


viewpoint, detecting grasps, and then choosing a head-on

view for the grasp detected from the smart viewpoint), we

outperform the random baseline by an average of 12%.

II. BACKGROUND AND RELATED WORK

A. Active vision

This work falls broadly into the category of research called

“active vision”, which is defined to be any scenario where the

robot applies a strategy for sensor placement/configuration to

perform its task [13]. Chen et al. provide a broad (although

now somewhat dated) survey of the subject [13]. Our paper

is more specifically related to the idea of planning sensor

placements for the task of object recognition. Roy et al. sur-

vey works that benefit object recognition by purposive sensor

placements [14], and Velez et al. plan viewing trajectories to

improve the performance of an off-the-shelf object detector

[15]. In contrast, our task is not to recognize object instances

but instead to recognize grasps that are likely to succeed

when executed; although, we expect some of the ideas could

extend to a more general class of detection problems.

An issue with any viewpoint selection method is deciding

a metric to use for viewpoint quality. Chen et al. suggest

that the best metric to use is likely to be task-dependent

[13]. On the other hand, general trends can be observed

in the literature. One idea is to try to increase the amount

of information of the scene by maximizing over Shannon

entropy [16], [17], KL divergence [18], or Fisher information

[19]. These methods all require specifying a probability

distribution over which to compute the information metric.

In contrast, we directly evaluate the performance of the grasp

detection system from various viewpoints and store the result

in a database, which could be viewed as a non-parametric,

nearest-neighbor approach [20]. We argue that this approach

is simpler to implement and directly applicable to the task

at hand.

In this work we restrict our attention to single views;

although, constructing a scene from multiple views can

sometimes be a powerful approach. We and others have

explored this with significant benefit to grasp detection

performance [21], [9], but the primary difficulty faced with

this is that the ICP-based SLAM algorithms do not register

multiple views well in near-field, uncluttered scenes.

B. Grasp detection

In order to understand the problem of viewpoint selection

for grasp detection, it is important to understand grasp

detection itself. In this paper, we use the grasp detector

described in our prior work [9] (and, for comparison, a

modification of that detector designed to be similar to the

detector proposed by [7]). This system takes point clouds

as input and produces predicted grasp poses in SE(3) 1 as

output. Each grasp pose output by the system is predicted

1SE(3) is the 6-DOF space of rigid body transformations.

(a) (b) (c)

Fig. 2. (a) Input point cloud; (b) grasp candidates that denote potential
grasp configurations; (c) high scoring grasps.

to be a force closure grasp (i.e. a positive grasp) for a two-

fingered gripper. 2

Our grasp detection algorithm proceeds in two main

steps. First, given an input point cloud (Figure 2 (a)), a

set of 6-DOF grasp candidates are sampled using basic

geometric constraints (Figure 2 (b)). These grasp candidates

constitute a proposal distribution analogous to the object

detection context. Second, a trained classifier predicts a

binary grasp/not grasp label for each of these samples and

assigns a probability with this prediction (Figure 2 (c)). We

refer to this probability as the classifier’s confidence score.

The classifier that predicts grasps needs to be trained in a

supervised fashion with a labeled dataset. The ground truth

labels in the dataset say which grasps are true positives and

which are true negatives. Accuracy, which is the number

of true positives and true negatives divided by the total

number of predictions, quantifies the performance of the

classifier. The labels can be generated using any reasonable

grasp metric, human annotation, simulation (as in [10]), or

the robot itself (as in [22]). In our system, we generate

training data using BigBIRD [23], a dataset comprised of

125 3D object mesh models paired with 600 RGBD images

taken from a hemisphere of different perspectives around the

object. From the images we generate a large number of grasp

candidates that serve as training examples. The ground truth

for each candidate is calculated by using the 3D mesh model

to evaluate whether a force closure grasp would result if the

fingers were to close in that configuration.

III. PROBLEM STATEMENT

We assume the robot already knows approximately how it

would like to pick up the object. For example, suppose the

robot has detected a coffee mug that is to be picked up. The

robot knows approximately how it should grasp the mug,

but we would like to detect true positive grasps nearby the

desired grasp with high confidence. More precisely,

Problem III.1 (Viewpoint Selection for Grasp Detection).

