapes that originally
belonged to a larger shape. Kim et al. [13] proposed a
method that can extract the full geometry of a target shape
given topological information (such as placement of subparts)
about the shape. The difference between these works and
ours is that we utilize interactive interfaces to complement
the computational power of computers and benefit from the
perceptual understanding of the human operator. It is worth
mentioning that automatic methods have been progressing
rapidly in recent years and have been shown to demonstrate
great success in shape [14] or point cloud completion [15].
However, these works mostly focus on plausible completion
of the 3D models without specifically paying attention to
preserving the original object’s details or geometry.

Deep Learning. Recently, deep networks have gained a lot of
interest due to their power in aiding robotic manipulation [5],
3D shape recognition [16], [17] and reconstruction [18], [19].
Zhaoliang et al. [18] proposed a method for reconstructing
3D objects using their 2D sketches. Their approach works
by encoding the multi-view input sketches into comapct
representations learned using a deep encoder network, and de-
coding the obtained representations into depth an normal maps
from multiple viewpoints. The final 3D model is obtained
by the fusion of these depth and normal maps. Although
very promising, deep learning-based methods require a lot of
training data that may not be readily available and as such
differ in scope from the current work.

Interactive Modeling. Interactive modeling using sketches
dates back to [20] and [21]. More recently, Gingold et
al. [22] proposed a framework for creating 3D shapes using
annotated sketches or images. The user would place a group
of predefined annotation elements (e.g. shapes, geometric
relationships, efc.) on an image or a freehand drawing of
a target object to build a 3D model. Similarly, Shtof et
al. [23] model a 3D shape using its constituent sub-parts
through dragging and dropping predefined 3D primitives (eg.
spheres, cylinders, efc.) on each sub-part. Dragged shapes are
snapped to the silhouettes using geosemantic relations and
are optimized to produce the best fit shape. Xu et al. [24]
proposed a system for modeling mechanisms (such as a
piston-engine) using sketches on multiview images. Their
modeled structures were capable of simulating the behavior
of their physical counterpart. The common element of all
these existing work is the use of sketches as the underlying
data to guide and aid the creation of 3D shapes. In some of
these works, the shapes may not necessarily exist as physical
objects. Whereas in this work, we focus on extracting existing
objects for which we have 3D point cloud data.

Image-guided Modeling. In addition to sketching, modeling
3D shapes and geometries can also be guided by images or
videos. Lau et al. [25] introduced a framework for creating

customized complementary objects that may not exist in the
real-world. Such creation is guided by an image of a similar
object and aims to facilitate model designing. Conversely, the
current work focuses on extracting the geometry of an object.
Zou et al. [26] leverage the planar structure of piecewise
planar objects to extract complete geometries. Given a rough
sketch of an object of interest, the planar structure of object
parts are exploited to accurately model the object as well as
its occluded parts. In comparison, our work supports more
generalized primitives. van den Hengel et al. [27] introduced
VideoTrace, a system which pairs user interaction with sparse
point cloud obtained from multiview video frames to model
3D objects. The current work differs from VideoTrace in that
the presence of multiple views of an object is a necessity for
the latter, while the former can still function with single view
data.

Our work is most inspired by 3-Sweep [8] that presents
a tool for modeling generalized cylinders and cuboids using
sweeping interactions on photos. Two sweeps determine the
object’s base shape (a disk or a rectangle) while the third
sweep determines the object’s height extent. The 3D shape
and the pose of the base is estimated using its 2D projection
and is copied along the extent direction of the third sweep
to form the complete 3D shape. More complex objects are
modeled by modeling their sub-parts individually. GemSketch
differs from 3-Sweep and extends it in a number of ways.
GemSketch can benefit from multiple views as well as the
availability of 3D data in order to minimize the need for
resolving pose ambiguities. We will demonstrate later that
our method can model objects even in the presence of clutter
and occlusion. We further discuss the differences of our work
and that of Chen’s et al. [8] in Section V.

