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Abstract—Participatory civil issue monitoring has emerged as
an easy way for concerned citizens to report problems to their
local government. For reported issues to be timely processed and
addressed however, accurate, online and real-time processing
methods to infer issue types are necessary. To address this
challenge, we propose a computational, near-real—-time civil issue
reports processing method to estimate the actual issue from
ambiguous and/or complementary information accurately and
efficiently. We demonstrate the effectiveness of the proposed
approach using a real-world dataset from SeeClickFix. We show
that our approach is both highly accurate and scalable.

I. INTRODUCTION

The wide spread of Internet—enabled, location—aware, smart
phone devices over the past 15 years has enabled all kinds
of users, regardless of their technical background and com-
petency, to gather and share data. This has led to new
“Government 2.0” applications [1], through which citizens can
actively participate to e.g., measure air quality [2], map fuel
consumption on city streets [3], predict bus arrival times [4],
and even hunt for grocery bargains [5]. On the other hand,
platforms for crowdsourced, mobile participatory civic issue
reporting such as FixMyStreet [6] in the UK and SeeClickFix
[7] in the US, have emerged lately to assist concerned citizens
to report problems to government agencies regarding their
local environment through easy—to—use technology.

The possibility to be heard on issues and the ability to
actively shape and connect to the urban spaces they live
in provides citizens with a strong intrinsic motivation to
enhance their living environment, resulting in a high degree of
participation in civil issue monitoring [7]-[9]. Administrative
bodies and policy makers can utilize such participatory sensing
data to gather information on civil issues in urban spaces,
however, they can count on the continuous engagement of
concerned citizens only if issues reported are timely processed
and addressed. Even though the automatic classification of
issues [10], their significance [11] and duplicate issues iden-
tification [12] have been previously explored, the scalability
and timeliness of such methods have largely been ignored.
Moreover, the concreteness of reported issues depends on the
reporter; the actual status and demand may not be described
clearly or either one may be misdescribed in the report, leaving
officials scrambling about what the actual problem may be.
Finally, currently, each request must be manually evaluated
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and acknowledged by a city official before being routed to the
appropriate agency or maintenance crew that is sent out to fix
the issue. Needless to say, this approach does not scale.

To address the aforementioned challenges, we propose a
computational, near—real-time civil issue reports processing
approach to estimate the actual issue from ambiguous and/or
complementary information such as textual descriptions and
photographs and assign reported issues to the appropriate au-
thorities accurately and efficiently. We formulate this problem
as a sequential hypothesis testing problem, in which features
extracted from issue reports are examined to infer the type of
issue as quickly as possible while ensuring that the risk of
missclassification is low. We show that the optimal strategy
in this decision problem is an optimal stopping rule: features
are sequentially reviewed starting from the most informative,
and at each step, the framework decides when to stop. Once
stopped, it can classify an issue based on features examined
thus far, and “safely” ignore the remaining features. Unlike
state—of—the—art classifiers that rely on a fixed set of features
for classification once trained, the optimal number of features
used by our approach to categorize a reported issue is a
function of the cost corresponding to the time and effort spent
evaluating each feature, and the classification quality. Given
the limited memory and time requirements of real-world
systems, our approach provides a viable, realistic solution
to participatory civil issue monitoring by efficiently utilizing
computational resources rather than invariably applying a
“brute force” classification using all features for all issues.

II. SEECLICKFIX PLATFORM & DATA COLLECTION

SeeClickFix, a community advocacy tool designed to bridge
the communication gap between residents and their local gov-
ernments about non—emergency issues (e.g., parking violation
or need for snow removal), allows citizens to collectively
improve their communities by simply “Taking a photo of
a pothole or other problem, geo—locate it and hit submit.
SeeClickFix publicly documents the issue and notifies local
governments and others who resolve the problem” [7]. Other
users can view and support issues in the form of “Thanks”
votes (similar to the “like” functionality in online social
media). Authorities (i.e., a verified account associated with
a city official) acknowledge the issue (and, if needed, direct
it to the appropriate agency or maintenance crew), which is
subsequently resolved, at which time it is marked as “closed”.



TABLE I: Information associated with an issue in SeeClickFix.

