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Abstract—We present a preliminary theoretical framework
based on spectral graph theory that captures how the cyber topol-
ogy of a distributed secondary frequency control scheme impacts
the stability, optimality, and transient performance of our power
system as a cyber-physical network. We show that a collection of
polynomials defined in terms of the cyber and physical Laplacian
eigenvalues encode information on the interplay between cyber
and physical networks. It is demonstrated that to understand
the impact of adding cyber connectivity, one should separate the
low-damping and high-damping regimes. Although adding cyber
connectivity always improves the performance for high-damping
systems, it is not the case for low-damping scenarios. Based on the
theoretical study, we discuss how a good cyber network should be
designed. Our empirical study shows that for practical systems,
the number of communication channels that is needed to achieve
near-optimal performance is usually less than twice the number
of buses.

I. INTRODUCTION

Frequency regulation maintains the frequency of a power
system around its nominal value when demand or supply fluc-
tuates. It is traditionally implemented by generators through
three mechanisms [1], [2]: a) primary frequency regulation,
also known as droop control, that aims to stabilize the system
after a disturbance but does not necessarily brings the fre-
quency back to the nominal value; b) secondary frequency
regulation, also known as Automatic Generation Control
(AGC), that sets the generator operating point in a centralized
manner based on available generator reserves and drives the
system back to the nominal frequency; c) tertiary frequency
regulation, also known as economic dispatch, that optimizes
the economic efficiency subject to security constraints.

Because of the increasing penetration of distributed energy
resources that introduces random disturbances in power sup-
ply and demand, a new paradigm with emphasis on load-
side participation has been recently studied in a series of
experimental evaluation [3], [4] and theoretical work [5]–[15].
It has been shown that compared to AGC, the power grid
equipped with load-side participation typically responds faster
and the disturbances are more localized [8]–[11]. See [16] for
extensive references to recent literature on frequency control.
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As with the conventional centralized AGC, the controllers
proposed for secondary frequency regulation in recent studies
[10]–[12], [15], [17] usually require the information on power
supply and demand mismatch to be communicated across
the physical network. Communications of this type require
dedicated channels that can be different from the physical
connections and the network formed by such channels is
referred to as the cyber network. In contrast to the physical
network that transports power, a cyber network transports
information and determines the states available for control at
each bus. Most existing studies [10], [12], [17] design the
cyber network to have the same topology as the physical
network, despite their different purposes and implementations.
Such association, although natural, can be less practical in
structure preserving models where not all the buses can
communicate with each other or are controllable [18]. This
poses constraints on how cyber topologies can be designed.
We are hence interested in understanding how different cyber
network designs impact the stability, optimality, and transient
performance of the power system.

The separation of cyber topology from the physical topology
is not only a constraint, but can also be an extra degree
of freedom in the load-side controller design. We present a
preliminary theoretical framework based on spectral graph
theory for the analysis of our power system as a cyber-physical
network. Our contributions can be summarized as follows:
a) We demonstrate that the interaction between cyber and
physical networks can be captured by the corresponding Lapla-
cian eigenvalues through a collection of polynomials which
we coin as the spectral crossing polynomials; b) We show
that to understand the impact of adding cyber connectivity
to a power system, we should separate the low-damping and
high-damping regimes. Although adding cyber connectivity
always improves the performance for high-damping systems,
it is not the case for low-damping systems (such as one with
extensive renewable penetration); c) Based on the theoretical
study, we discuss and evaluate how to design cyber networks.
Through empirical study, we show that for practical systems,
the number of communication channels that we need to
achieve near-optimal performance is usually less than twice
the number of buses.