Given 1) a region of desired grasps (the center of which

is called the target grasp), 2) the geometric category of

the object in the vicinity of the grasp region (e.g. box-like,

2In fact, it is possible to use any grasp quality metric without changing
the algorithm at all. The important thing is that there is a consistent, well-
defined definition of a grasp.
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Fig. 4. Various performance metrics plotted as a function of viewpoint (azimuth and elevation). Rows: Top: results averaged over 25 box-like objects
using default algorithm. Middle: results averaged over 14 cylinder-like objects using default algorithm. Bottom: results averaged over 25 box-like objects
using Kappler algorithm variant [7]. Columns: First: density of all considered grasp candidates. Second: density of true positives. Third: density of false
positives. Fourth: accuracy. Fifth: density of true positives minus density of false positives (our proposed measure).

about a local curvature axis, the method of Kappler et al.

samples grasp candidates by searching orientations about a

local normal axis. For the sake of comparison, we hold the

method of classification fixed. Notice the shape of the map

is completely different. This suggests the grasp detection

algorithm also has an impact on viewpoint.

V. VIEWPOINT SELECTION

A. Approach

The key question is how the maps developed in the last

section should be used to guide viewpoint. Perhaps the

most obvious answer is to use classification accuracy, i.e.

the maps shown in Figure 4 (d, i, n). However, there are

a couple of problems with this choice. First, for all three

object/algorithm variations, classification accuracy seems to

be maximized at viewpoints associated with low-density

grasp detection. Generating a large number of detections

is important because it gives us a larger number of high

scoring grasps to choose from, which will be crucial for a

robot with kinematic and task constraints. Second, we do not

empirically observe a significant improvement in accuracy

in our offline evaluations by selecting viewpoint based on

accuracy. It could be the expected improvement in accuracy

is not large enough to make a difference, and it could be

there is wider variation among objects as to which viewpoint

maximizes detection accuracy.

Instead, we propose selecting the viewpoint that maxi-

mizes the expected number of true positives detected minus

the expected number of false positives. This measure is

shown in the right-most column of Figure 4. The idea is we

want to maximize the number of true positives and minimize

the number of false positives. An algorithm that selects

viewpoints that maximizes this measure should generate

a large number of true positives (i.e. a large number of

correctly identified grasps) and thereby increase accuracy

among the highest scoring grasps.

B. Offline experiments

We ran experiments to compare grasp detection perfor-

mance using 1) viewpoints chosen using the true positives

minus false positives density map (smart), 2) viewpoints

selected uniformly randomly from the set of possible view-

points (random), and 3) head-on views of the target grasp

(head-on). In the head-on contingency, we select from the

set of possible viewpoints the one closest to a view that

would see the object along the approach vector of the grasp.

We performed this comparison offline using the point clouds

contained within the BigBIRD dataset as follows. First, for

a given object, select a ground truth grasp at random (using

the mesh to evaluate ground truth). This will be the target

grasp. 3 Second, for this target grasp, select a viewpoint using

the proposed method, the head-on method, or at random

out of the 600 views available for each BigBIRD object.

Third, run grasp detection for the point cloud obtained from

3In practice, the target grasp would be selected based on task or object
characteristics, but here it is selected randomly.



(a) (b)

Fig. 6. Grasp detection performance averaged over 25 box-like objects
in BigBIRD: (a) histogram over the scores of the detected grasps using
smart viewpoints (blue) and random viewpoints (red); (b) detection accuracy
averaged over the top n scoring detected grasps. Blue: smart viewpoints.
Green: head-on viewpoints. Red: random viewpoints.

that view and prune out all grasps that are not within the

neighborhood of the desired grasp. We evaluate the number

of detected grasps and the detection accuracy of the top

n scoring detections averaged over all objects within a

category.

True Positives Positives Accuracy

Boxes Smart 5448 6123 0.89

Boxes Head-on 1923 2206 0.87

Boxes Random 1312 1424 0.92

Cylinders Smart 13834 17150 0.80

Cylinders Head-on 14291 18112 0.79

Cylinders Random 2155 2754 0.78

TABLE I

SUMMARY OF VIEWPOINT SELECTION RESULTS. COUNTS ARE TOTALED

FROM ALL VIEWPOINTS AND OBJECTS, AND ACCURACY IS AVERAGED

OVER ALL VIEWPOINTS AND OBJECTS.

