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Abstract—We describe a learning process that uses one of the
simplest examples, matrix-matrix multiplication, to illustrate
issues that underlie parallel high-performance computing. It
is accessible at multiple levels: simple enough to use early
in a curriculum yet rich enough to benefit a more advanced
software developer. A carefully designed and scaffolded set
of exercises leads the learner from a naive implementation
towards one that extracts parallelism at multiple levels, ranging
from instruction level parallelism to multithreaded parallelism
via OpenMP to distributed memory parallelism using MPI.
The importance of effectively leveraging the memory hierarchy
within and across nodes is exposed, as do the GotoBLAS and
SUMMA algorithms. These materials will become part of a
Massive Open Online Course (MOOC) to be offered in the
future.
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I. INTRODUCTION

A purpose of exploiting parallelism is to compute an

answer in less time. To achieve this, parallelism can and

should be extracted at multiple levels: at the single core

level via instruction level parallelism, at the node level via

multithreading, and between nodes via distributed memory

parallelism. Vital to achieving near perfect speedup, high

performance, and scalability is the choice of algorithm, load

balance, and amortization of the cost of data movement.

These are principles the mastery of which is now of impor-

tance to any programmer of applications that are time-critical

or low power.

For decades, there has been a stated desire to teach parallel

computing early in the (undergraduate) curriculum [1], [2],

[3], [4]. A key is a set of examples/activities that are

simple, yet illustrate a reasonable subset of issues. Ideally,

activities are rich enough to interest and benefit both novice

and advanced software developers. Our experience over

several decades of teaching the subject is that matrix-matrix

multiplication (MMM) is one such example/activity.

A. Why matrix-matrix multiplication?

There are a multitude of reasons:

It is easy to define. Given matrices C, A, and B of sizes m×
n, m×k, and k×n, updating C with the result of multiplying

A times B is given by C := AB + C, which means each

element γi,j of C is updated with γi,j :=
∑k−1

p=0
αi,pβp,j +

γi,j , where αi,p and βp,j equal the i, p and p, j elements of

A and B, respectively.

It is taught early in the curriculum. MMM is often already

introduced in high school and most undergraduate programs

in computer science and other sciences require linear algebra

early in their core curriculum.

Performance matters. Matrix-matrix multiplication is at

the core of many scientific applications and, more recently

machine learning algorithms.

Choice of algorithm matters. What we will see later in this

paper is that high-performance (parallel) implementations

employ all in a family of algorithms.

Parallelism is exploited at all levels. High-performance

requires instruction level, multi-threaded, and distributed

memory parallelism.

Data movement matters. Key to high performance is the

careful amortization of movement of data between memory

layers, not only between nodes of a distributed memory

architecture, but also between local memory, local caches,

and the registers of a core.

Data decomposition matters. A simplistic distribution of

data between nodes of a distributed memory architecture will

inherently prevent even so-called weak scalability.

It extends. Contemporary operations, such as the computa-

tion of the K-Nearest Neighbor [5] and tensor contraction

[6], [7], [8] are variations on MMM as are Strassen-like fast

MMM algorithms [9], [10].

It satisfies the need for speed. Just like some become

addicted to tinkering on race cars, driving them to push the

limits of performance, the same is true for high-performance

implementation of MMM.

MMM is simple yet complex enough to introduce many of

the issues with which one grapples when confronted with the

complexities of a modern sequential or parallel computer.

B. Related work

MMM has often been used as an exercise when teaching

about optimization. A quick Google search yielded numer-

ous lecture notes and/or homework exercises that utilize this

operation [11], [12]. What these materials have in common

is that they cite a number of insightful papers [13], [14],



[15], [16], [17], [18]. We ourselves created the “how-to-

optimize-gemm” wiki [19] and a sandbox that we call

BLISlab [20] that build upon our BLAS-like Library In-

stantiation Software [21], [22] refactoring of the GotoBLAS

approach [13] to implementing MMM. Others have created

similar exercises [23].

Similarly, there are many course materials (e.g., [24],

[25]) that build upon the SUMMA algorithm [26], [27]

for distributed memory parallel MMM, variants of which

are used in practical libraries like ScaLAPACK [28], PLA-

PACK [29], and Elemental [30].

The materials we describe are an attempt to provide an

updated experience similar to these prior efforts that is

carefully structured and integrated. When launched as a

Massive Open Online Course (MOOC), it will scale.

C. This paper

We narrate a set of exercises that will be part of a MOOC

to be offered in the future. It is the third in a loosely-coupled

set of MOOCs [31] that have been developed at UT-Austin.