Despite the fact that our analysis poses strong assump-
tions on the system parameters and some critical values
for applications (such as the boundary between low-daming
and high-damping regimes) may not be directly computable
from the theory, this framework reveals useful and nontrivial
insights that can help system design and we hope our results
can motivate more research along this thread. Due to space
limitation, we focus on secondary frequency controller in
the sequel and interested readers are referred to our online



report [19] for more dicussions on the impact of network
topologies on primary frequency control. The rest of this paper
is organized as follows. In Section II, we present our network
model and review relevant concepts from spectral graph theory.
In Section III, we present our characterization on the cyber and
physical networks interaction and how they impact the system
performance through the corresponding Laplacian eigenvalues.
In Section IV, we discuss how a good cyber network should
be designed. In Section V, we demonstrate our theoretical
results on a large-scale ring network and on IEEE 39-bus New
England interconnection testbed. We conclude in Section VI.

II. MODEL AND PROBLEM SETUP

In this section, we present the network model as adopted in
[9], [10] and the controller from [10], which will be refined in
our study to incorporate cyber network design. We also review
relevant concepts from spectral graph theory.

Let R and C denote the set of real and complex numbers,
respectively. For a set N , its cardinality is denoted as |N |. For
two matrices A,B with proper dimensions, [A B] means the
concatenation of A,B in a row, and [A;B] means the con-
catenation of A,B in a column. A variable without subscript
usually denotes a vector with appropriate components, e.g.,
ω = (ωj , j ∈ N ) ∈ R|N |. For any matrix A, we denote AT as
its transpose and denote kernel(A) as its kernel. For a time-
dependent signal ω(t), we use ω̇ to denote its time derivative
dω
dt . The identity matrix of dimension n× n is denoted as In.

We use Gp = (N , Ep) and Gc = (N , Ec) to describe the
physical transmission network and cyber network respectively,
where N = {1, . . . , n} is the set of buses, Ep ⊂ N × N
is the set of physical transmission lines and Ec ⊂ N × N
is the set of communication channels. Note that we do not
require the cyber graph Gc to be a subgraph of Gp. In other
words the cyber network may contain communication channels
connecting non-neighboring buses in the physical network and
physical neighbors may not be able to communicate. Recent
studies [10], [12], [17] assume Ec = Ep, which is a special
case of the model considered here. The terms bus/node and
line/edge/channel are used interchangeably in this paper. We
assume without loss of generality that both Gp and Gc are
connected and simple (without self-loops). An edge is denoted
either as e or (i, j) and we further assign arbitrary orientations
to both the physical links Ep and cyber links Ec.

Let n,mp be the number of buses and physical transmission
lines respectively. The incidence matrix of Gp is the n ×mp

matrix Cp defined as

Cpie =


1 if node i is the source of e, e ∈ Ep
−1 if node i is the target of e, e ∈ Ep
0 otherwise

The incidence matrix Cc for the cyber graph Gc is defined
similarly. For each bus j ∈ N , we denote its frequency
deviation as ωj and denote the inertia constant as Mp

j > 0.
The symbol Pmj is overloaded to denote the mechanical power
injection if j is a generator bus and denote the aggregate
power injection from uncontrollable load if j is a load bus.
For a generator bus, we model the droop control as Djωj with
Dj ≥ 0 and for load buses, we use the same symbol to denote
an aggregated frequency sensitive load. For each transmission

line (i, j) ∈ E , denote by Pij the branch flow deviation and
denote by Bpij the line susceptance. With these notations, the
swing and power flow dynamics is given by

Mp
j ω̇j = Pmj −Djωj − dj −

∑
e∈E

CpjePe, j ∈ N (1a)

Ṗij = Bpij(ωi − ωj), (i, j) ∈ Ep (1b)

We refer the readers to [9], [10] for more detailed justification
and derivation of this model.

The key idea in [10] is to capture supply-demand mismatch
at each bus using virtual variables λj and distribute such
information through cyber channels to physical neighbors so
that the aggregate mismatch information mixes throughout the
grid. The mixing dynamics via cyber channels is captured by
virtual flow variables Rij . The controller is designed in a way
such that the physical dynamics (1a) and (1b) equipped with
the feedback control forms a primal-dual algorithm to solve a
certain Optimal Load Control problem. Putting M c

j , Kj and
Bcij to be positive gain constants, the controller dynamics from
[10] is given as

M c
j λ̇j = Pmj − dj −

∑
e∈Ec

CcjeRe, j ∈ N (1c)

Ṙij = Bcij(λi − λj), (i, j) ∈ Ec (1d)
dj = Kj(ωj + λj), j ∈ N (1e)

In [10], the cyber network and physical network coincide, that
is Ec = Ep. We relax this assumption in our study so we can
understand the impact of cyber topology on the performance
of the system dynamics (1).

