arX1v:1706.04652v3 [cs.RO] 17 Nov 2017

Learning a visuomotor controller for real world
robotic grasping using simulated depth images

Ulrich Viereck!, Andreas ten Pas!, Kate Saenko?, Robert Platt!

!College of Computer and Information Science, Northeastern University
360 Huntington Ave, Boston, MA 02115, USA
{uliv, atp, rplatt}@ccs .neu.edu

“Department of Computer Science, Boston University
111 Cummington Mall, Boston, MA 02215
saenko@bu.edu

Abstract: We want to build robots that are useful in unstructured real world ap-
plications, such as doing work in the household. Grasping in particular is an
important skill in this domain, yet it remains a challenge. One of the key hur-
dles is handling unexpected changes or motion in the objects being grasped and
kinematic noise or other errors in the robot. This paper proposes an approach to
learning a closed-loop controller for robotic grasping that dynamically guides the
gripper to the object. We use a wrist-mounted sensor to acquire depth images in
front of the gripper and train a convolutional neural network to learn a distance
function to true grasps for grasp configurations over an image. The training sen-
sor data is generated in simulation, a major advantage over previous work that
uses real robot experience, which is costly to obtain. Despite being trained in sim-
ulation, our approach works well on real noisy sensor images. We compare our
controller in simulated and real robot experiments to a strong baseline for grasp
pose detection, and find that our approach significantly outperforms the baseline
in the presence of kinematic noise, perceptual errors and disturbances of the object
during grasping.

Keywords: Robots, Learning, Manipulation

1 Introduction

Recently, deep neural networks have been used to learn a variety of visuomotor skills for robotic
manipulation including grasping, screwing a top on a bottle, mating a mega-block, and hanging
a loop of rope on a hook [1]. Grasping is a particularly useful and ubiquitous robotics task. A
number of researchers have recently proposed using deep learning for robotic grasping systems that
perform well for novel objects presented in dense clutter [2, 3, 4]. However, these systems still do
not perform as well as we would like, achieving maximum grasp success rates of approximately
85% to 93% in ideal conditions [2]. The question is how to learn robotic grasping or manipulation
behaviors that are robust to the perceptual noise, object movement, and kinematic inaccuracies that
occur in realistic conditions.

A major problem with many existing approaches is that they perform one-shot grasp detection and
thus cannot learn dynamic correcting behaviors that respond to changes in the environment. One
promising solution is to learn a closed-loop visuomotor controller. In contrast to one-shot grasp
detection, closed-loop controllers have the potential to react to the unexpected disturbances of the
object during grasping that often cause grasps to fail. The recent work by Levine et al. [5] used
supervised deep networks to learn a closed-loop control policy for grasping novel objects in clutter.
However, their approach has two important drawbacks. First, it requires visual data that observes
the scene from a specific viewpoint with respect to the robot and the scene. The consequence of this
is that it is difficult to adapt the learned controller to a different grasping scene, e.g., a different table
height or orientation relative to the robot. Second, their approach requires two months of real world

1st Conference on Robot Learning (CoRL 2017), Mountain View, United States.

(d)

Figure 1: Our controller makes dynamic corrections while grasping using depth image feedback
from a sensor mounted to the robot’s wrist. (a) The hand has moved to the initial detected grasping
position for the flashlight. (b) The flashlight has shifted and the hand became misaligned with the
object. (c) The controller has corrected for the misalignment and has moved the hand into a good
grasp pose. The controller is now ready to pick up the flashlight. (d) - (f) show the corresponding
depth image. The green lines show initial grasps predicted by the CNN. The red line shows the
current gripper pose.

training experience. In many scenarios, it is simply not practical to obtain such a large quantity of
robotic training data.

