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Abstract—We describe a learning process that uses one of the
simplest examples, matrix-matrix multiplication, to illustrate
issues that underlie parallel high-performance computing. It
is accessible at multiple levels: simple enough to use early
in a curriculum yet rich enough to benefit a more advanced
software developer. A carefully designed and scaffolded set
of exercises leads the learner from a naive implementation
towards one that extracts parallelism at multiple levels, ranging
from instruction level parallelism to multithreaded parallelism
via OpenMP to distributed memory parallelism using MPI.
The importance of effectively leveraging the memory hierarchy
within and across nodes is exposed, as do the GotoBLAS and
SUMMA algorithms. These materials will become part of a
Massive Open Online Course (MOOC) to be offered in the
future.
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I. INTRODUCTION

A purpose of exploiting parallelism is to compute an
answer in less time. To achieve this, parallelism can and
should be extracted at multiple levels: at the single core
level via instruction level parallelism, at the node level via
multithreading, and between nodes via distributed memory
parallelism. Vital to achieving near perfect speedup, high
performance, and scalability is the choice of algorithm, load
balance, and amortization of the cost of data movement.
These are principles the mastery of which is now of impor-
tance to any programmer of applications that are time-critical
or low power.

For decades, there has been a stated desire to teach parallel
computing early in the (undergraduate) curriculum [1], [2],
[3], [4]. A key is a set of examples/activities that are
simple, yet illustrate a reasonable subset of issues. Ideally,
activities are rich enough to interest and benefit both novice
and advanced software developers. Our experience over
several decades of teaching the subject is that matrix-matrix
multiplication (MMM) is one such example/activity.

A. Why matrix-matrix multiplication?
There are a multitude of reasons:

It is easy to define. Given matrices C, A, and B of sizes m x
n, mxk, and kxn, updating C' with the result of multiplying
A times B is given by C' := AB + C, which means each

element ; ; of C' is updated with ~; ; := Z’;;é & pBp; +

vi,j>» where o, and 3, ; equal the i,p and p, j elements of
A and B, respectively.

It is taught early in the curriculum. MMM is often already
introduced in high school and most undergraduate programs
in computer science and other sciences require linear algebra
early in their core curriculum.

Performance matters. Matrix-matrix multiplication is at
the core of many scientific applications and, more recently
machine learning algorithms.

Choice of algorithm matters. What we will see later in this
paper is that high-performance (parallel) implementations
employ all in a family of algorithms.

Parallelism is exploited at all levels. High-performance
requires instruction level, multi-threaded, and distributed
memory parallelism.

Data movement matters. Key to high performance is the
careful amortization of movement of data between memory
layers, not only between nodes of a distributed memory
architecture, but also between local memory, local caches,
and the registers of a core.

Data decomposition matters. A simplistic distribution of
data between nodes of a distributed memory architecture will
inherently prevent even so-called weak scalability.

It extends. Contemporary operations, such as the computa-
tion of the K-Nearest Neighbor [5] and tensor contraction
[6], [7], [8] are variations on MMM as are Strassen-like fast
MMM algorithms [9], [10].

It satisfies the need for speed. Just like some become
addicted to tinkering on race cars, driving them to push the
limits of performance, the same is true for high-performance
implementation of MMM.

MMM is simple yet complex enough to introduce many of
the issues with which one grapples when confronted with the
complexities of a modern sequential or parallel computer.

B. Related work

MMM has often been used as an exercise when teaching
about optimization. A quick Google search yielded numer-
ous lecture notes and/or homework exercises that utilize this
operation [11], [12]. What these materials have in common
is that they cite a number of insightful papers [13], [14],



[15], [16], [17], [18]. We ourselves created the ‘“how-to-
optimize-gemm” wiki [19] and a sandbox that we call
BLISlab [20] that build upon our BLAS-like Library In-
stantiation Software [21], [22] refactoring of the GotoBLAS
approach [13] to implementing MMM. Others have created
similar exercises [23].

Similarly, there are many course materials (e.g., [24],
[25]) that build upon the SUMMA algorithm [26], [27]
for distributed memory parallel MMM, variants of which
are used in practical libraries like ScaLAPACK [28], PLA-
PACK [29], and Elemental [30].