Figure 6 shows the results averaged over the 25 box-

like objects in BigBIRD. Figure 6 (a) shows a histogram

over scores for all positives detected. The larger blue his-

togram shows the scores of the grasps detected using smart

viewpoints. The smaller red histogram shows the same for

random viewpoints. Figure 6 (b) shows accuracy for the

top n scoring grasps using the three viewpoint selection

methods. In each contingency, we detected a large number

of grasps over all objects within the category (either box-

like or cylinder-like) and pruned those that were not within

the desired neighborhood of the target grasp (2 cm and 20◦)

in our experiments). Of the remainder, we ranked them by

the score produced by the deep network used to classify

the grasps (higher means more “confident”) and evaluated

classification accuracy over the top n scoring grasps. Out

of the three methods, the head-on view (the green line in

Figure 6 (b)) is clearly at a disadvantage. The reason can be

seen by looking at the maps for true positives and accuracy

(Figure 4 (c, d)). The head-on view “sees” the target grasp

from φ = 0, θ = 0. However, this view is associated with low

classification accuracy and high numbers of false positives.

Also, notice that the top-n accuracy for random views (the

red line in Figure 6 (b)) drops off significantly for larger

values of n. Even though random does happen to detect some

good grasps, it does not detect as many of them as does the

proposed method (the blue line in Figure 6 (b)).

(a) (b)

Fig. 7. Grasp detection performance averaged over 14 cylinder-like objects
in BigBIRD: (a) histogram over the scores of the detected grasps using
smart viewpoints (blue) and random viewpoints (red); (b) detection accuracy
averaged over the top n scoring detections. Blue: smart viewpoints. Green:
head-on viewpoints. Red: random viewpoints.

Figure 7 shows similar results for the group of 14 cylin-

drical objects in BigBIRD. Figure 7 (a) shows that the

random viewpoint method detects approximately 6 times

fewer positive grasps than does our proposed method. Fig-

ure 7 (b) shows that top-n classification accuracy for random

viewpoints (the red line) drops off quickly, as it did for

box-like objects. Interestingly, the head-on method performs

similarly to the proposed method for cylinder-like objects.

This is because the head-on view for cylinders turns out to

be a relatively good view (see φ = 0, θ = 0 in Figure 4 (g,

i)). For cylinder-like objects, the proposed method selects

views that nearly approximate the head-on view.

VI. ROBOT EXPERIMENTS

The results reported so far indicate that our proposed

viewpoint selection method can improve the accuracy with

which the top n grasps are detected. But, how well does this

translate into grasp success on a real robotic system? In this

section, we evaluate the approach in the context of a robot

grasping in dense clutter.

A. Setup

In these experiments, each grasp proceeds as follows. First,

we obtain a target grasp by taking a view of the objects

from a random viewpoint and running grasp detection on this

point cloud. We select one of the detected grasps based on

confidence score and task-specific heuristics (such as height

in the pile and how close to vertical the approach vector is).

Then, we use the smart viewpoint selection strategy to obtain

a viewpoint from which to view the target grasp (we select

the best viewpoint subject to inverse kinematics constraints).

Next, we detect grasps in this new point cloud. Since we

already know the approximate location of the target grasp,

we speed up the second round of grasp detection by only

searching a small region (8 cm radius ball) about the grasp

target. Finally, we select the highest scoring grasp (again,

subject to IK constraints) and execute it. This process is

illustrated in Figure 8 (a-b). We measure success in terms

of how often the grasp succeeds.

In principle, our proposed viewpoint selection method

should use the grasp density map corresponding to the shape

of the object to be grasped. However, since our scenario



(a) First view (random)

(b) Second view (smart)

(c) Third view (alignment)

Fig. 8. Illustration of the three-view grasp detection strategy. The point
cloud and grasps (right) are obtained from the depth sensor (left). The white
grasp is the target grasp used for planning the next step.

involves a variety of objects piled together, we just used a

single map for all grasp attempts. Since the viewpoints that

maximize our proposed viewpoint quality measure (density

of true positives minus density of false positives) for box-

like objects (Figure 4 (e)) also nearly maximizes the measure

for cylinder-like objects (Figure 4 (j)), we used the map for

box-like objects all the time.