III. INTERACTIVE GEOMETRY EXTRACTION
A. Overview

Our geometry extraction system can take a single input
or a series of inputs. If only a single view of an object
of interest is available, the input to our system is a triplet
of a point cloud, an RGB image and camera calibration
values for the RGB image. If multiple views are available,
we additionally require the extrinsic transformation of the
camera between each two consecutive views. To perform
geometry extraction, the user traces the outlines of the object
of interest on the RGB image using 4 disjoint strokes, one
for each side of the object as shown in Figure 2b. Users
may use as many views as they want to perform sketching.
Drawn sketches can be transferred between views, since we
can estimate the homography between the scenes [28] (see
the accompanying video'). The system optionally provides a
magnetic selection tool that snaps the selection path to the
nearest object outlines. If the object is partially occluded,
users are free to complete the traces using their intuition of
how the occluded object parts look (see Figure 1b). When
tracing is done, the system creates a texture-mapped 3D mesh
of the object that was traced. In total, our geometry extraction
is performed in 4 steps: preprocessing, 3D profile extraction,

IThe project page is located at:
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Fig. 2: Tracing the outlines of a cup to extract its 3D mesh. The user can
specify the mesh to be hollow.
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Fig. 3: Modeling a generalized cylinder. (a) User-traced silhouettes. (b)
Extracted object’s profile and spine. (c) Propagated and scale-adjusted profiles
at regular intervals along the spine. Each C; denotes the translated center
of the copied profile along the spine. Copied profiles are scaled such that
they meet the user’s strokes at the points denoted by asterisk.

object axis extraction and finally, profile propagation. We
next describe these steps in detail.

B. Terminology

Before delving deeper into the geometry extraction pipeline,
we define some of the terminology we frequently use
throughout the text.

Shape Profile. We refer to the 3D disk or rectangular shape
at either end of the object as the shape profile. This shape
determines whether the target object’s shape is a generalized
cylinder or a generalized cuboid.

Profile Plane. The plane that contains the 3D profile shape
is called the profile plane.

Profile Stroke. The stroke that is used to extract the 3D
shape profile is called the profile stroke. This stroke is usually

drawn at one end of the object (strokes 1 and 4 in Figure 2b).

Side Strokes. We refer to strokes 2 and 3 in Figure 2b as
side strokes. These strokes usually span the object’s dominant
extent when tracing the silhouettes.

Spine. We refer to the object’s main axis as the 3D spine.
This line or curve spans through the extents of the object and
determines whether the object is a straight or a bent shape.

Profile Propagation. We call the process of creating copies
of the shape profile along the spine while accounting for
normal and scale changes profile propagation (see Figure 3c).

(b) Detected
edges

(¢) Thinned
edges

(d) Selection
path

(a) Input color
image

Fig. 4: Proprocessing steps performed on the RGB image necessary for the
magnetic selection tool. Edges of the input image (a) are detected using [Xie
and Tu 2015] as shown in (b) and are thinned to produce the edges in (c).

Object Plane. The object plane is a plane that is orthogonal
to the plane of the profile, is fully visible from the camera’s
viewpoint, and with respect to which the object is symmetric.

C. Preprocessing of Input Data

The input triplet to our system can be obtained from
commodity depth sensors (such as Microsoft Kinect or Intel
RealSense cameras). We assume that the point cloud is already
transformed into the coordinate frame of the color camera
to simplify our computations. In the case of multiple-view
point clouds, the camera must be tracked too and the extrinsic
transformations of the camera between consecutive views are
needed. Although state-of-the-art registration methods [19]
can be utilized for this purpose, we found the iterative closest
point (ICP) [29] method to be sufficient for obtaining such
transformations in case of small camera movements.

We should note that the point clouds obtained using
commodity depth cameras contain inaccuracies and highly
undersampled surfaces due to inherent object properties
(see Figure la). As such, one important contribution of our
system is using robust algorithms that can work around such
issues. Consequently, in our algorithms we prefer fitting and
estimation over the direct use of point cloud’s points.