Now using x to denote the system state x = [ω;λ;P ;R],
and putting Mp, M c, D, Bp, Bc and K to be the diagonal
matrices with Mp

j , M c
j , Dj+Kj , B

p
ij , B

c
ij and Kj as diagonal

entries respectively, we can rewrite the system dynamics in
state-space form

ẋ = Ax+

(M
p)−1

(M c)−1

0
0

Pm (2)

where A is given as−(M
p)−1D −(Mp)−1K −(Mp)−1Cp 0

−(M c)−1K −(M c)−1K 0 −(M c)−1Cc

Bp(Cp)T 0 0 0
0 Bc(Cc)T 0 0


and is referred to as the system matrix in the sequel. We
emphasize that the variables [ω;λ;P ;R] denote deviations
from their nominal values so x(t) = 0 means the system is
in its nominal state at time t, though it is not an equilibrium
point unless Pm = 0.

For any node i ∈ N , we denote the set of its physical neigh-
bors as Np(i). The (susceptance weighted) graph Laplacian
matrix of Gp is the n×n symmetric (and thus diagonalizable)
matrix Lp = CpBp(Cp)T , which is explicitly given by

Lpij =


−Bpij i 6= j, (i, j) ∈ Ep or (j, i) ∈ Ep∑
k∈Np(i)B

p
ik i = j

0 otherwise



If the graph Gp is connected, then Lp has rank n − 1, and
any principal minor of Lp is invertible [20]. For any vector
x ∈ Rn, we have

xTLpx =
∑

(i,j)∈E

Bpij(xi − xj)
2 ≥ 0

This implies that Lp is positive semidefinite. We denote its
eigenvalues as 0 = λp1 < λp2 ≤ · · · ≤ λpn. The Laplacian
matrix Lc of the cyber graph Gc and its eigenvalues 0 = λc1 <
λc2 ≤ · · · ≤ λcn are defined similarly.

Our analysis builds upon two assumptions:
1) Homogeneity. We require the buses to be homogeneous

in the sense that Mp = µpIn, M c = µcIn, D =
(δ + κ)In and K = κIn for some µp, µc, δ, κ > 01.
Our results can be readily generalized to the case where
the system paramters are heterogeneous but proportional
to system ratings following an approach similar to [21],
in which case the notations in our results would be
more complicated. We believe such complication does
not reveal new insights and thus opt not to doing so
here.

2) Commutativity. We require the Laplacian matrices Lp
and Lc to be commutative: LpLc = LcLp. Although the
practical meaning of this assumption is less clear, studies
in [22], [23] show that the commutativity property holds
at least approximately in some settings.

These two assumptions allow us to decompose the system
(2) through spectral crossing polynomials (which we define
in Section III) and present the main conclusions in a more
transparent and interpretable fashion.

III. MAIN RESULTS

In this section, we characterize how the cyber topology Gc
impacts the stability of (2) and its convergence rate if (2) is
stable.

A. Characterization of System Modes
We first provide a characterization of the system modes.

That is, we compute the eigenvalues of the system matrix
A, which determine whether the system is stable, and if so,
how fast it converges to an equilibrium state. We introduce
the concept of spectral crossing polynomials, which encode
information on how the cyber and physical topologies, as
captured by the corresponding Laplacian eigenvalues, interact
with each other and impact the overall system performance.
Recall n is the number of buses.