Data field Description

Issue ID A unique 6-to-7 digit ID for each posted issue

Title Title of the issue

Status Signifies attention paid by authorities; one of “Open”,
“Acknowledged”, or “Closed”

Address Location of the issue

Image A user—provided photo (limit of one per issue)

Reporter ID

A unique 4-to—6 digit ID for registered users

Reporter Name

Screen name of registered users

Votes Count

Number of up—votes the issue received from users

Thanks Count

Number of “Thanks” the issue received from users

Category

The type the issue belongs to

Reported Time

Date and time in UTC £+ 0

Reported Via

Medium used to report an issue

Tags User—defined keywords for the purpose of simplifying

the discovery of “similar” issues by other users
Description Short comment provided by the user reporting the issue
Q&A Answers to predefined questions

Total Comments

Total number of comments

Comment List

Comments associated to an issue; each comment has

(i) a unique 6-to-8 digit ID, (ii) ID of the user who
commented, (iii) status, (iv) image (used to provide
additional photos), (v) comment text, (vi) time

In this work, we collected a total of 2,195 SeeClickFix
issues for the metropolitan area surrounding Albany, the
capital of the U.S. state of New York, spanning a time period
between Jan 5, 2010 and Feb 10, 2018. Albany is the 4rth
largest metropolitan region in the state and the 45th largest
in the US. Even though issues are publicly available through
SeeClickFix', we provide a clean version of our dataset on
our website? to improve the reproducibility of our results, and
to promote sustainable and comparable research in the future.
Each issue comprises information summarized in Table 1. In
total, there are 34 categories broadly divided into genres,
including but not limited to, parking enforcement, repairs (e.g.,
potholes or overgrown trees), trash, parks and recreational
areas, noise, and housing. Despite the fact that a large portion
of the reports (68.6%) have been manually categorized by
concerned citizens, with the majority of issues being related to
parking enforcement (221), code violations (187), and traffic
signals (135), 31.4% of the reported issues have no associated
category. We provide two possible explanations of the high
percentage of uncategorized reports: (i) category choices are
tailored by SeeClickFix to the physical address provided by
the user, and (ii) Albany authorities began their partnership
with SeeClickFix in May 2013 leading to the introduction of
individual categories in the beginning of 2014; before 2014,
all issues reported are uncategorized.

We used labels to: (i) assess supervised classification models
(i.e., machine learning models trained on the already manually
classified data to learn to distinguish between issue types),
and (ii) evaluate the performance of the proposed approach
on previously “unseen” issues. We considered features directly
extracted from issues’ title, description, and tags. These intu-
itively capture the users’ intent to categorize an issue using
the SeeClickFix portal website or mobile app. We tokenized
sentences into unigrams, removed punctuation (e.g., periods,
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commas, and apostrophes), stopwords (e.g., “a”, “the”, and
“there”), and digits (e.g., “8th” and “31st”), and stemmed each
word to its root (e.g., replace “parked” with “park™). Feature
values correspond to the number of times a specific word or
tag appears in the issue report. We excluded words present in
> 95% and < 2% of all issues, respectively.

III. PROBLEM DESCRIPTION

In this section, we formalize the problem of automatically
inferring an issue’s type from participatory reports with high
accuracy while accounting for the effort of the framework in
improving its chances of reaching highly accurate conclusion.
We describe our model and define our optimization function.

A. Description

We consider a set of issues Z (i.e., issues reported by
citizens on SeeClickFix), were each issue ¢ € Z has been
reported by a user u € U, and has an associated title,
description, tags, and media object (i.e., photo), along with
a set of comments from users in U. Each issue 4 is described
by a vector of features f(i) = {y1,¥%2,...,yx}, Where K
is the total number of features, and y;, € ). For illustration
purposes, we assume that each issue ¢ may belong to one
of two hypotheses: H¢,, which denotes the true hypothesis
that 4 is of type Cy, or H¢,, where i is of type Co. We pose
the challenge of automatic determination of the type of each
reported issue as a sequential hypothesis testing problem and
use an additive feature score to encode the belief that ¢ is an
instance of one class versus another.

For each feature y,,, the probability p(y,|Hc,) (similarly
p(yn|He,)) of the evaluation of the nth feature to observe
value y,, when the true hypothesis is H¢, (similarly for true
hypothesis H¢,) is empirically computed from training data.
The a priori probability P(H¢,) = p of i being an instance
of C; is also estimated empirically. The probability of 7 being
an instance of Cy can be computed as P(He,) =1 —p.