The materials we describe are an attempt to provide an
updated experience similar to these prior efforts that is
carefully structured and integrated. When launched as a
Massive Open Online Course (MOOC), it will scale.

C. This paper

We narrate a set of exercises that will be part of a MOOC
to be offered in the future. It is the third in a loosely-coupled
set of MOOCs [31] that have been developed at UT-Austin.
The first two are already offered on the edX platform and
expose learners to HPC through enrichments.

The described exercises have been used in an on-campus
upper-division computer science course at UT-Austin, titled
“Programming for Correctness and Performance.” At the
writing of this paper, it is the exercises related to parallelism
within a core and node that have been developed. The
exercises related to the distributed memory parallelization
are described, but are still under construction.

The notes that are being written for this course, as well as
the related activities, can be found at http://www.ulaff.net.

II. NAIVE IMPLEMENTATIONS

We start the journey towards optimization with a simplest
implementation of MMM. It is described how matrices are
mapped to memory, and by playing with the ordering of
the triple-nested loop, the learner discovers that there is a
performance benefit that comes from accessing contiguous
memory (spacial locality). The learner also finds out that
these simple implementations are grossly suboptimal, rela-
tive to the theoretical peak of a processor and to a high-
performance reference implementation.

A. A simple algorithm

The learner starts with a C implementation for computing
MMM. This results in a triple-nested loop,
fori:=0,.... m—1

for j:=0,...,n—1

for p:=0,...,k—1
Yirj = QipBp,j + Vi

end

end

end
This loop ordering, IJP, casts the computations in terms of
dot products of the rows of A and columns of B. Learners

are introduced to different ways the elements of a matrix
are stored in memory, and how this code strides through the
memory to access the various elements of each matrix when
column-major ordering is used.

With this exercise, learners are also introduced to mea-
suring the performance of the implementation of the code,
in terms of timing information and rate of computation
(GFLOPS) as a function of problem size and execution time.
They calculate the theoretical peak performance based on the
specification of their processor. This gives the learner an idea
of the target performance of this compute bound operation.

Figure 1 (left) is representative of the graph that the learn-
ers create from the exercise. Experiencing that a naive
implementation only achieves a tiny fraction of the theoret-
ical peak of a processor and a high-performance reference
implementation is a real eye-opener.

B. Ordering the loops

Experienced programmers know that computing with data
that are contiguous in memory (‘“‘stride one access”) is better
than computing with data that are accessed with a larger
stride. The learners experiment with this by changing the
loop ordering to see its effect on the performance.

They learn that

o For the IJP and JIP orderings, the inner-most loop casts
the computations in terms of dot products (DOT) of the
appropriate row and column of A and B respectively.
It is the order in which the elements of C' are visited
that are determined by the ordering of the outer two
loops.

o The IPJ and PIJ orderings cast the inner-most com-
putations in terms of an AXPY operation (scalar times
vector added to a vector) with row vectors, while the
outer two loops visit each element of the matrix A.

o The JPI and PJI orderings cast the inner-most com-
putations in terms of an AXPY operation with column
vectors, while the outer two loops visit each element
in the matrix B.

Since we adopt column-major storage in our exercises, the
JPI ordering has the most favorable access pattern. This is
observed in practice, as illustrated in Figure 1 (right).

C. Simple layering of the operations

The exercises so far already introduce the learner to the
idea that MMM can be implemented in terms of DOT and
AXPY operations. To prepare for the many optimizations that
follow, the learners go through a number of exercises that
illustrate how MMM can also be implemented as a single
loop around a matrix-vector or rank-1 update operation,
each of which itself can be implemented in terms of DOT
or AXPY operations. This introduces them to the function-
ality supported by the Basic Linear Algebra Subprograms
(BLAS) [33], [34], [35] and that there are families of
algorithms for MMM.
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Left: Performance of a simple triple-nested loop, compared to a high-performance reference implementation (our BLIS library [21], [32]).

Right: Performance of all orderings of the loops. The top of the graphs represents the theoretical peak of the processor.