Our system performs a series of preprocessing steps on the
input data. To accelerate ray intersection queries with the point
cloud, we populate an octree using the point cloud’s points.
The color image is undistorted and filtered for noise using non-
local means denoising [30]. Afterwards, existing contours
of the color image are found using the method proposed
in [31] and are thinned using non-maximal suppression [32]
as shown in Figure 4c.

To aid users in tracing object outlines, we provide a
magnetic selection tool that is based on Intelligent Scissors
[33] (see Figure 4d). This tool snaps the active selection path
to the nearest image contour. In our system, users can force
this tool to draw straight lines by holding a modifier key on
the keyboard, which is helpful for tracing objects that have
straight silhouettes such as boxes. At the preprocessing stage,
we precompute the necessary graphs for this tool to work
(see [33] for more details).

Finally, users specify the object’s silhouettes through stylus
or mouse interactions. Because accurate stroke segmentation
of complex trajectories is still an open issue, we opt for a



more reliable approach to avoid false positives. Specifically,
a user draws four strokes, two of which specify the top and
bottom of the target object, and two more that span the two
sides (see Figure 2b). In our testing, we found this minimum
number of strokes to be expressiveness enough to define all
shapes of interest, regardless of occlusion.

D. Profile Extraction

The user starts the extraction process by sketching at one
end of the object, whichever they deem more suitable for
sketching (either stroke 1 or 4 in Figure 2b). This first stroke
determines the shape of the profile of the object as well as
the final 3D shape and is the cornerstone of the rest of the
algorithm. If the shape of the first stroke is an arc or an ellipse
(either complete or partial), the next step of the pipeline will
treat the object as a generalized cylinder, otherwise the object
will be treated as a generalized cuboid. The recognition of the
first stroke is performed using a fast recognizer that supports
gesture customization [34] so that a wide variety of shape
profile sketches can be recognized.

Once the profile’s 2D shape is determined, its 3D shape
is obtained using the 3D point cloud’s points. The goal is
to fit a 3D circle or rectangle to the point cloud’s points
that correspond to the image points under the user’s sketches
(circular disks can be converted to elliptical disks if necessary).
Further, the projection of this 3D shape must match the user’s
sketches as best as possible. We satisfy these requirements
in four steps.

Noise Removal and Beautification. We first smooth all the
user’s strokes using Gaussian smoothing to eliminate noise
and jitters. Also, we beautify the profile stroke by fitting the
appropriate 2D shape to the user’s input (see Figure 2c). We
have found this beautification step to be instrumental for the
subsequent steps of our pipeline. Beautification of arcs and
ellipses is done using ElliFit [35], whereas beautification of
polylines is done similar to [36]: sharp corner features are
determined using IStraw [37] and are connected with straight
lines to form the polyline. In case sketches are performed for
more than one view, beautification is performed for sketches
in all views.

Obtaining 3D Points. Next, we obtain the 3D points
corresponding to the 2D sketched profile. This is done by
backprojecting beautified stroke points to 3D rays using the
camera’s inverse projection matrix. We perform intersection
tests between these rays and the point cloud’s octree. In
cases where the rays do not intersect 3D points directly, we
perform a closest-point-to-line look up among the points in
the octree voxel that the 3D ray intersects. To avoid selecting
noisy points, outliers and points belonging to nearby objects,
we filter all the obtained 3D points by performing a simple
density-based clustering method similar to DBSCAN [38]
and the points in the largest cluster are used for 3D fitting.

Multi-view Cases. In case of multiple-view point clouds, we
use the method above to obtain and filter the 3D points per
each view. We then combine all the obtained points together
into the coordinate frame of one of the views using the known
transformations between all the point cloud views.