To calculate the belief for i, the framework evaluates
features sequentially as illustrated in Fig. 1. At each step, the
framework has to select between stopping and continuing the
evaluation process based on the accumulated information thus
far and the cost of reviewing additional features. The cost
coefficient c¢,, > 0, where n = 1,..., K represents the value
of time and effort spent evaluating the nth feature. We also
consider misclassification costs M,,; > 0,m = C1,Cs,j =
1,...,L, where M,,; denotes the cost of selecting type j
when the true hypothesis is H,,, and L denotes the number of
decision choices (e.g., C; and C3). We factor misclassification
costs into our approach to quantify the relative importance of
detection errors. Note that a model that includes costs may
not produce fewer errors than one that does not, and may not
rank any higher in terms of overall accuracy, but it is likely
to perform better in practical terms because it has a built—in
bias in favor of less expensive errors towards one class versus
another.

We now formally describe our proposed sequential eval-
uation process to minimize the number of features used to
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Fig. 1: Sample posterior probability evolution for parking enforcement (upper plot) and signs (lower plot) issues as more

features are extracted and evaluated.

accurately classify issue 7. Specifically, our proposed sequen-
tial evaluation process comprises a pair (R, Dr) of random
variables. Random variable R (referred to as stopping time
in decision theory) takes values in the set {0,..., K}, and
indicates the feature that the framework stops at. Random
variable D denotes the possibility to select among L choices.
It depends on R and takes values in the set {1,...,L}. As
an example, when L = 3, D = 1 corresponds to “C; issue”,
Dpr = 2 denotes “Cq issue”, and D = 3 indicates “human ex-
pert inspection required”. Assuming that the random variables
yn, are independent under each hypothesis H,,,m = {C1,Ca},
the conditional joint probability of {yi,...,y,} is given as
P(y1, ... yn|Hm) = [1i— p(yx|H:). Both the decision to
stop at stage n (i.e., the event {R = n}), and the selection of
possibility j (i.e., Dr = 7) depend only on the accumulated in-
formation {y1,...,yr} by the stopping time R. Equivalently,
features that may be examined in the future are not used.

B. Optimization Setup

To minimize the number of features considered for classi-
fying issues without sacrificing accuracy, the stopping time R
and the classification rule D g have to be selected. To this end,
we first define the following cost function:

J(R,Dp) = {ch+z > My P(Dg = j,Hpy, )}.

j=1m=C1,C2
(D
The first expression in the cost function regularizes the number
of features, whereas the second expression penalizes the aver-
age cost of our classification rule. Our goal can be interpreted
as finding the minimum average cost with respect to both
random variables R and Dg, i.e., mm J(R, Dg), to derive

the optimal stopping and class1ﬁcat10n rules. To prove that
the optimal rule is to stop at corresponding stopping time R,
we must first show how to obtain the optimum classification
rule Dp for any given stopping time R. Once the optimal
classification rule has been established, the resulting cost
becomes only a function of R, and can thus be optimized
with respect to R. Since D g depends only on the accumulated
information {y1,...,yr} by stopping time R, the a posteriori
probability T, = P(He, |y1, ... ,Yn), which corresponds to a
sufficient statistic of the accumulated information, must be

updated as more features are extracted and evaluated. Lemma
1 shows how to compute T, iteratively.

Lemma 1. The posterior probability 7,, when the nth feature
is evaluated to generate outcome vy, and Ty = p, is:

p(yn|HC1)7Tn*1
Tn—1p(yn|He,) + (1 = mn_1)p(yn|He,)’

Using Lemma 1 and the fact that xp = Zf:o Tnl{R=p)
for any sequence of random variables {x,}, where 1,4 is the
indicator function for event A (i.e., 14 = 1 when A occurs,
and 1,4 = 0 otherwise), the average cost in Eq. (1) can be
written compactly as:

J(R,Dp) = ]E{ ZR: cn}

n=1

(@)

Ty —

L
+ E{ Z (Mclj’/TR + MCQJ'(I
j=1

WR))I]-{DR—J'}}- (3)

IV. OPTIMAL STRATEGIES
A. Classification Strategy

In order to obtain the optimal classification rule Dg for any
stopping time R, an independent of Dy lower bound for the
second part of Eq. (3) is needed. Since Dp contributes only
to this portion of the average cost, the optimal classification
rule Dg for a given stopping time R can then be derived.
Theorem 2 provides such bound.