III. OPTIMIZING FOR A SINGLE CORE

The previous section set the stage: learners are now
fully aware of the inadequacy of simple implementations
and the limitations of optimizing compilers. The next step
is to extract instruction level parallelism through calls to
single-instruction, multiple data (SIMD) operations, which
execute identical floating point operations simultaneously on
different data. Using fast operations is not enough: careful
attention must be paid to the memory hierarchy and the
(near) optimal amortization of data movement over useful
computation.

A. Blocked MMM

In order to take advantage of the memory hierarchy,
matrices are blocked into submatrices

Xoo Xoa1,-.-

X — Xio Xi1,... for X € {C,A,B} (1)

after which C' := AB + C can be computed by blocks:
Ci,j = Ai,OBO,j +- - +Ai,K—1BK—1,j +Cz'7]'. Throughout
the remaining exercises, a family of blocked versions of
MMM improve temporal and spacial locality.

B. Vector registers and instructions

In order to access the full potential of the CPU, compu-
tation must be cast in terms of vector operations with data
that are stored in vector registers. After introducing these
concepts and the corresponding intrinsic commands via the
C language, the learner completes a routine that implements
C;j = A;B;j + C; j, where C; ; is a 4 x 4 matrix. Initially,
the size of C}; ; is arbitrary since the focus is on how to

<] [T

1 I

Figure 2. Computing C; ; := A; B; + C; ; where C; ; is 4 X 4 in terms
of a sequence of rank-1 updates apb'{,’.

cast computation in terms of vector operations in the SIMD
instruction set of the target processor.

The computation is orchestrated as a loop around rank-1
updates, where for each rank-1 update a vector register is
loaded with colugln ap of A;, and another one is loaded with
elements in row b,, of B}, as illustrated in Figure 2. We refer
to this sub-operation as the micro-kernel for MMM. Through
its implementation the learner also gains an understanding
of instruction latency and data dependency issues to avoid
stalls in the instruction pipeline.

To then compute C' := AB + C, where C is partitioned
as in (1), and

Ao
A= Al andB:(Bo Bl ),

and a routine that implements the double nested loop around
the kernel that computes C; ; = A; B; + Cj; is employed.



Figure 3 (left) illustrates the performance benefits that the
learner observes.

From the implementation of the 4 x 4 kernel for double-
precision floating point on a CPU with vector length of 256
bits, learners make the following observation:

o The submatrix C;; requires 4 vector registers. The
values of C;; are loaded into the vector registers,
updated, and then written to memory only once for an
arbitrary value of k, and is hence reused k times.

o In general, the kernel updates the values of the sub-
matrix C; ; that can be of size mp x ng. If r¢ is the
number of doubles the vector registers can hold then
mpr X nr < re.

« For each iteration of a kernel of size mp X npr, loading
mp doubles from the matrix A and ngr doubles from
the matrix B is amortized over 2mpgnpg flops. Thus,
the flops/load ratio is ;’”%"R

RTNR

With this understanding, learners experiment with varying
the values of mp and ng. They analyze how many vec-
tor registers each implementation requires and observe the
overall performance of the resulting implementations. From
these experiments, the learner empirically determines the
optimal value of mp and npr. Figure 3 (right) illustrates the
performance for various micro-kernels.

Under a simplified model, the optimal values of mp
and np can be analytically determined by maximizing the
flops/load ratio given the constraint of the registers available.
Learners note that under these constraints the block of C ;
that resides in the registers must be squarish. The interested
learner is pointed to further reading [36] that refines the
model and better predicts optimal choices.

These exercises link what was learned about casting
MMM in terms of rank-1 update to the reuse of data that is
stored in registers to blocked MMM. Better performance is
achieved, but there is still considerable room for improve-
ment.

C. Blocking for multiple levels of cache memory

The exercises so far assume a simple memory model of
main memory and registers. Learners note from Figure 3 that
the performance of their MMM implementation based on
the vectorized micro-kernel is fast for smaller matrix sizes,
but they observe a performance drop for larger matrices.
This drop in performance is a segue to teach the learners
about memory hierarchy in modern computers. After an
introduction to multi-level caches, the learners understand
that the drop in performance is because elements of the
matrix are not in cache.