Fitting a 3D Shape. The next step is to fit a 3D disk or a 3D
rectangle to the 3D points obtained in the previous step. We
use RANSAC for fitting 3D disks as we have experimentally
found it to be the simplest and the most robust method when
dealing with noisy or incomplete point clouds. To fit a 3D
rectangle, we first fit a 3D plane to the 3D points using
RANSAC. We then project the 3D points onto the obtained
plane and find their minimum area bounding rectangle on
the plane using the rotating calipers [39] algorithm. This
rectangle is converted to a 3D rectangle by expressing it in
terms of its 3D center and extents with respect to the fitted
plane.

Pose Optimization. At this point, the fitted 3D shape may
have a slightly wrong pose or scale. In our experience, this
happens more frequently when only one view of the object
is available. To correct this, we formulate and solve an
optimization problem in which the goal is to match the 2D
projection of the 3D profile to the beautified user strokes.
This can be thought of as finding a rotation transformation
and a scaling coefficient that minimizes the distance between
the n points on the circumference of the 3D shape and the
3D rays obtained by backprojecting the corresponding 2D
points on the beautified strokes. To make the formulation
of the optimization problem simpler, the 3D rays obtained
via backprojection can be represented using Pliicker lines as
detailed in [28]. Therefore, we can formulate the following
optimization system:

minimize E = Zd( (s . Rschmiat) i, Ly )2 (D

i=1
where s is the scaling coefficient, Rgcpmiq: 1S the rotation
vector expressed in the formulation of [40], P; is the ith
3D points sampled on the circumference of the modeled 3D
profile. The formulation of Equation 1 using Pliicker lines
instead of reprojection error simplifies the computation of
the Jacobian matrix. In Equation 1, L; is the Pliicker line
obtained by backprojecting the ith 2D point on the beautified
stroke corresponding to the ith 3D point. Each L; is of form
L = (i@,m) where 4 is a unit vector and 7 is the moment
vector. Finally, d(P, L) is the distance between the 3D point
P and the Pliicker line L. This distance can be computed as
[41]:

d(P, L) = ||P xa — i (2)

where x is the cross product. Equation 1 is a non-linear
unconstrained sum of squares minimization problem which
we solve using the Levenberg-Marquardt method [42]. The
optimization is very fast and is done at interactive rates.

E. Object Spine Extraction

The next step of the pipeline is to extract the object’s
spine in 3D using the user’s sketches. For simplicity we
assume that the object’s 3D spine is planar from the camera’s
viewpoint. As a result, the spine can be either a line or a
curve, depending on whether the object is a straight or a bent
shape. We recover this line or curve in two steps. We first
recover its 2D projection using the user traced silhouettes.
We then use this 2D projection and the extracted 3D profile
to fully recover the spine in 3D.



To extract the spine’s 2D projection, the side strokes
(strokes 2 and 3 shown in Figure 2b) are used. The challenge
in the extraction of the spine using the side strokes is that these
strokes may be made up of complex curves, but the object’s
spine may be a line, or a simple curve. As a result, we use the
following procedure to robustly estimate the projection. We
fit Bézier curves to each of the side strokes using a method
proposed by Schneider [43]. Then, we average the two curves
by first sampling the same number of equidistant points on
each curve and finding the average of each pair of these points,
where each point belongs to one of the parametric curves.
Next, the center points of the 2D shape that was previously
fitted to the beautified strokes of 1 and 4 in Figure 2b are
added to these averaged points. We then fit another Bézier
curve to the set of points that we just obtained and treat the
resulting curve as the 2D projection of the object’s spine?.
We optionally perform a simple line test similar to [36], and
if the test passes, replace the 2D curve with the line that
passes through the curve’s endpoints.

The reason for using Bézier curves in the above procedure
is to remove potential noisy points from the input, as well
as to obtain the more expressive parametric representation.
Also, the benefit of our curve averaging method is that the
resulting points will be less sensitive to finer changes in the
object’s outlines. We have found sampling 10 points on each
curve during averaging to produce satisfactory results.