In addition to the smart and random viewpoints, we also

evaluated performance for a third viewpoint taken directly in

front of the target grasp (φ = 0, θ = 0 in Figure 1 (b)). We

moved the sensor as close to the target grasp as possible

while remaining outside the minimum viewing depth for

the sensor (20 cm in our case). Instead of running the full

grasp detection algorithm on the view obtained from this

perspective, we just ran the candidate generation part of the

algorithm and accepted the candidate most closely aligned

with the target grasp. We call this the alignment view. Its

purpose is to help correct for kinematic errors in the robot:

the effect of the robot’s kinematic errors is limited to only

those errors that accumulate while the arm travels from

the the view pose to the grasp target. In order to isolate

the effects of the various different views, we performed

experiments for all relevant variations on viewing order: 1-2-

3 (random, smart, alignment), 1-2 (random, smart), and 1-3

(random, alignment).

(a) (b)

Fig. 9. (a) All 25 objects used in robot experiments. (b) Cluttered pile of
10 objects that the robot must clear.

The experimental protocol followed for each variation is

similar to the one proposed in our prior work [9]. First,

10 objects are selected at random from a set of 25 and

“poured” into a pile in front of the robot. (See Figure 9

(a) for the object set and Figure 9 (b) for an example pile of

clutter.) Second, the robot proceeds to automatically remove

the objects one-by-one as the experimenter records successes

and failures. This continues until either all of the objects have

been removed, the same failure occurs on the same object

three times in a row, or no grasps were found after three

attempts. The sensor (Intel RealSense SR300) and gripper

hardware used in the experiment are shown in Figure 1 (a).

Figure 10 shows the robot performing the first five grasps of

one round of an experiment. 4

B. Results

Views 1-2-3 Views 1-2 Views 1-3 Views 1

Attempts 131 141 154 153

Failures 17 31 26 39

Success Rate 0.87 0.78 0.83 0.75

TABLE II

GRASP SUCCESS RATES FOR THE FOUR EXPERIMENTAL STRATEGIES.

Grasp success rates for the four experimental strategies are

shown in Table II. The “attempts” row of the table shows

the number of grasp attempts made using each strategy, the

“failures” row shows the number of failures for each strategy,

and the “success rate” row is one minus the ratio between

failures and attempts. The grasp failures in our experiments

primarily fell into two categories as shown in Table III.

The “FK” row in Table III denotes the number of grasp

failures caused by a difference between the planned grasp

and the actual grasp in the real world. The “grasp” row

denotes the number of grasp failures caused by a detection

error. The failure modes seem to reinforce intuition about

what should happen if either view 2 (smart) or view 3

(alignment) is skipped. If the alignment view is skipped, then

we obtain a large number of FK failures, presumably because

we are not registering the point cloud close to the final grasp

configuration. If the smart view is skipped, then we obtain

relatively more detection failures because the algorithm does

4A video illustrating the experiment is available at https://youtu.
be/iGRbqFsNgzo.



Fig. 10. First 5 grasps of a typical experiment trial. All grasps were successful. This was a run with all 3 views included.

not get the best view of the target grasp (in terms of detector

performance).

Perhaps the most noticeable result from this experiment

is that adding the third view helps: going from 1-2 to 1-

2-3 adds 9% to the grasp success rate; going from 1 to

1-3 adds 8%. However, this is increase (and the relatively

poor performance of grasping without the alignment view)

is a result of kinematic errors in the Baxter robot and/or

calibration errors in the Intel RealSense SR300 sensor we

used. Adding the alignment view helped to correct for these

errors. However, the benefits of adding the alignment view

should not overshadow the additional benefit of the smart

view. Without the alignment view, adding the smart view

increases the grasp success rate from 0.75 to 0.78 (a 3%

increase). With the alignment view, adding the smart view

increases grasp success from 0.83 to 0.87 (a 5% increase).

(Error Type) Views 1-2-3 Views 1-2 Views 1-3 Views 1

FK 10 21 9 28

Grasp 4 10 14 9

Other 3 0 3 2

TABLE III

COUNTS BY FAILURE TYPE FOR THE FOUR EXPERIMENTAL STRATEGIES.

“FK” MEANS A FORWARD KINEMATICS ERROR LED TO THE FAILURE

AND “GRASP” MEANS A DEFECT IN THE DETECTED GRASP LED TO A

FAILURE.

VII. CONCLUSION

Our main conclusion is viewpoint can have a significant

effect on the performance of grasp detection. The right

viewpoint can enable grasp detection to find 4-6 times the

number of good grasps relative to an uninformed view.

Our results show this increase in the number of detected

grasps can have a significant effect on the average accuracy

of the top detected grasps. These results are borne out in

robotic experiments on our Baxter showing an improvement

in overall grasp success rates using an informed viewpoint

selection method.
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