A naive way to block for caches is to look at Fig-
ure 3 (right) and notice that good performance is achieved
for matrices with m = n = k = 48. By partitioning all
matrices into submatrices of that size, a larger MMM is
then cast in terms of subproblems of that size. Following
this approach, the learner creates an implementation that

yields the performance reported in Figure 4 (left), labeled
GemmFiveLoops_12x4.

D. Near-optimal blocking with packing

The question becomes how to optimally block for all
caches. Through an additional sequence of steps, the learner
is introduced to a near-optimal approach pioneered by
Kazushige Goto [13] that is illustrated in Figure 5. It
blocks for all three levels of cache and packs data for
further locality. With appropriately chosen block sizes, the
learner’s implementation reaches the performance reported
in Figure 4 (right). This same approach underlies the imple-
mentation labeled “reference” from our BLIS library.

There are a few final techniques that are suggested to
the learner, such as prefetching, loop unrolling, and vector
instructions that force alignment, which help further close
the gap with the “reference” implementation.

E. Summary

What has been described is a set of carefully scaffolded
exercises that quickly take the learner from the naive
implementation that achieves only a fraction of the CPU
peak performance to a state-of-the-art implementation, while
introducing the learner to important concepts in computer
architecture that enable high-performance implementations
on a single core.

IV. MULTI CORE IMPLEMENTATION

Once equipped with the tools to write a high-performance
MMM code for a single core, the learners are now ready to
parallelize across multiple cores that have shared memory.
In the process, they are exposed to multi-threading with
OpenMP [38].

A. Opportunities for Parallelism

Blocking for multiple levels of cache results in an imple-
mentation that has five loops around the kernel as shown in
Figure 5. These various loops give us multiple opportunities
for parallelism [39]. Learners use OpenMP to experiment
with parallelizing different loops. Which loop is chosen for
parallelization influences how much parallelism exists, the
granularity of the tasks that are concurrently executed, and
the efficiency with which caches are used depending on how
they are shared by cores.

For example, for a machine with a shared L3 cache,
but private L2 caches, parallelizing the third loop around
the micro-kernel has some advantage over parallelizing the
second loop, since the L2 cache is more efficiently used.
This is the case because each thread computes with its
own block A, and shared panel B. However, parallelizing
the third loop yields a coarser granularity of tasks, which
can negatively affect load balance. In other words: there
is a tension between concerns. A representative graph of
performance is given in Figure 6.
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The code with which they start is written so that the learn-
ers have to struggle with the concepts of race conditions,
cache coherency, and data sharing issues.

B. Performance Metrics

When writing multi-threaded code, it is important to
understand how well the code performs. Learners time their
multi-threaded code, then calculate the speedup and effi-
ciency that is attained. The limitations imposed by Amdahl’s
law are an important concept for understanding what parts
of the code need further optimization.

C. Other Insights on Multicore Parallelization

Equipped with the knowledge gained so far, learners
are able to identify other possible ways they can further
improve performance. For example, they observe that the
packing routines can also be parallelized across the threads
to distribute that workload among the cores as well. If this is
not done, then the packing is a limiting factor, per Amdahl’s
law.

D. Summary

The learner walks away understanding some core ideas:
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« Parallelization should only be started once the optimiza-
tion on a single core is mostly completed.

« Optimization on a single core is all about temporal
and spacial locality. Techniques for achieving this often
prepare an implementation for parallelization.

« How to extract parallelism is often machine dependent.

« All major components of an implementation need to be
examined for possible parallelization in order to avoid
the pitfalls dictated by Amdahl’s law.

o OpenMP is a powerful mechanism for expressing par-
allelism.

V. DISTRIBUTED MEMORY IMPLEMENTATION

The system that has been targeted up to this point is
what become a node in a distributed memory architecture.
MMM now becomes the example that demonstrates that the
effective use of a distributed memory computer applies the
same principles: amortize the cost of data movement over
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Figure 6. Parallelization of the second and third loop around the
microkernel.

useful computation.