Once the 2D projection of the 3D axis is determined, we
may fully recover the 3D spine itself by backprojecting the
obtained 2D points into 3D rays using the camera calibration
matrix. The intersection point of these rays with the object
plane will be the 3D spine points.

FE. Profile Propagation and Mesh Creation

The final step of the pipeline is to clone the obtained 3D
profile along the direction of the spine, while accounting for
the changes in the scale of the profile based on the changes
of the object’s outlines, as shown in Figure 3c. We may use
the 3D spine itself to orient the normal of each copied profile.
The challenge is determining the correct scale for each copied
profile, since point cloud’s points may be noisy or missing
altogether.

To work around these issues, we use the user’s strokes to
determine the correct scale for each copied profile. Once each
copy of the profile is created at the correct position, we keep
this center position fixed and then compute its 2D projection
and scale this 2D projection to meet the outlines of the side
strokes drawn by the user at points signified by asterisks in
Figure 3c. We may then backproject these points into 3D rays,
compute their intersections with the object plane and use the
3D intersection points to determine the correct scaling factor
for the copied profile. In our implementation, we densely
propagate the profiles such that the distance between the 2D
projections of two consecutive profile centers is 1 pixel. We
found this to result in a more detailed 3D model.

The final mesh can be trivially created by uniformly
sampling points on the circumference of all the 3D profiles

2Note that perspective projection may affect the alignment between object’s
spine and its image. In practice, we found this effect to be minimal

and triangulating those points. Optionally, the user may
specify one end or both ends of the created mesh to be
hollow. This will result in a more natural looking 3D model
for shapes such as a cup (see Figure 2e). Further, the mesh
may optionally be textured by projecting the visible vertices
onto the image and assigning texture values based on RGB
pixels. Given that the object’s plane is known, we may mirror
the object’s front texture to the back, in case no view of the
back side of the object is available.

IV. EXPERIMENTAL RESULTS

We performed a series of experiments with our tool to ex-
amine its capabilities. When performing geometry extraction
and object modeling, a question of interest is how similar
modeled objects are to their physical counterpart. To answer
this, we performed a series of extraction comparisons using
the BigBIRD dataset [44]. BigBIRD is a 3D dataset of object
instances that contains RGB-D images and reconstructed
mesh of 125 objects from 5 different views taken from 120
poses. Although there are other RGB-D datasets available
(refer to [45] for a comprehensive list), BigBIRD has a few
desirable properties. Namely, it provides accurate intrinsic
and extrinsic calibration values, multiple views of each object
in different poses as well as ground truth mesh of each object.

Most objects in BigBIRD are generalized cylinders and
cuboids. We carefully selected 16 objects from the dataset
which we believe represent a variety of shapes, sizes and
surface materials. We extracted all selected objects using
our system. For a demo, see the accompanying video.
Figure 5 shows a subset of the results of extraction (see the
supplementary material for the full set of extraction results).
We did not texture-map the meshes in order to be able to
better demonstrate the fine details in the extracted model.

To determine the similarity of our extracted meshes
compared to the physical objects, we use the ground truth
mesh models available in BigBIRD. To compare our extracted
models with those meshes, we use Hausdorff distance. Prior
to computing the Hausdorff distance between our extracted
model and the ground truth, we use the information provided
in BigBIRD to transform the two models to a common
coordinate system. We next refine the alignment of the two
models using ICP, and record the final reported error which
is the average distance of the points in one point set to
their nearest neighbor in the other point set. Afterwards, we
compute and record the diagonal of the oriented bounding box
of the combination of the two models. We then compute the
Hausdorff distance values between the two models and divide
the obtained distance value by the length of the bounding
box diagonal that was computed in the previous step.

We also recorded the number of views that were necessary
to successfully model each object. Table I summarizes
the results of our findings. The minimum and maximum
obtained ICP error values were 3.89 and 29.69 millimeters
respectively. Also, the minimum and maximum obtained
Hausdorff distance values were 3.40% and 7.39% respectively.