The first two are already offered on the edX platform and

expose learners to HPC through enrichments.

The described exercises have been used in an on-campus

upper-division computer science course at UT-Austin, titled

“Programming for Correctness and Performance.” At the

writing of this paper, it is the exercises related to parallelism

within a core and node that have been developed. The

exercises related to the distributed memory parallelization

are described, but are still under construction.

The notes that are being written for this course, as well as

the related activities, can be found at http://www.ulaff.net.

II. NAIVE IMPLEMENTATIONS

We start the journey towards optimization with a simplest

implementation of MMM. It is described how matrices are

mapped to memory, and by playing with the ordering of

the triple-nested loop, the learner discovers that there is a

performance benefit that comes from accessing contiguous

memory (spacial locality). The learner also finds out that

these simple implementations are grossly suboptimal, rela-

tive to the theoretical peak of a processor and to a high-

performance reference implementation.

A. A simple algorithm

The learner starts with a C implementation for computing

MMM. This results in a triple-nested loop,
for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1

for p := 0, . . . , k − 1

γi,j := αi,pβp,j + γi,j
end

end

end
This loop ordering, IJP, casts the computations in terms of

dot products of the rows of A and columns of B. Learners

are introduced to different ways the elements of a matrix

are stored in memory, and how this code strides through the

memory to access the various elements of each matrix when

column-major ordering is used.

With this exercise, learners are also introduced to mea-

suring the performance of the implementation of the code,

in terms of timing information and rate of computation

(GFLOPS) as a function of problem size and execution time.

They calculate the theoretical peak performance based on the

specification of their processor. This gives the learner an idea

of the target performance of this compute bound operation.

Figure 1 (left) is representative of the graph that the learn-

ers create from the exercise. Experiencing that a naive

implementation only achieves a tiny fraction of the theoret-

ical peak of a processor and a high-performance reference

implementation is a real eye-opener.

B. Ordering the loops

Experienced programmers know that computing with data

that are contiguous in memory (“stride one access”) is better

than computing with data that are accessed with a larger

stride. The learners experiment with this by changing the

loop ordering to see its effect on the performance.

They learn that

• For the IJP and JIP orderings, the inner-most loop casts

the computations in terms of dot products (DOT) of the

appropriate row and column of A and B respectively.

It is the order in which the elements of C are visited

that are determined by the ordering of the outer two

loops.

• The IPJ and PIJ orderings cast the inner-most com-

putations in terms of an AXPY operation (scalar times

vector added to a vector) with row vectors, while the

outer two loops visit each element of the matrix A.

• The JPI and PJI orderings cast the inner-most com-

putations in terms of an AXPY operation with column

vectors, while the outer two loops visit each element

in the matrix B.

Since we adopt column-major storage in our exercises, the

JPI ordering has the most favorable access pattern. This is

observed in practice, as illustrated in Figure 1 (right).

C. Simple layering of the operations

The exercises so far already introduce the learner to the

idea that MMM can be implemented in terms of DOT and

AXPY operations. To prepare for the many optimizations that

follow, the learners go through a number of exercises that

illustrate how MMM can also be implemented as a single

loop around a matrix-vector or rank-1 update operation,

each of which itself can be implemented in terms of DOT

or AXPY operations. This introduces them to the function-

ality supported by the Basic Linear Algebra Subprograms

(BLAS) [33], [34], [35] and that there are families of

algorithms for MMM.





Figure 3 (left) illustrates the performance benefits that the

learner observes.

From the implementation of the 4× 4 kernel for double-

precision floating point on a CPU with vector length of 256

bits, learners make the following observation:

• The submatrix Ci,j requires 4 vector registers. The

values of Ci,j are loaded into the vector registers,

updated, and then written to memory only once for an

arbitrary value of k, and is hence reused k times.

• In general, the kernel updates the values of the sub-

matrix Ci,j that can be of size mR × nR. If rC is the

number of doubles the vector registers can hold then

mR × nR ≤ rC .

• For each iteration of a kernel of size mR×nR, loading

mR doubles from the matrix A and nR doubles from

the matrix B is amortized over 2mRnR flops. Thus,

the flops/load ratio is 2mRnR

mR+nR

With this understanding, learners experiment with varying

the values of mR and nR. They analyze how many vec-

tor registers each implementation requires and observe the

overall performance of the resulting implementations. From

these experiments, the learner empirically determines the

optimal value of mR and nR. Figure 3 (right) illustrates the

performance for various micro-kernels.