A. Programming distributed memory architectures

Modern supercomputers consist of thousands of nodes,
each an individual off-the-shelf computer. The accepted
programming paradigm for such a system is known as
Single Program Multiple Data (SPMD) programming, where
a single program is executed on all the nodes available. Each
node has a unique identifier. Programs take a different execu-
tion path and data is shared as needed, based on the identifier
of the node on which it is executed. Typically, the Message
Passing Interface (MPI) [40] is used for communication.
Learners are first introduced to programming on a distributed
memory system by writing a simple “Hello World” program
using MPI routines.

B. Collective communications

For nodes to come together to collectively solve a prob-
lem, input data needed and/or the answer a node produces
must be shared with other nodes. This is the data movement
that must be amortized over useful computation.

Learners are introduced to collective communications
(collectives), the data redistribution and consolidation op-
erations encountered in practical parallel algorithms for
MMM [26], [27]. Given a simple model of the cost of point-
to-point communication, they calculate lower bounds on the
cost of these collectives. Various algorithms are discovered
and their costs analyzed. Importantly, learners are exposed
to how collectives can be composed to implement other
collectives [41], as illustrated in Figure 7. This “calculus”
of collectives later simplifies the development of a family of
algorithms for MMM on distributed memory architectures.
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A benefit of casting algorithms in terms of computation
interleaved with collectives is that this is an example of
programming with the Block Synchronous Parallel (BSP)
model, which makes cost analyses simpler.

C. Distributed Memory MMM

Once equipped with an understanding of the collectives,
learners are now ready to implement distributed memory
MMM. Starting with a parallel matrix-vector implementation
on a 1D compute grid, they analyze the cost of their
implementation. As for the multi-threaded code, learners
calculate the speedup and efficiency of their implementation,
as well as its scalability. They find that 1D algorithms are
inherently not weakly scalable. Through further exercises
they find that a two-dimensional data distribution is required
for weak scalability to be achieved. Learners apply this to
the parallelization of the rank-1 update operation next.

Learners already know how to cast MMM in terms of
rank-1 updates. They analyze that a distributed memory
MMM in terms of rank-1 updates is weakly scalable.
However, it is not high performing since the underlying
computations on each node (local rank-1 updates) do not
attain high performance. Learners are able to modify their
implementation such that the computations on each node are
a local MMM instead of a rank-1 update, and achieve high
performance that is weakly scalable.

Through simple examples, learners gain insights that have
been published in [26], [27]. What they also observe is that
even for an operation as simple as MMM, coding in terms
of MPI calls and local calls to the BLAS is cumbersome and
error prone. To alleviate this, they discover how to abstract
away from details of distribution, much like PLAPACK [29]
and Elemental [30] do. In our experience, this is a skill that

needs mastering if one is to become a practitioner of HPC
targeting large distributed memory systems.

D. Summary

This part of the course is still very much in the design
phase. Developing and testing the implementations can be
done on a typical laptop or desktop computer. Gathering
performance data requires access to an actual distributed
memory system. A major question is how to give those
learners who lack access to high performance distributed
memory parallel systems the ability to experience those
architectures.

VI. CONCLUSION

We have described a set of learning experiences cen-
tered around MMM. Together, they introduce the learner
to parallelization at different levels of the architecture:
within a core, within a processor, and across a distributed
memory system. Along the way, the learner experiences the
importance of amortization of data movement over useful
computations (GFLOPS). The learner is thus exposed to
vector instructions, OpenMP, and MPI, as well as concepts
like efficiency, rate of computation, speedup, and scalability.

The materials provide the learners just enough informa-
tion, just in time. Enrichments provide an opportunity to
further deepen their knowledge. This makes it suitable for
an audience ranging from the novice with some experience
with the C programming language to a domain scientist who
realizes high performance is needed to solve problems in
their domain. In addition to it reaching the life-long learners
who gravitate towards MOOC:s, exercises might be used in
a traditional classroom and other settings.

For some, success lies not with achieving a higher level of
proficiency in HPC: The realization that optimization is best
left to experts and that performance can be achieved through
use of high-performance software libraries is valuable as
well.
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