V. DISCUSSION

We first examine our results from a qualitative point of view.
As shown in Figure 5, our system is able to extract objects
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(a) baiS_sumatra_dragonfruit

(b) expo_marker_red

(c) advil_liqui_gels

(d) pop-secret_light_butter

Fig. 5: Sample object extractions from the BigBIRD dataset. In each object group, the first column is the RGB image of the target object. The second
column is the raw point cloud of the object. The third columns is the ground truth mesh as provided by the BigBIRD dataset. The fourth column is the
object modeled using our system. Refer to the accompanying video and the supplementary material for a full set of our extractions.

Hausdorff Num.

Object Name Shape ICP Error

Hausdorff Num.

Object Name Shape ICP Error

(mm) Distance (%) Views (mm) Distance (%) Views

3m_high_tack_spray_adhesive O 6.20 3.40 1 expo_marker_red O 3.89 6.95 2
advil_liqui_gels ] 8.04 6.50 1 haagen_dazs_butter_pecan O 6.21 4.69 2
bai5_sumatra_dragonfruit O 10.62 5.16 2 hunts_sauce O 6.56 5.85 1
cheez_it_white_cheddar ] 8.78 5.94 1 krylon_crystal_clear O 6.25 4.87 1
cholula_chipotle_hot_sauce O 5.82 4.84 2 pop-secret_light_butter | 9.42 6.37 1
coca_cola_glass_bottle O 29.69 7.39 2 red_bull O 6.10 4.57 1
coffee_mate_french_vanilla O 5.59 4.63 2 red_cup O 4.25 7.34 1
dove_beauty_cream_bar ] 6.67 6.67 1 v8_fusion_peach_mango O 6.48 5.40 1

Mean 8.16 5.66 1.31

Standard Deviation 5.81 1.11 0.46

TABLE I: Quantitative comparison of our extracted models versus the ground truth meshes in the BigBIRD dataset. In the shape column, O and B indicate
generalized cylinders and generalized cuboids, respectively. ICP Error is reported as the average distance between the point sets after ICP alignment in
millimeters. All values in Hausdorff Distance column represent Hausdorff distances scaled by the length of the diagonal of the bounding boxes and converted
to percentage values (refer to Section IV for more details). Num.Views is the number of different point cloud views used for extracting a particular object.

while preserving their details, such as the small protrusions
near the cap of the bottle in Figure 5a. Also, transparent
surfaces (Figure 5a) or undersampled areas (Figure 5b) do
not pose any problems for us, since the input from the user
has the power of filling in the missing details.

Visual similarity between our extracted meshes and the
original objects is much more pronounced compared to that
of the ground truth meshes. Moreover, all extracted meshes
are created at the scale of the original object which makes
our proposed approach suitable for tasks involving object
localization in real-world (e.g. robotic manipulation [1]).

Examining our results from a quantitative point of view
shows that our extracted meshes have high similarity values
when compared to the ground truth meshes. Most ICP error
values reported in Table I are small indicating that our
extracted meshes were successfully aligned with the ground
truth meshes. Two objects had relatively higher ICP errors
compared to other objects, namely coca_cola_glass_bottle
and bai5_sumatra_dragonfruit which we posit is the result
of missing data points on the ground truth mesh due

to surface transparencies. The Hausdorff distance values
reported in Table I are generally small, indicating that our
extracted models are similar to the ground truth meshes. This
observation is further corroborated by the small standard
deviation values reported in Table L.

Even though many views for each object was available,
all results shown in Table I were obtained using at most 2
views. These results are notable considering that the ground
truth meshes in BigBIRD were obtained using merged point
clouds of 600 views of each object (5 views each containing
120 object poses).

