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Abstract

Many corpora span broad periods of time.
Language processing models trained dur-
ing one time period may not work well
in future time periods, and the best model
may depend on specific times of year
(e.g., people might describe hotels differ-
ently in reviews during the winter ver-
sus the summer). This study investigates
how document classifiers trained on docu-
ments from certain time intervals perform
on documents from other time intervals,
considering both seasonal intervals (inter-
vals that repeat across years, e.g., winter)
and non-seasonal intervals (e.g., specific
years). We show experimentally that clas-
sification performance varies over time,
and that performance can be improved by
using a standard domain adaptation ap-
proach to adjust for changes in time.

1 Introduction

Language, and therefore data derived from lan-
guage, changes over time (Ullmann, 1962). Word
senses can shift over long periods of time
(Wilkins, 1993; Wijaya and Yeniterzi, 2011;
Hamilton et al., 2016), and written language can
change rapidly in online platforms (Eisenstein
et al., 2014; Goel et al., 2016). However, little is
known about how shifts in text over time affect the
performance of language processing systems.
This paper focuses on a standard text process-
ing task, document classification, to provide in-
sight into how classification performance varies
with time. We consider both long-term variations
in text over time and seasonal variations which
change throughout a year but repeat across years.
Our empirical study considers corpora contain-
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ing formal text spanning decades as well as user-
generated content spanning only a few years.
After describing the datasets and experiment
design, this paper has two main sections, respec-
tively addressing the following research questions:

1. In what ways does document classification
depend on the timestamps of the documents?

2. Can document classifiers be adapted to per-
form better in time-varying corpora?

To address question 1, we train and test on data
from different time periods, to understand how
performance varies with time. To address ques-
tion 2, we apply a domain adaptation approach,
treating time intervals as domains. We show that
in most cases this approach can lead to improve-
ments in classification performance, even on fu-
ture time intervals.

1.1 Related Work

Time is implicitly embedded in the classification
process: classifiers are often built to be applied to
future data that doesn’t yet exist, and performance
on held-out data is measured to estimate perfor-
mance on future data whose distribution may have
changed. Methods exist to adjust for changes in
the data distribution (covariate shift) (Shimodaira,
2000; Bickel et al., 2009), but time is not typically
incorporated into such methods explicitly.

One line of work that explicitly studies the rela-
tionship between time and the distribution of data
is work on classifying the time period in which
a document was written (document dating) (Kan-
habua and Ngrvag, 2008; Chambers, 2012; Kot-
sakos et al., 2014). However, this task is directed
differently from our work: predicting timestamps
given documents, rather than predicting informa-
tion about documents given timestamps.
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Dataset Time intervals (non-seasonal) Time intervals (seasonal) Size
Reviews (music) 1997-99, 2000-02, 2003-05, 2006-08, 2009-11, 2012-14 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec | 653K
Reviews (hotels) 2005-08, 2009-11, 2012-14, 2015-17 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec | 78.6K
Reviews (restaurants) | 2005-08, 2009-11, 2012-14, 2015-17 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec | 1.16M
News (economy) 1950-70, 1971-85, 1986-2000, 2001-14 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec | 6.29K
Politics (platforms) 1948-56, 1960-68, 1972-80, 1984-92, 1996-2004, 2008-16 | n/a 35.8K
Twitter (vaccines) 2013, 2014, 2015, 2016 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec | 9.83K

Table 1: Descriptions of corpora spanning multiple time intervals. Size is the number of documents.

2 Datasets and Experimental Setup
Our study experiments with six corpora:

e Reviews: Three corpora containing reviews la-
beled with sentiment: music reviews from Ama-
zon (He and McAuley, 2016), and hotel reviews
and restaurant reviews from Yelp.! We dis-
carded reviews that had fewer than 10 tokens
or a helpfulness/usefulness score of zero. The

reviews with neutral scores were removed.

Politics: Sentences from the American party
platforms of Republicans and Democrats from
1948 to 2016, available every four years.>

News: Newspaper articles from 1950-2014, la-
beled with whether the article is relevant to the
US economy.’

Twitter: Tweets labeled with whether they in-
dicate that the user received an influenza vacci-
nation (i.e., a flu shot) (Huang et al., 2017).

Our experiments require documents to be
grouped into time intervals. Table 1 shows the in-
tervals for each corpus. Documents that fall out-
side of these time intervals were removed. We
grouped documents into two types of intervals:

e Seasonal: Time intervals within a year (e.g.,
January through March) that may be repeated
across years.

o Non-seasonal: Time intervals that do not repeat
(e.g., 1997-1999).

For each dataset, we performed binary clas-
sification, implemented in sklearn (Pedregosa
et al., 2011). We built logistic regression classi-
fiers with TF-IDF weighted n-gram features (n €
{1,2,3}), removing features that appeared in less
than 2 documents. Except when otherwise speci-
fied, we held out a random 10% of documents as

"https://www.yelp.com/dataset

https://www.comparativeagendas.net/
datasets_codebooks

https://www.crowdflower.com/
data-for—everyone/
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validation data for each dataset. We used Elas-
tic Net (combined ¢; and ¢3) regularization (Zou
and Hastie, 2005), and tuned the regularization
parameters to maximize performance on the val-
idation data. We evaluated the performance using
weighted F1 scores.