This paper proposes an approach to closed-loop control for robotic manipulation that is not subject
to either of the two limitations described above. We make three key contributions. First, in order to
eliminate the dependence on a particular viewing direction, we mount a depth sensor near the robot
end-effector as shown in Figure 1. In this configuration, the same visuomotor controller can be used
to grasp objects from any direction, because the camera to gripper configuration is fixed. Second,
we train the system completely in simulation, thereby eliminating the dependence on enormous
amounts of real-world robotic training experience. The key to training in simulation is our use of
depth sensors rather than RGB cameras. While depth data is potentially less informative than RGB
data, it can be simulated relatively accurately using ray tracing (we use OpenRAVE [6]). Third,
we propose a novel neural network model that learns a distance-to-nearest-grasp function used by
our controller. Our convolutional neural network (CNN) is similar in structure to that of Levine
et al. [5], but takes images at a lower resolution and has many fewer layers. Instead of learning a
policy directly, we learn a distance function, i.e., distance to grasp, using CNN regression with an
L1 loss function. This function provides direct feedback about how viable a grasp is and allows us
to use a simple controller to move the robot arm. We evaluate the performance of the system both
in simulation and on a URS robot in our lab. Our major finding is that in the absence of motor or
sensor noise, our closed-loop grasp controller has similar performance to a recently developed grasp
detection method [2] with very high grasp success rates. However, under realistic motor, kinematic
and sensor errors, the controller proposed here outperforms that method significantly.

2 Related Work

Recent work in grasp perception has utilized deep learning to localize grasp configurations in a way
that is analogous to object detection in computer vision [3, 7, 8, 4, 9]. Such methods take potentially
noisy sensor data as input and produce viable grasp pose estimates as output. However, these grasp
detection methods typically suffer from perceptual errors and inaccurate robot kinematics [2]. In
addition, extending traditional one-shot grasp perception methods to re-detect grasps in a loop while
the sensor mounted on the gripper gets closer to the objects is difficult, because these approaches
are trained to find grasps with large distances to the sensor (e.g., to see the entire object) [2, 3, 4, 8].

Dataset from simulation

Model (CNN) Controller
Object placement Ground Truth Grasp Calculation 1. Aquire sensor Image
([Lmese][Gost) [Ltaber]
Conv 1 IP1

RELU RELU

» Pool 1 Tite 1 » 2. Predict good grasps
= .:

Depth Images Grasp Poses Labels

Conv 2

x=0.7 y=0.2 theta=15 | distance_to_grasps RECU
=0.26 Pool 2 3. Move Sensor

x=0.1 y=0.5 theta=7 distance to_grasps P2 repeat with 1.

=0 RELU <«
. IP3 N
’ L1 loss |

Figure 2: Overview of our approach. The training data is generated in an OpenRAVE simulator
(3.2). A CNN model is trained to predict distance to nearest grasps (3.1). A controller moves the
gripper to predicted good grasp poses (3.3).

Visual servoing methods use visual feedback to move a camera to a target pose that depends directly
on the object pose. While there are numerous methods in this area [10], only a small amount of
previous work addresses using visual feedback directly for grasping [11, 12, 13]. In contrast to our
work, the existing methods require manual feature design or specification. An active vision approach
by Arruda et al. acquires sensor data from different view points to optimize surface reconstruction
for reliable grasping during grasp planning [14]. However, the actual grasping does not use sensor
feedback.

Levine et al. were one of the first to incorporate deep learning for grasp perception using visual
feedback [5]. However, their approach requires months of training on multiple physical robots.
Moreover, they require a CNN with 17 layers that must be trained from scratch. In addition, their
use of a static camera makes it difficult to adapt to different grasping scenarios, e.g., a different table
height or a different grasp approach direction. Because we generate training data in simulation and
our CNN has only a few layers, our approach is simpler. In addition, since we mount the camera to
the wrist of the robot arm, our approach is more flexible because it can be applied to any grasping
scenario — not just those with a particular configuration relative to the camera.

3 Approach

We propose a new approach to the problem of learning a visuomotor controller for robotic grasping
inspired by the method of Levine et al. [5S]. We mount a depth sensor near the wrist of the robot as
shown in Figure 1. On each control step, the system takes a depth image of the scene directly in front
of the gripper and uses this sensor information to guide the hand. The controller converges to good
grasp configurations from which the gripper fingers can close and pick up the object. The approach
is based on a convolutional neural network that learns a distance function. It takes the depth image
in conjunction with a candidate hand displacement as input and produces as output an estimate of
the distance-to-nearest-grasp. Figure 2 shows an overview of the approach. The key elements are:
1) the convolutional neural network that is used to model the distance function (Section 3.1); 2)
the approach to generating the training set in simulation (Section 3.2); 3) the implementation of the
controller (Section 3.3).