Definition III.1 (Spectral Crossing Polynomial). Let 0 =
λp1 < λp2 ≤ . . . ≤ λpn and 0 = λc1 < λc2 ≤ . . . ≤ λcn
be the Laplacian eigenvalues of Gp and Gc respectively. For
1 ≤ i ≤ n, the i-th spectral crossing polynomial of (2) is
defined to be the quartic polynomial

χi(t) :=
(
µpt2 + (δ + κ)t+ λpi

) (
µct2 + κt+ λci

)
− κ2t2

Theorem III.2. Let 0 = λp1 < λp2 ≤ . . . ≤ λpn and 0 = λc1 <
λc2 ≤ . . . ≤ λcn be the Laplacian eigenvalues of Gp and Gc
respectively and assuming LpLc = LcLp. Then:

1Note that for notation simplicity we absorbed both the damping δ and
controller gain κ into the matrix D. We do not require κ to always be smaller
than the damping level δ in our results.

1) 0 is an eigenvalue of A of multiplicity mp+mc−2n+2
2) The first spectral crossing polynomial χ1(t) has two

nonzero roots, both of which are real, strictly negative,
and they are eigenvalues of A

3) For 2 ≤ i ≤ n, all the four roots of the i-th spectral
crossing polynomial χi(t) are eigenvalues of A

When mp +mc − 2n + 2 = 0, or equivalently when both
Gp and Gc are trees, item 1) in Theorem III.2 is understood
to mean that the system matrix A does not have 0 as an
eigenvalue. Laplacian eigenvalues of a graph measure its
connectivity from an algebraic perspective, and larger Lapla-
cian eigenvalues suggest stronger connectivity. See our online
report [19] for more discussions. Theorem III.2 thus implies
the cyber topology impacts the convergence properties of (2)
precisely through the Laplacian eigenvalues.

B. Convergence and Equilibrium

We now show that the system (2) converges as long as the
cyber network Gc is connected, which allows us to optimize
the cyber topology without losing the asymptotic stability of
(2). Although in principle one can explicitly solve all the
roots of χi(t) as a quartic polynomial, the general formulae
are complicated and hard to track analytically. Instead, we
will prove relevant properties of these roots as functions of
the cyber Laplacian eigenvalues λci and these properties are
sufficient for our understanding of system convergence and
cyber network design.

Lemma III.3. Assuming LpLc = LcLp, all nonzero eigenval-
ues of A have negative real parts.

This result implies that under the commutativity assumption,
the system (2) is marginally stable. That is, assuming the
system initial state x(0) is not in the kernel of A (or if
x(0) = 0), under zero input Pm = 0 we have that (2)
converges to the nominal state limt→∞ x(t) = 0. The technical
condition on the commutativity of Lp and Lc is sufficient but
very likely unnecessary (based on physical intuition) and we
are still investigating how it can be relaxed. If both Gp and
Gc are trees, then Theorem III.2 implies that A does not have
zero eigenvalue and thus (2) is asymptotically stable. When
at least one of Gp or Gc is a mesh network, we can explicitly
compute the kernel of A as follows.

Lemma III.4. The kernel of A is given as

{[0; 0;P ;R] : P ∈ kernel(Cp), R ∈ kernel(Cc)}

The kernel of Cp corresponds to circulating branch flows
P that are balanced everywhere, that is

∑
j∈Np(i) Pij = 0

for all i ∈ N and thus there is neither a source (for which∑
j∈Np(i) Pij > 0) nor a sink (for which

∑
j∈Np(i) Pij < 0).

The kernel of Cc can be interpreted similarly. Thus the only
states that can persist in system (2) are circulating balanced
branch flows and virtual flows. As long as P (0) = R(0) = 0
(i.e. physical and virtual branch flows are at their nominal
values before the disturbance at t = 0+), the system (2) is
guaranteed to converge to the equilibrium state limt→∞ x(t) =
0 (under zero input Pm = 0). That is, as long as no circulating
flows exist at the initial state, there will be no circulating flows
at the steady state.



From Lemma III.3 and III.4 we know that the system (2)
restores to the nominal state after impulse disturbances (which
affects the initial state x(0)). They also imply the system (2)
converges to an equilibrium point, which can be different from
the nominal state, under a step disturbance. The following
result shows that with the controller (1c)-(1e), secondary
frequency regulation is always attained at the equilibrium.