3 How Does Classification Performance
Vary with Time?

We first conduct an analysis of how classifier per-
formance depends on the time intervals in which
it is trained and applied. For each corpus, we train
the classifier on each time interval and test on each
time interval. We downsampled the training data
within each time interval to match the number of
documents in the smallest interval, so that differ-
ences in performance are not due to the size of the
training data.

In all experiments, we train a classifier on a par-
tition of 80% of the documents in the time inter-
val, and repeat this five times on different parti-
tions, averaging the five F1 scores to produce the
final estimate. When training and testing on the
same interval, we test on the held-out 20% of doc-
uments in that interval (standard cross-validation).
When testing on different time intervals, we test
on all documents, since they are all held-out from
the training interval; however, we still train on five
subsets of 80% of documents, so that the training
data is identical across all experiments.

Finally, to understand why performance varies,
we also qualitatively examined how the dis-
tribution of content changes across time inter-
vals. To measure the distribution of content,
we trained a topic model with 20 topics using
gensim (Iv{ehﬁfek and Sojka, 2010) with default
parameters. We associated each document with
one topic (the most probable topic in the docu-
ment), and then calculated the proportion of each
topic within a time period as the proportion of doc-
uments in that time period assigned to that topic.
We can then visualize the extent to which the dis-
tribution of 20 topics varies by time.
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Document classification performance when training and testing on different times of year

(top) and different years (bottom). Some corpora are omitted for space.

3.1 Seasonal Variability

The top row of Figure 1 shows the test scores from
training and testing on each pair of seasonal time
intervals for four of the datasets. We observe very
strong seasonal variations in the economic news
corpus, with a drop in F1 score on the order of 10
when there is a mismatch in the season between
training and testing. There is a similar, but weaker,
effect on performance in the music reviews from
Amazon and the vaccine tweets. There was vir-
tually no difference in performance in any of the
pairs in both review corpora from Yelp (restau-
rants, not pictured, and hotels).

To help understand why the performance varies,
Figure 2 (left) shows the distribution of topics in
each seasonal interval for two corpora: Amazon
music reviews and Twitter. We observe very lit-
tle variation in the topic distribution across sea-
sons in the Amazon corpus, but some variation in
the Twitter corpus, which may explain the large
performance differences when testing on held-out
seasons in the Twitter data as compared to the
Amazon corpus.

For space, we do not show the descriptions of
the topics, but instead only the shape of the dis-
tributions to show the degree of variability. We
did qualitatively examine the differences in word
features across the time periods, but had diffi-
culty interpreting the observations and were un-
able to draw clear conclusions. Thus, characteriz-
ing the ways in which content distributions vary
over time, and why this affects performance, is
still an open question.
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3.2 Non-seasonal Variability

The bottom row of Figure 1 shows the test scores
from training and testing on each pair of non-
seasonal time intervals. A strong pattern emerges
in the political parties corpus: F1 scores can drop
by as much as 40 points when testing on differ-
ent time intervals. This is perhaps unsurprising, as
this collection spans decades, and US party posi-
tions have substantially changed over time. The
performance declines more when testing on time
intervals that are further away in time from the
training interval, suggesting that changes in party
platforms shift gradually over time. In contrast,
while there was a performance drop when testing
outside the training interval in the economic news
corpus, the drop was not gradual. In the Twitter
dataset (not pictured), F1 dropped by an average
of 4.9 points outside the training interval.

We observe an intriguing non-seasonal pattern
that is consistent in both of the review corpora
from Yelp, but not in the music review corpus from
Amazon (not pictured), which is that the classi-
fication performance fairly consistently increases
over time. Since we sampled the dataset so that
the time intervals have the same number of re-
views, this suggests something else changed over
time about the way reviews are written that makes
the sentiment easier to detect.

The right side of Figure 2 shows the topic distri-
bution in the Amazon and Twitter datasets across
non-seasonal intervals. We observe higher levels
of variability across time in the non-seasonal in-
tervals as compared to the seasonal intervals.
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Figure 2: Topic distributions in each time of year (left) and each span of years (right). Topic models are
trained independently in the seasonal vs. non-seasonal settings and are not aligned.

3.3 Discussion

Overall, it is clear that classifiers generally per-
form best when applied to the same time interval
they were trained. Performance diminishes when
applied to different time intervals, although differ-
ent corpora exhibit differ patterns in the way in
which the performance diminishes. This kind of
analysis can be applied to any corpus and could
provide insights into characteristics of the corpus
that may be helpful when designing a classifier.

4 Making Classification Robust to
Temporality

We now consider how to improve classifiers when
working with datasets that span different time in-
tervals. We propose to treat this as a domain adap-
tation problem. In domain adaptation, any par-
tition of data that is expected to have a differ-
ent distribution of features can be treated as a do-
main (Joshi et al., 2013). Traditionally, domain
adaptation is used to adapt models to a common
task across rather different sets of data, e.g., a
sentiment classifier for different types of products
(Blitzer et al., 2007). Recent work has also applied
domain adaptation to adjust for potentially more
subtle differences in data, such as adapting for dif-
ferences in the demographics of authors (Volkova
etal.,2013; Lynn etal., 2017). We follow the same
approach, treating time intervals as domains.