3.1 CNN Model

The core of our work is a convolutional neural network (a CNN, see Figure 2) that learns a distance
function that is used by our grasp controller. The network takes as input a depth image, /, and an
action, a = (x,y,8) € R? x S'. The action denotes a candidate planar pose offset relative to the depth
sensor to which the robotic hand could be moved. It learns a real-valued function, d(Z,a) € R,
that describes the distance between the hand and the nearest viable grasp after displacing the hand
by a. We interpret this distance to be the remaining cost-to-go of moving to the nearest viable grasp
after executing action a. Distance is measured in meters in the (x,y, 6) pose space by weighting the
angular component (by 0.001 meter/degree) relative to the translational parts.

Our CNN is based on the LeNet network designed for handwritten digit classification [15]. It con-
sists of two convolutional layers (Conv1 with 20 and Conv2 with 50 filters, kernel size 5, and stride
1) with leaky RELUs, max pooling and 2 inner-product (IP) layers with leaky RELUs. Inspired by
Levine et al. [5] we apply an IP layer to the input pose vector (action) and then tile the resulting out-
put over the spatial dimensions to match the dimensions of the Pooll layer and sum element-wise.
The output layer predicts the distance-to-go for the grasp pose action. Since we are learning a real-
valued distance function, our CNN is solving a regression problem. We also tried a classification
model, but we found that the controller (Section 3.3) using the regression model performs better be-
cause the predictions from the regression allows to compare the goodness of two grasp poses, where
the better pose is closer to a true grasp. We evaluated both L1 and L2 loss functions and found the
L1 loss function did a better job fitting our data.

3.2 Generating training data

We create a dataset in simulation using Open-
RAVE [6] comprised of image-offset pairs and
the corresponding distance-to-nearest-grasp la-
bels. The way that OpenRAVE simulates the
depth images is of particular interest. If the
simulated images are sufficiently different from
the images generated by an actual depth sen-
sor, then this would produce a gap that would
make it difficult to transfer the learned policies
onto the real robot. Fortunately, we found that

this was not the case. The model learned on Fjgure 3: Calculating the distance-to-nearest-
depth images generated by OpenRAVE (using grasp for two different offset poses (shown in red
ray tracing) seems to transfer well (Figure 5). and blue). During creation of the training set, we

In order to train the CNN, we generate a large estimate the distance between each of these pose
number of image-action pairs, each associated pffsets and the nearest ground truth grasp (shown
with a distance-to-nearest-grasp label. We ac- 10 green).

complish this using OpenRAVE as follows.

First, we generate 12.5k different scenes with a random selection of multiple objects placed under
the sensor. The objects were derived from CAD models contained within the 3DNet database [16].
In particular, we have selected 381 graspable objects from the following 10 categories: mug, ham-
mer, bottle, tetra pak, flash light, camera, can, apple and toy car. There are between 1-5 CAD objects
in each scene (the number of objects is uniformly sampled). Each object is placed with a random
position and orientation. Figure 3 shows a depth image with a cup, apple and camera.

Ground truth grasp poses
from complete point cloud

Example 1 grasp offset pose
(x,y,theta) = (0,0,0)

Example 2 grasp offset pose
(x,y,theta) = (-0.6,-0.5,45)

distance-to-nearest-grasp

For f.:ach scene we generate 4Q depth images by Algorithm 1 Controller
placing the camera randomly in (x, y, z,) above
the objects, where x,y are the directions paral-

Parameters
r (step ratio to target pose)

lel to the table and z is the direction towards z_step (step size towards table)

the table. This results in a total of 500k depth h_max (initial camera height)
images. Each depth image has one color chan- h_min (final camera height)

nel (grayscale) and has a size of 64 x 64 pixels. min_dist obj (min distance to object)

For each depth image we uniformly sample 10
offset poses within the camera view and calcu-
late the distance to the nearest grasp for each
pose as follows. First, using the mesh model of
the scene, we sample a large number of grasp
candidates by filtering for robotic hand poses
that are collision free and that contain parts of
the visible environment between the robotic fin-
gers (see [17]). Then, we test each candidate for
force closure using standard methods [18]. Fi-
nally, after pruning the non-grasps, we evaluate the Euclidean distance to the nearest sampled grasp
(see Figure 3).