Lemma III.5. Under a step input Pm(t) = Pm, any equilib-
rium point x∗ = [ω∗;λ∗;P ∗;R∗] of (2) satisfies ω∗ = 0.

Our characterizations on the stability of (2) can then be
summarized as follows.

Theorem III.6. Assume the initial state of (2) satisfies
P (0) = R(0) = 0. Then under a step input Pm(t) = Pm, we
have:

1) For any connected cyber network Gc, the system (2)
asymptotically converges to an equilibrium state

2) When the system (2) converges to the equilibrium state
x∗ = [ω∗, λ∗, P ∗, R∗], secondary frequency regulation
is attained:

ω∗i = 0, ∀i ∈ N

C. Impact of System Damping
Next we discuss a bifurcation phenomenon on the impact

of cyber topology to the convergence rate of system (2) under
different system damping level δ.

Definition III.7 (Principal Rate). Consider a spectral crossing
polynomial χi(t) with i ≥ 2. Let Re(χ−1i (0)) be the set of
real parts of its roots (all of them are nonzero). The principal
rate of χi(t), denoted as ρi, is defined to be

ρi := max
(
Re(χ−1i (0))

)
< 0

For i = 1, the principal rate of χ1 is defined to be its least
negative root 2

ρ1 := max
(
y ∈ χ−11 (0) : y 6= 0

)
< 0

For a spectral crossing polynomial χi, its principal rate
encodes the slowest convergent mode of system (2) coming
from χi. Therefore to obtain faster convergence, we should
design the system so that ρi’s are as negative as possible. For
χi, by designing the cyber network Gc, we effectively choose
different Laplacian eigenvalues λci , and hence it is of interest
to see how ρi(λ

c
i ) behaves as a function of λci . Since for any

connected Gc, the smallest cyber Laplacian eigenvalue λc1 = 0,
we know ρ1 is independent of λci so we will focus on the case
i ≥ 2 in the following.

Theorem III.8. Fix the physical Laplacian eigenvalues λpi and
put λ̂pi :=

µcλp
i

µp . For each i ≥ 2, there is a critical damping
level δi such that:

1) For δ ∈ [0, δi), there exists λ
p

i satisfying 0 < λ
p

i < λ̂pi
so that ρi(λci ) is decreasing on

[
0, λ

p

i

]
and [λ̂pi ,∞) and

increasing on
(
λ
p

i , λ̂
p
i

)
. Moreover,

ρi

(
λ̂pi

)
> lim
λc
i→∞

ρi(λ
c
i )

2One can show that all roots of χ1 are real.

Figure 1. Demonstration of the principal rate ρi(λci ) for different damping
levels with µc = µp = λpi = 1. (a) For δ ∈

[
0, δi

)
, the curve ρi(λci )

has two extreme points. The curve stationary point at λ̂pi moves downward
as δ increases. (b) For δ ∈

[
δi,∞

)
, the function ρi(λci ) is monotonically

decreasing. The curve moves upward as δ increases.

2) For δ ∈
[
δi,∞

)
, ρi(λci ) is strictly decreasing in λci

This result tells us that to understand the impact of cyber
topologies on the convergence rate of (2), we should sepa-
rate the low-damping and high-damping regimes. Recall that
increasing the cyber Laplacian eigenvalues λci corresponds to
adding connectivity to the cyber graph Gc. We then see that
when the system damping is not strong enough, adding cyber
connectivity does not always improve the convergence rate. In
fact, when µp = µc, choosing the cyber network Gc to be the
same as the physical network Gp is locally the worst design in
the sense that by choosing any other topology “nearby”3, we
can obtain faster convergence of the system (2). In contrast,
for a system where damping is strong enough, adding cyber
connectivity always increases the convergence rate. In either
case, to obtain a good performance of the system (2) in terms
of convergence rate, we should always choose cyber topologies

3We measure the distance between two topologies by the sup norm of the
difference in their ordered eigenvalues. It can be shown that this distance
defines a metric space over all topologies quotient the isospectral equivalence
relation.



with sufficiently large λci . See Figure 1 for a demonstration of
this bifurcation behavior.