In our experiments, we use the feature augmen-
tation approach of Daumé III (2007) to perform
domain adaptation. Each feature is duplicated
to have a specific version of the feature for ev-
ery domain, as well as a domain-independent ver-
sion of the feature. In each instance, the domain-
independent feature and the domain-specific fea-
ture for that instance’s domain have the same fea-
ture value, while the value is zeroed out for the
domain-specific features for the other domains.
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Data (Seasonal) Baseline | Adaptation
Reviews (music) .901 919
Reviews (hotels) .867 881
Reviews (restaurants) | .874 .898
News (economy) 782 782
Twitter (vaccines) .881 .880

Table 2: F1 scores when treating each seasonal
time interval as a domain and applying domain
adaptation compared to using no adaptation.

This is equivalent to a model where the feature
weights are domain specific but share a Gaus-
sian prior across domains (Finkel and Manning,
2009). This approach is widely used due to its
simplicity, and derivatives of this approach have
been used in similar work (e.g., (Lynn et al.,
2017)). Following Finkel and Manning (2009),
we separately adjust the regularization strength for
the domain-independent feature weights and the
domain-specific feature weights.

4.1 Seasonal Adaptation

We first examine classification performance on
the datasets when grouping the seasonal time in-
tervals (January-March, April-June, July-August,
September-December) as domains and applying
the feature augmentation approach for domain
adaptation. As a baseline comparison, we apply
the same classifier, but without domain adaptation.

Results are shown in Table 2. We see that ap-
plying domain adaptation provides a small boost
in three of the datasets, and has no effect on two of
the datasets. If this pattern holds in other corpora,
then this suggests that it does not hurt performance
to apply domain adaptation across different times
of year, and in some cases can lead to a small per-
formance boost.



Data (Non-seasonal) | Baseline | Adaptation | Adapt.+seasons
Reviews (music) .895 924 910

Reviews (hotels) .886 .892 920

Reviews (restaurants) | .831 .879 .889

News (economy) .763 780 859

Politics (platforms) .661 665 n/a

Twitter (vaccines) 910 .903 920

Table 3: F1 scores when testing on the final time interval after training on all previous intervals.

4.2 Non-seasonal Adaptation

We now consider the non-seasonal time intervals
(spans of years). In particular, we consider the sce-
nario when one wants to apply a classifier trained
on older data to future data. This requires a mod-
ification to the domain adaptation approach, be-
cause future data includes domains that did not ex-
ist in the training data, and thus we cannot learn
domain-specific feature weights. To solve this, we
train in the usual way, but when testing on future
data, we only include the domain-independent fea-
tures. The intuition is that the domain-independent
parameters should be applicable to all domains,
and so using only these features should lead to bet-
ter generalizability to new domains. We test this
hypothesis by training the classifiers on all but the
last time interval, and testing on the final interval.
For hyperparameter tuning, we used the final time
interval of the training data (i.e., the penultimate
interval) as the validation set. The intuition is that
the penultimate interval is the closest to the test
data and thus is expected to be most similar to it.

Results are shown in the first three columns of
Table 3. We see that this approach leads to a small
performance boost in all cases except the Twitter
dataset. This means that this simple feature aug-
mentation approach has the potential to make clas-
sifiers more robust to future changes in data.

How to apply the feature augmentation tech-
nique to unseen domains is not well understood.
By removing the domain-specific features, as we
did here, the prediction model has changed, and
so its behavior may be hard to predict. Nonethe-
less, this appears to be a successful approach.

4.2.1 Adding Seasonal Features

We also experimented with including the seasonal
features when performing non-seasonal adapta-
tion. In this setting, we train the models with
two domain-specific features in addition to the
domain-independent features: one for the season,
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and one for the non-seasonal interval. As above,
we remove the non-seasonal features at test time;
however, we retain the season-specific features in
addition to the domain-independent features, as
they can be reused in future years.

The results of this approach are shown in the
last column of Table 3. We find that combining
seasonal and non-seasonal features together leads
to an additional performance gain in most cases.

5 Conclusion

Our experiments suggest that time can substan-
tially affect the performance of document classi-
fication, and practitioners should be cognizant of
this variable when developing classifiers. A sim-
ple analysis comparing pairs of time intervals can
provide insights into how performance varies with
time, which could be a good practice to do when
initially working with a corpus. Our experiments
also suggest that simple domain adaptation tech-
niques can help account for this variation.*

We make two practical recommendations fol-
lowing the insights from this work. First, evalua-
tion will be most accurate if the test data is as sim-
ilar as possible to whatever future data the classi-
fier will be applied to, and one way to achieve this
is to select test data from the chronological end
of the corpus, rather than randomly sampling data
without regard to time. Second, we observed that
performance on future data tends to increase when
hyperparameter tuning is conducted on later data;
thus, we also recommend sampling validation data
from the chronological end of the corpus.
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