: Initialize camera at z = h_max above table

: While z > h_min AND dist_obj > min_dist _obj
Acquire sensor depth image
Sample actions; select min-cost offset, pose_top
Move camera to r* pose_top
z:=z—2zstep

EndWhile

: Execute fixed grasp motion (robot)

: Evaluate distance to closest true grasp (sim)

i A A s

3.3 Controller

Our controller takes actions that descend the distance function that is modelled by the CNN de-
scribed in Section 3.1. Its basic operation is outlined in Algorithm 1. The controller starts with the
hand at a fixed initial height above the table in the z-direction. In Step 3, the controller acquires
an image from the wrist-mounted depth sensor. In Step 4, it samples a set of candidate actions and
selects the one with the minimum distance-to-nearest-grasp. In Step 5, the controller moves by a
constant fractional step size in the direction of the selected action. The fact that the controller only
makes a fractional motion on each time step smooths the motion and makes the controller more
robust to isolated bad predictions by the CNN. In Step 6, the controller approaches the object in the
z-direction by one step. This process repeats until the controller converges and the hand reaches the
final hand height.

Ap important point is that we constrain Fhe sam- camera Lowest vaua noar
pling to a region around the origin. This serves Distance center of camera
two purposes. First, it reduces the number of

samples needed. Second, it enables us to cap- True
ture the gradient of the distance function in the Prediction
neighborhood of the current hand pose. The
distance function may be a multimodal function
in the space of offsets. For purposes of stabil-
ity, it is important for the controller to follow
a gradient. In our case, that gradient is esti-
mated in the neighborhood of the center of the
image. This is illustrated in Figure 4. Although
the global minimum in the distance function is
on the left, the hand will follow the gradient to
the right. The controller thus grasps the object
closest to the current hand pose, regardless of
its identity. If our goal was to grasp a desired
target object, our approach could be extended to first run object detection and then sample grasp
candidates near the target object, e.g., within a bounding box around it.

X position

Figure 4: Illustration for how the controller works
in a I-dimensional case with two objects (control
in x-axis direction). Although the global best pre-
diction for the grasp pose belongs to the object on
the left, the controller moves to the closer object
on the right, because it follows the direction of the
local gradient near the center of the image.

4 Simulation Experiments

We perform a series of experiments in simulation to evaluate our new grasp controller (CTR) relative
to grasp pose detection (GPD), a recently proposed one-shot method that also learns in simulation
and achieves high success rates [2]. We perform this comparison for two scenarios: one where
the manipulator moves exactly as commanded and one where the desired manipulator motions are
corrupted by zero-mean Gaussian noise. All of the following simulation data are averages over 400
trials. In each trial, we generate a scene in OpenRAVE with a random selection and placement of
objects from the test set as described in Section 3.2. The initial camera position is set to 0.3 m above
the table. At each iteration the camera height is reduced by a constant step until height 0.15 m is
reached. We run the controller for a total of 75 iterations, using r = 0.2 as the step ratio to a target
pose, and plot the distance of the final gripper pose to the closest true grasp.

We use the deep learning framework Caffe [19] for training the network. We run 900k iterations of
stochastic gradient descent with a learning rate of 0.001, a momentum of 0.9, and a batch size of
1k instances. The dataset is described in Section 3.2. We split the training and test sets on object
instances. Both the training and test sets contain all 10 object categories. However, the same object
instance does not appear in both sets. The training set contained 331 object instances and the test
set contained 50. We use the same network for all experiments, including experiments on the robot
in Section 5.

4.1 Comparison with GPD baseline in the presence of kinematic noise

We compare the following scenarios: 1) INIT: No camera motion, distances measured from the
initial position; 2) CT Ry, _neise: Run CTR starting from the initial position, without kinematics noise;
3) CTR yith_noise: Run CTR from the initial position, with kinematics noise; 4) GPDy_npise: Move to
top GPD prediction, without kinematics noise; 5) GPDyith_noise: Move to top GPD prediction, with

Distances of grasps to closest true grasp

Controller vs. baseline with kinematics noise Controller vs. single prediction by CNN

300

300

—— INIT Q —— CNN only
E; CTRn:ﬁn:lsE
250} _o_cm 250

with_noise

—B—GPD, e
200

-A- GPD, it naise | |

\ —E—CNN + CTR

50

L L = 8L —, L L \‘\@“%—
0 003 006 009 012 015 018 021 024 0 003 006 009 012 015 018 021
Distance (m) Distance (m)

