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Abstract: We want to build robots that are useful in unstructured real world ap-
plications, such as doing work in the household. Grasping in particular is an
important skill in this domain, yet it remains a challenge. One of the key hur-
dles is handling unexpected changes or motion in the objects being grasped and
kinematic noise or other errors in the robot. This paper proposes an approach to
learning a closed-loop controller for robotic grasping that dynamically guides the
gripper to the object. We use a wrist-mounted sensor to acquire depth images in
front of the gripper and train a convolutional neural network to learn a distance
function to true grasps for grasp configurations over an image. The training sen-
sor data is generated in simulation, a major advantage over previous work that
uses real robot experience, which is costly to obtain. Despite being trained in sim-
ulation, our approach works well on real noisy sensor images. We compare our
controller in simulated and real robot experiments to a strong baseline for grasp
pose detection, and find that our approach significantly outperforms the baseline
in the presence of kinematic noise, perceptual errors and disturbances of the object
during grasping.
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1 Introduction

Recently, deep neural networks have been used to learn a variety of visuomotor skills for robotic
manipulation including grasping, screwing a top on a bottle, mating a mega-block, and hanging
a loop of rope on a hook [1]. Grasping is a particularly useful and ubiquitous robotics task. A
number of researchers have recently proposed using deep learning for robotic grasping systems that
perform well for novel objects presented in dense clutter [2, 3, 4]. However, these systems still do
not perform as well as we would like, achieving maximum grasp success rates of approximately
85% to 93% in ideal conditions [2]. The question is how to learn robotic grasping or manipulation
behaviors that are robust to the perceptual noise, object movement, and kinematic inaccuracies that
occur in realistic conditions.

A major problem with many existing approaches is that they perform one-shot grasp detection and
thus cannot learn dynamic correcting behaviors that respond to changes in the environment. One
promising solution is to learn a closed-loop visuomotor controller. In contrast to one-shot grasp
detection, closed-loop controllers have the potential to react to the unexpected disturbances of the
object during grasping that often cause grasps to fail. The recent work by Levine et al. [5] used
supervised deep networks to learn a closed-loop control policy for grasping novel objects in clutter.
However, their approach has two important drawbacks. First, it requires visual data that observes
the scene from a specific viewpoint with respect to the robot and the scene. The consequence of this
is that it is difficult to adapt the learned controller to a different grasping scene, e.g., a different table
height or orientation relative to the robot. Second, their approach requires two months of real world
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