Figure 6 demonstrates the power of GemSketch when
dealing cluttered scenes and excessive occlusions. Even
though a single view of the scene was available, GemSketch
has been able to accurately model all occluded objects

Comparison to related work. As discussed in Section II
our method shares similarities with 3-Sweep [8]. However,
GemSketch differs from 3-Sweep and extends it in a number
of ways. Most importantly, GemSketch is much easier to
implement due to the use of point clouds. The existence of 3D



(a) Input image

(c) Models superimposed
on the image

(d) Models superimposed
on the point cloud

Fig. 6: Extracting occluded objects from a cluttered scene. Our proposed
method is capable of extracting objects even in the presence of clutter.

data minimizes the need for resolving pose ambiguities of the
extracted object through complex optimization formulations.
Furthermore, GemSketch supports input from multiple views.
Another benefit of using 3D point cloud data is that the
extracted objects will be at the scale of their physical
counterparts. This permits the application of GemSketch in
3D printing or tasks involving real-world object localization
[1].

Although GemSketch requires slightly more user interac-
tion, such interactions permits supporting affordances that
are not available in competitive methods. Affordances such
as extracting occluded objects even in the presence of clutter
(Figure 6) open doors to new possibilities and applications
of GemSketch. With additional user engagement, we have
been able to mitigate the reliance on automatically detected
contours which was one of the limitations of 3-Sweep. Highly
textured surface areas pose problems for edge detectors,
whereas human input can mitigate ambiguities in such
scenarios. Finally, the user can specify the objects to be
hollow and GemSketch can extract a hollow mesh (such as
the cup in Figure 2e).

Limitations. Our work has several limitations. We currently
support generalized cylinders and cuboids, although adding
support for other generalized shapes (such as spheres) is
possible. Despite the power of generalized cuboids and
cylinders [10], [46], they may not be suitable for objects
with irregular or asymmetric shapes. Supporting such objects
would require novel algorithms.

Viewpoint selection is an important aspect of 3D modeling
systems [47]. Unsuitable viewpoints may inhibit the modeling
power of any modeling system and GemSketch is no excep-
tion. Also, GemSketch is unable to model objects if their
profile is occluded. However, the support for multiple views
in GemSketch mitigates the effects of unsuitable viewpoints
and grants the user the freedom to choose suitable extraction
viewpoints.

Finally, extraction of objects under occlusion relies on the
user’s intuition. In some cases, such intuition could potentially

be different from reality, which would affect the accuracy
and the correctness of our extracted models. Regardless of
these limitations, we believe that the strength of GemSketch
lies in its ability to work with noisy and inaccurate point
cloud data and extract complete geometries even if a lot of
surface points are missing.

VI. CONCLUSION AND FUTURE WORK

We introduced GemSketch, an interactive system for
extracting 3D geometries from point clouds. Leveraging a
human-in-the-loop and an image-guided interaction modality,
GemSketch can accurately extract 3D meshes of generalized
cylinders and generalized cuboids from point clouds while ad-
hering to the original object’s scale and preserving its details.
Furthermore, GemSketch can benefit from the availability
of multiple views of a single object to perform more robust
extractions. GemSketch is capable of working with noisy data
and extract objects in the presence of occlusion or clutter.

To demonstrate the merits of our proposed approach,
we performed a series experiments. Our experiments were
comprised of the extraction of 16 objects from the BigBIRD
dataset [44]. Our results indicated a high degree of visual as
well as quantitative similarity between the extracted objects
and their ground truths.

In the future, we plan to address some of the limitations
we discussed previously. Specifically, we wish to add support
for more geometric primitives to be able to extract more
complex objects. Improving user interaction is an important
step towards creating robust human-in-the-loop frameworks
for robotic manipulation [48]. As such, we hope to streamline
the process of sketching objects by incorporating learning
algorithms into the pipeline. A potential learning algorithm
would learn from previously extracted objects in order to
reduce the amount of user interaction or provide recommenda-
tions about camera viewpoints that will make sketching easier
and faster. Finally, using GemSketch’s ability of modeling
object textures, resulting models can be used for generating
synthetic scenes. This will benefit the training of neural
networks [S5] that require large amounts of textured/visual
data to learn object models.
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