0.24

Figure 5: Histogram of distances of predicted grasps to closest true grasp for 400 simulated trials for
various scenarios (bin size = 3 cm). Left plot shows that our approach (CTR) compensates well for
movement noise of the gripper, where the baseline method (GPD) fails to compensate. Right plot
shows that our closed-loop controller compensates for perceptual errors made in the first images by
making corrections based on new images while moving to the grasp.

kinematics noise. The “with_noise” scenario, simulates the situation where uncorrelated zero mean
Gaussian noise is added to each dimension of the robotic hand displacements on each control step:

A(x7y=9)noisy:A(x7y79>+0‘4W||A(x7y=9)” WN'/V(O71) ERZ x S! (1

While this noisy-motion scenario is not entirely realistic because real manipulator kinematic errors
are typically manifested by constant non-linear displacement offsets rather than Gaussian noise, we
nevertheless think this is a good test of the resilience of our controller to kinematic errors.

The final distances to the closest true grasp for the 5 scenarios above is shown in Figure 5 (left).
Note that we only consider the distance in (x,y, 8) and not in z, because we assume that the distance
to the object can be retrieved easily from the depth image. We convert the distances for 8 from
degrees to meters as described in 3.1. Notice that without noise, the performance of GPD and
CTR is comparable: the two methods move the robotic hand to a grasp pose approximately equally
well. However, CTR does much better than GPD in scenarios with motion noise. This makes
sense because the controller can compensate to some degree for motion errors while GPD cannot.
It should also be noted that the distances in Figure 5 overstate the minimum distances to good
grasps. This is because these are distances to the closest detected grasp — not the actual closest
grasp, because the method of finding ground truth grasps as described in 3.2 does not find all viable
grasps. Nevertheless, the trends in Figure 5 (left) convey the behavior of the controller.

4.2 Correction for perceptual errors made in single-shot prediction using the controller

Next we compare the following two scenarios to characterize the advantages of the closed-loop con-
troller versus one-shot detection. Note that the network is trained with grasp poses globally sampled
in the image, not just near the center: 1) CNN only: Move to the top one-shot global prediction using
the CNN regression model; 2) CNN 4+ CTR: Move to the top one-shot global prediction and then run
the controller. Figure 5 (right) shows that the controller improves the performance of our approach
even in a scenario without kinematic noise. This suggests that the controller can compensate for
perceptual errors made in a single depth image, and corroborates similar results obtained by Levine
et al. in [5].

S Robot Experiments
We evaluate our grasp controller on the URS robot in three experimental scenarios: (i) objects in

isolation on a tabletop, (ii) objects in dense clutter, and (iii) objects in dense clutter with a shift in
position after a few controller iterations. In these scenarios, we compare our controller (CTR) to

grasp pose detection (GPD), a strong baseline [2]. A summary of our experimental results is given
in Table 1. The grasp controller is demonstrated in the supplemental video'.

We use the URS, a 6-DOF robot arm, with the Robotiq 85 hand, a 1-DOF parallel jaw gripper with
a stroke of 8.5cm, and mount an Intel RealSense SR300 and a Structure 1O to the robot’s wrist (see
Figure 6). The former sensor is used to obtain depth images for our controller because of its small
minimum range (20cm). However, point clouds produced by the RealSense are not very accurate
and drift with the temperature of the sensor. Because the GPD baseline requires an accurate point
cloud, we use the latter sensor. Our controller is implemented in Python on an Intel i7 3.5GHz
system (six physical CPU cores) with 32GB of system memory. The control loop runs at about SHz.
Figure 6 shows the ten objects in our test set. While some of these objects are selected from the
same object categories that our CNN model has been trained on (see Section 3.2), the specific object
instances are not actually contained in the training set.

Each run of our controller proceeds as follows.
The arm is first moved to a fixed pose over the
table with the depth sensor pointing down to-
ward the table. Then, we run the controller
with a step ratio of » = 0.5 and a z step size
of Iecm. Each depth image from the Intel sensor
is post-processed to remove invalid depth read-
ings near the edges of objects by applying an Figure 6: Experimental setup with URS robot and
iterative, morphological dilation filter that re- test objects.

places the missing values with a neighborhood

maximum. IKFast [6] is used to convert the selected action (i.e., a Cartesian displacement) into
target joint angles for the arm to move to. The controller runs until the depth data indicates that an
object is within 14 cm distance from the sensor or the robot hand is too close to the table. To execute
the grasp, we move the robot hand according to a predefined motion and close the fingers. In total,
it takes about 20-30s for each run, depending on the Euclidean distance between the closest object
and the robot hand’s initial position. The GPD baseline runs as follows. We move the robotic hand
to a fixed point above the table pointing directly down and take a depth image using the Structure
IO sensor. Then, we select and execute one of the detected grasps based on the heuristics outlined
in [2].