IV. DESIGN OF CYBER NETWORK

In this section, we present two tradeoffs in cyber network
design for system (2) and discuss an algorithm for cyber
topology design. Recall we have shown in Theorem III.8 that
regardless of the system damping level, starting from a cyber
network such that λci = λ̂pi for all i, which is the case when
the cyber and physical topologies coincide and µp = µc, one
can always improve the convergence rate of the system (2)
by increasing the cyber Laplacian eigenvalues. There are two
degrees of freedom one can explore to achieve this: 1) the
virtual reactances Bc, 2) the cyber topology Gc.

A. Tradeoff between Convergence Rate and Noise Suppression
It is tempting to take a similar approach to the Markov

chain mixing rate optimization in [24] and solve the following
optimization problem

max tr
(
CcBc(Cc)T

)
s.t. Bcij ≥ 0, ∀i, j ∈ N

to search for the optimal virtual reactances. However, one
quickly see that this optimization is ill-defined in the sense
that the optimal solution is given as Bcij = ∞, or in other
words, we should pick the virtual reactances Bcij as large as
possible. Such large gains amplify measurement noise through
the network and are harmful to system robustness. Therefore
in terms of the virtual reactance selection, there is a tradeoff
between fast convergence and noise suppression.

B. Tradeoff between Convergence Rate and Communication
Overhead

It can be shown that the Laplacian eigenvalues are mono-
tonic with respect to the graph topologies. That is, suppose G1
is a subgraph of G2 with the same set of vertices, and denote
the Laplacian eigenvalues of G1 and G2 as 0 = λ11 < λ12 ≤
. . . ≤ λ1n and 0 = λ21 < λ22 ≤ . . . ≤ λ2n respectively,
then λ1i ≤ λ2i for any i, and there exists at least one i∗

such that λ1i∗ < λ2i∗ . See [25] for more details. Therefore
to obtain the largest eigenvalues, we should always pick the
“largest” graph, which is the complete graph Kn, as the cyber
topology. However, having a complete graph means more
communication channels are required for the controllers to
exchange state information, which incurs more communication
overhead compared to existing controllers [10], [11], [17]. As a
result, in terms of topology design, there is a tradeoff between
fast convergence and communication overhead.

C. Small-world Network
Fortunately, for many practical systems, it is possible to

increase the cyber Laplacian eigenvalues without increasing
the communication overhead as in [10] by exploiting the
so-called ultra-fast consensus network [26]. The ultra-fast
consensus network generalizes the classical Watts-Strogatz
small-world network model [27] to arbitrary graphs, and is
experimentally demonstrated in [26] to be able to significantly
increase the Laplacian eigenvalues for many graphs. The key
idea in [26], [27] is to exploit random rewiring of the links
so that the resulting graph has enough “randomness” and thus

large connectivity. We present our evaluation results of using
the ultra-fast consensus network for cyber topology design in
Section V and the readers are referred to [26] for more detailed
discussions on the algorithm itself.

V. EVALUATION

In this section, we evaluate our theoretical results from
Section III on practical systems.

A. Faster Mixing over Ring Network
To demonstrate the improved convergence rate when the

cyber network is carefully designed, we simulate the dynamics
(2) on a ring network of 300 buses, as shown in Figure 5(a).
We first add a 1 pu load to one of the buses and look at
the frequency trajectories when the cyber network has the
same ring topology (i.e., with 300 links in the communication
graph). The result is shown in Figure 5(b). Then we use the
algorithm in [26] to generate a small-world cyber network,
whose topology is shown in Figure 5(c), with the same number
(i.e., 300) of communication channels but larger Laplacian
eigenvalues and observe the resulting frequency trajectories
under the same disturbance. The result is shown in Figure
5(d). In this special case, the system (2) drives itself back
to the nominal state about five times faster when the cyber
network is carefully designed. We expect such benefits to be
more significant when the network is of larger scale.