Under a simplified model, the optimal values of mR

and nR can be analytically determined by maximizing the

flops/load ratio given the constraint of the registers available.

Learners note that under these constraints the block of Ci,j

that resides in the registers must be squarish. The interested

learner is pointed to further reading [36] that refines the

model and better predicts optimal choices.

These exercises link what was learned about casting

MMM in terms of rank-1 update to the reuse of data that is

stored in registers to blocked MMM. Better performance is

achieved, but there is still considerable room for improve-

ment.

C. Blocking for multiple levels of cache memory

The exercises so far assume a simple memory model of

main memory and registers. Learners note from Figure 3 that

the performance of their MMM implementation based on

the vectorized micro-kernel is fast for smaller matrix sizes,

but they observe a performance drop for larger matrices.

This drop in performance is a segue to teach the learners

about memory hierarchy in modern computers. After an

introduction to multi-level caches, the learners understand

that the drop in performance is because elements of the

matrix are not in cache.

A naive way to block for caches is to look at Fig-

ure 3 (right) and notice that good performance is achieved

for matrices with m = n = k = 48. By partitioning all

matrices into submatrices of that size, a larger MMM is

then cast in terms of subproblems of that size. Following

this approach, the learner creates an implementation that

yields the performance reported in Figure 4 (left), labeled

GemmFiveLoops_12x4.

D. Near-optimal blocking with packing

The question becomes how to optimally block for all

caches. Through an additional sequence of steps, the learner

is introduced to a near-optimal approach pioneered by

Kazushige Goto [13] that is illustrated in Figure 5. It

blocks for all three levels of cache and packs data for

further locality. With appropriately chosen block sizes, the

learner’s implementation reaches the performance reported

in Figure 4 (right). This same approach underlies the imple-

mentation labeled “reference” from our BLIS library.

There are a few final techniques that are suggested to

the learner, such as prefetching, loop unrolling, and vector

instructions that force alignment, which help further close

the gap with the “reference” implementation.

E. Summary

What has been described is a set of carefully scaffolded

exercises that quickly take the learner from the naive

implementation that achieves only a fraction of the CPU

peak performance to a state-of-the-art implementation, while

introducing the learner to important concepts in computer

architecture that enable high-performance implementations

on a single core.

IV. MULTI CORE IMPLEMENTATION

Once equipped with the tools to write a high-performance

MMM code for a single core, the learners are now ready to

parallelize across multiple cores that have shared memory.

In the process, they are exposed to multi-threading with

OpenMP [38].

A. Opportunities for Parallelism

Blocking for multiple levels of cache results in an imple-

mentation that has five loops around the kernel as shown in

Figure 5. These various loops give us multiple opportunities

for parallelism [39]. Learners use OpenMP to experiment

with parallelizing different loops. Which loop is chosen for

parallelization influences how much parallelism exists, the

granularity of the tasks that are concurrently executed, and

the efficiency with which caches are used depending on how

they are shared by cores.

For example, for a machine with a shared L3 cache,

but private L2 caches, parallelizing the third loop around

the micro-kernel has some advantage over parallelizing the

second loop, since the L2 cache is more efficiently used.

This is the case because each thread computes with its

own block Ã, and shared panel B̃. However, parallelizing

the third loop yields a coarser granularity of tasks, which

can negatively affect load balance. In other words: there

is a tension between concerns. A representative graph of

performance is given in Figure 6.
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Figure 3. Left: Performance MMM cast in terms of 4× 4 kernel. Right: Performance when the choices of mR and nR are varied.
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Figure 4. Left: Performance blocked MMM where all three matrices are blocked into 48× 48 submatrices, and for each Ci,j := Ai,pBp,j + Ci,j the
implementation from Section III is used. Right: Implementation of Figure 5 with packing and near-optimal parameter choices.

The code with which they start is written so that the learn-

ers have to struggle with the concepts of race conditions,

cache coherency, and data sharing issues.

B. Performance Metrics

When writing multi-threaded code, it is important to

understand how well the code performs. Learners time their

multi-threaded code, then calculate the speedup and effi-

ciency that is attained. The limitations imposed by Amdahl’s

law are an important concept for understanding what parts

of the code need further optimization.

C. Other Insights on Multicore Parallelization

Equipped with the knowledge gained so far, learners

are able to identify other possible ways they can further

improve performance. For example, they observe that the

packing routines can also be parallelized across the threads

to distribute that workload among the cores as well. If this is

not done, then the packing is a limiting factor, per Amdahl’s

law.

D. Summary

The learner walks away understanding some core ideas:
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