5.1 Grasping objects in isolation

In this experiment, each of the ten objects from

our test set is presented to the robot in four dif- Table 1: Average grasp success rates for our con-
ferent configurations: three with the object flat troller (CTR) and a recent grasp pose detection
on the table, and the fourth with the object in (GPD) method [2] on the URS5 robot.

an upright configuration. Only one out of the -
40 grasp attempts results in a failure (97.5% ; chngrlo , CTR | GPD
S e Objects in isolation | 97.5% | 97.5%

grasp success rate). This failure happens on

- : - Clutter 88.9% | 94.8%
the bottle in an upright configuration where our . .

. Clutter with rotations | 77.3% | 22.5%
controller is not able to converge to the correct

pose. Given more iterations, we would expect the attempt to be successful. In this scenario, GPD
achieves the same success rate.

5.2 Grasping objects in dense clutter

We also evaluate our grasp controller in dense clutter. Here, we put the ten objects from our test set
into a box, shake the box to mix up the objects, and empty it onto the table in front of the robot.
An example of such a scenario is shown in Figure 7. A run is terminated when three consecutive
executions result in grasp failures or when the remaining objects are out of the sensor’s view. In
total, we perform ten runs of this experiment.

The robot attempted 74 grasps using our controller over the ten runs of this experiment. Out of those
74 attempts, eight are failures (88.9% grasp success rate). Five out of the eight failures are caused by
the object slipping out of the fingers during the grasp, two are caused by slight misplacements in the

Thttp://www.ulrichviereck.com/CoRL2017

final pose, and one is caused by a collision between a finger and the object which moved the object
out of the hand’s closing region. In comparison, the GPD method attempted 96 grasps over ten runs
of this experiment. Only five out of those 96 attempts were not successful (94.8% grasp success
rate). Out of the five failures, two are perceptual errors (invalid or missing sensor data) and three
are caused by the object slipping out of the hand while closing the fingers. While GPD achieves
a higher grasp success rate than our controller in this scenario, we think that the controller would
achieve a similar performance if it were given more iterations and the correction movement during
each iteration was smaller (such as we did for the simulation).

5.3 Grasping objects with changing orientations

This experiment evaluates the performance of our controller versus the GPD baseline for a dynamic
scenario where the human experimenter manually shifts the positions of the objects once during
each grasp trial. To accomplish this, we pour the pile of cluttered objects onto a piece of paper and
then shift the paper by a random amount after the third controller iteration. Over the ten runs of this
experiment, the robot attempted 75 grasps using our controller. 17 out of those 75 attempts were
failures (77.3% grasp success rate). In comparison, GPD only attempted 49 grasps, out of which
38 were failures (22.5% grasp success rate). The better performance of our controller makes sense
because it is able to react to the shift whereas GPD cannot: it simply proceeds to execute the grasp
as if the object pile had not been shifted. This is a general advantage of a closed-loop controller
relative to typical grasp perception methods [4, 8, 3, 7, 2].

6 Discussion

We developed a visuomotor controller that uses visual feedback from the depth sensor mounted on
the gripper to dynamically correct for misalignment with the object during grasping. We trained a
deep CNN model with simulated sensor data that directly learns the distance function for a given
depth image and grasp pose action. Generation of training data in simulation was more efficient
than generation on a real robot. We found that the CNN model trained with simulated depth images
transfers well to the domain of real sensor images after processing images to correct invalid depth
readings.

Our controller was able to react to shifting objects and to inaccurate placement of the gripper rel-
ative to the object to be grasped. In simulation experiments, our approach compensated for signif-
icant noisy kinematics while a one-shot GPD baseline did not. Moreover, our controller using the
CNN model corrected for perceptual errors present in one-shot prediction. Real world experiments
demonstrated that our method also works well on the robot with noisy sensor images. Our perfor-
mance was comparable to the GPD baseline. We expect to improve our controller further, such that
we can execute more and smaller corrections while moving the gripper faster during grasping. Re-
sults in simulation showed that, by using a controller with fine-grained adjustments, we can exceed
the performance of the GPD baseline, especially in the presence of kinematic noise. The URS robot
used in our experiments has fairly precise forward kinematics. For experiments on a robot with more
noisy kinematics (e.g., the Baxter robot) we expect to see a significant advantage of our method.