B. Low Damping Regime
We showed in Theorem III.8 that for a network with

relatively low damping level (which will be the case for future
grids with extensive renewable penetration), compared to the
configuration where the cyber topology coincides with the
physical topology, we can in fact achieve better convergence
rate of (2) if we use fewer communication channels. To verify
this counter-intuitive behavior, we simulate the dynamics (2)
on the IEEE 39-bus New England interconnection testbed
(See Figure 2), whose system parameters are taken from the
MATPOWER package [28] but with only one-tenth of the real
damping constants Dj . Moreover, unlike our theoretical study
where the buses are homogeneous, the system parameters in
this evaluation are heterogeneous. To carry out the simulation,
we first add an additional load of 1 pu to bus 30 and observe
the frequency trajectories of the system, which are shown in
Figure 3(a). Then we remove the communication channels
(3, 18), (18, 17), (4, 14) as indicated by crosses in Figure 2 and
look at the system trajectories under the same disturbance. One
can observe that in this specific example with low damping
level, we can in fact make (2) more stable and more responsive
by using weaker cyber connectivity.

C. How many links are enough?
In this experiment, we evaluate how the number of com-

munication channels can affect the overall convergence rate
of (2) in an ultra-fast consensus network. To do so, we run
the algorithm in [26] over the IEEE 39-bus testbed to generate
small-world cyber networks with different number of commu-
nication channels and compute the dominant real part of the
system matrix A (the least negative nonzero real part among all
eigenvalues of A) in each case. To account for the randomness
in the algorithm from [26], we repeat the experiment 100



Figure 2. Line diagram of the IEEE 39-bus New England interconnection
testbed. The crossed lines are removed in the second part experiment of
Section V-B.

(a) Cyber and physical topologies coincide.

(b) The cyber topology with links
(3, 18), (18, 17), (4, 14) removed.

Figure 3. Frequency trajectories of the IEEE 39-bus New England intercon-
nection testbed for two different cyber topologies.

times for each number of communication channels and collect
the average and max/min statistics. The simulation results are
shown in Figure 4, in which we have also included the case
where we choose the physical topology (consisting of 46 links)
for the cyber network and a lower bound4 computed from
having λci → ∞, i = 2, 3, . . . , n, for comparison. As one can
see from the figure, with about 60 communication channels
or roughly 1.5 times the number of buses in this testcase, the

4Although we have only proved the optimal convergence rate of (2) is
achieved at infinite large cyber Laplacian eigenvalues provided the homo-
geneity and commutativity assumptions in Section II hold, it is possible to
show that this statement regarding optimality is still true even if neither of
the assumptions is posed.

Figure 4. The convergence rate of (2) captured by the dominant real part of
A as a function of the number of communication channels.

benefit on improving the system convergence from designing
cyber topologies starts to flatten out and is close to the lower
bound with high probability. Similar results can be observed
on other IEEE testbeds and in all cases we need less than twice
the number of buses to achieve near-optimal convergence with
high probability. We believe this will be a good benchmark for
practical applications.

VI. CONCLUSION

In this work, we studied the impact of cyber topology
of a distributed secondary frequency control scheme on the
stability, optimality and transient performance of our power
system as a cyber-physical network. It was demonstrated
that by carefully designing the cyber topology, near optimal
convergence rate can be achieved without incurring excessive
communication overhead.

This work can be extended in several directions. First, we
briefly discussed two tradeoffs in Section IV in cyber network
design. It is of interest to see whether such tradeoffs can be
quantified so we can strike a good balance in system design.
Second, many of our results rely heavily on the commutativity
assumption (the homogeneity assumption in contrast is less
critical) and it will be useful if this assumption can be relaxed.
Finally, we are still investigating how our results can be
generalized to more detailed models (say where the generators
have higher order and/or nonlinear dynamics).
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