Figure 7: Example of cluttered scenes with corresponding depth images and grasps with predicted
low distance-to-nearest-grasp.

Acknowledgments

This work has been supported in part by the National Science Foundation through IIS-1427081,
CCF-1723379, 11S-1724191, and I1S-1724257, NASA through NNX16AC48A and NNX13AQS85G,
and ONR through N000141410047.

References

[1] S.Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res., 17(1):1334—-1373, Jan. 2016.

[2] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt. High precision grasp pose detection in dense
clutter. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 598-605, Deajeon, South Korea, Oct. 2016.

[3] I Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. IJRR, 34:705-724,
Apr. 2015.

[4] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In Proc. IEEE International Conference on Robotics and Automation (ICRA),
pages 3406-3413, Stockholm, Sweden, May 2016.

[5] S.Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection. In Proc. International Symposium
on Experimental Robotics (ISER), Tokyo, Japan, Oct. 2016.

[6] R.Diankov and J. Kuffner. Openrave: A planning architecture for autonomous robotics. Tech-
nical Report CMU-RI-TR-08-34, Robotics Institute, Pittsburgh, PA, July 2008.

[7] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp planning. In Proc. IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 4304-4311, Seattle, USA,
May 2015.

[8] J.Redmon and A. Angelova. Real-time grasp detection using convolutional neural networks. In
Proc. IEEE International Conference on Robotics and Automation (ICRA), pages 1316-1322,
Seattle, USA, May 2015.

[9] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. In Proc. Robotics: Science and Systems (RSS), 2017.

[10] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer-Verlag New York, Inc.,
Secaucus, USA, 2007.

[11] N. Vahrenkamp, S. Wieland, P. Azad, D. I. Gonzalez-Aguirre, T. Asfour, and R. Dillmann. Vi-
sual servoing for humanoid grasping and manipulation tasks. In Proc. IEEE-RAS International
Conference on Humanoid Robots, pages 406—412, Daejeon, South Korea, Dec. 2008.

[12] P. Hebert, N. Hudson, J. Ma, T. Howard, T. Fuchs, M. Bajracharya, and J. Burdick. Combined
shape, appearance and silhouette for simultaneous manipulator and object tracking. In IEEE
International Conference on Robotics and Automation (ICRA), pages 2405-2412, St. Paul,
USA, May 2012.

[13] K. Kapach, E. Barnea, R. Mairon, Y. Edan, and O. Ben-Shahar. Computer vision for fruit har-
vesting robots — state of the art and challenges ahead. International Journal of Computational
Vision and Robotics, 3(1/2):4-34, Apr. 2012.

[14] E. Arruda, J. Wyatt, and M. Kopicki. Active vision for dexterous grasping of novel objects.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2881—
2888, Oct 2016.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proc. of the IEEE, 86(11):2278-2324, Nov. 1998.

[16] W. Wohlkinger, A. Aldoma Buchaca, R. Rusu, and M. Vincze. 3dnet: Large-scale object class
recognition from cad models. In IEEE International Conference on Robotics and Automation
(ICRA), pages 5384-5391, St. Paul, USA, May 2012.

[17] A.ten Pas and R. Platt. Using geometry to detect grasp poses in 3d point clouds. In Proc. of
the International Symposium on Robotics Research, 2015.

[18] V. D. Nguyen. Constructing force-closure grasps. In Proc. IEEE International Conference on
Robotics and Automation, volume 3, pages 1368—1373, Apr 1986.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Dar-
rell. Caffe: Convolutional architecture for fast feature embedding. In Proc. 22nd ACM Inter-
national Conference on Multimedia, pages 675-678, Orlando, USA, Nov. 2014.

10

	1 Introduction
	2 Related Work
	3 Approach
	3.1 CNN Model
	3.2 Generating training data
	3.3 Controller

	4 Simulation Experiments
	4.1 Comparison with GPD baseline in the presence of kinematic noise
	4.2 Correction for perceptual errors made in single-shot prediction using the controller

	5 Robot Experiments
	5.1 Grasping objects in isolation
	5.2 Grasping objects in dense clutter
	5.3 Grasping objects with changing orientations

	6 Discussion