Theorem 2. For any classification rule Dy given stopping

time R, Zjl'/:l (McleR + Mczj(l — ﬂ-R))]l{DR:j} > g(ﬂ'R),
where g(Tg) £ mini<j<r, [Me, 7R + Me,;(1 — 7R)]. The
optimal rule is defined as follows:

DP™ = argmin, ;< ; [Me, 7R + Me,; (1 — 7r)]. (4

From Theorem 2, J(R, D¥*""*) < J(R, Dg), since the
optimal classification rule results to the smallest average cost.
Based on the this fact, Eq. (3) can be written as follows:

{Zc,ﬁ—g TR }

)

J £ J(R, D¥Hmety = min J(R, Dp) =

which depends only on the stopping time R.



B. Stopping Strategy

The solution for optimizing J with respect to R can be
determined by solving the optimization problem:

gl;%J(R %;%E{chJrg TR } (6)
which constitutes a classical problem in optimal stopping
theory for Markov processes [13]. We derive our optimal
stopping strategy as described in Theorem 3 based on the
observation that (i) the optimum strategy will consist of a
maximum of K + 1 stages since R € {0,1,..., K}, and (ii)
the solution we seek must also be optimum, if instead of the
first stage we start from any intermediate stage and continue
toward the final stage [14].

Theorem 3. For n = K —1,...,0, the function J,,(m,) is
related to Jp11(7ny1) through the equation:

Jn (7)) = min [g(wn), Cn+1 + Z A (Yng1) X

Yn+1
(i),

p<yn+1‘HC1)ﬂ-n
An(yn+1)

Where_ An(yn+1) £ an(yn+1‘Hcl) + (1 - 7Tn)p(ywr1|]{(3z)

and Jk (1) = 9(7 k).

The optimal stopping strategy derived by Eq. (7) has a
very intuitive structure, i.e., stop at the stage where the
cost of stopping (the first expression in the minimization)
is no greater than the expected cost of continuing given
all information accumulated at the current stage (the second
expression in the minimization). Specifically, at each stage n,
our method faces two options given m,: (i) stop evaluating
features and select optimally between the L possibilities,
or (ii) continue and evaluate the next feature. The cost of
stopping is g(7,), whereas the cost of continuing is ¢,41 +

Zyn,+1 An(yn+1)jn+1 (

C. Practical Considerations and Implementation

p(yn+1 ‘Hcl )Trn
An (Ynt1)

In this section, we describe ACTION, a novel algorithm
for Automatic classification of civil issue reports with optimal
online feature selection based on Theorems 2 and 3. Initially,
the posterior probability my is set to the prior probability p
of an issue being an instance of type C;, and the two terms
in Eq. (7) are compared. If they are equal, ACTION stops
and classifies the issue based on the optimal rule of Eq. (4).
Otherwise, the first feature is evaluated. ACTION repeats these
steps until either it decides to stop, at which case it classifies
the issue using < K features, or all features are evaluated, in
which case the issue is classified using all K features.

Note that the K functions J,,(7,),n =0,1,..., K —1, are
calculated using Eq. (7) by quantizing the interval [0,1] and
computing the corresponding values. This computation relies
only on a priori information to produce a K x d matrix, where
each row corresponds to the value of the J,,(-) function for
different values of m, € [0,1]. This computation needs to

be performed only once and can be pre—calculated. Further-
more, probabilities p(y,|He, ), p(yn|He, ), n=1,..., K, y, €

Zx(, are empirically estimated from training data as
N(yn.C . n.C
PynlHe,) = s Keter and plunl He,) = s K2

where N(yn,Cl) “and N (y,,Cs) denote the number of is-
sues that give rise to outcome y, after extracting and eval-
uating the nthe feature and constitute C; and C, issues,
respectively. We also estimate the a priori probabilities as

PUHe) P = 1= 317 = | i vt |
where N¢, and N¢, denote the number of issues in the training
set that constitute C; and Cy issues, respectively. Hence the
complexity of calculating .J,(7,) is independent from the
actual number of issues, which can be huge.

Finally, the ordering of features is crucial to the computation
of the optimum average cost .Jy (7). Consider for example the
case of two features f(i) = {y1,y2}, where y; is the number
of appearances of keyword “sign”, and g9 is the number of
tags in an issue. The appearance of the type name (e.g., sign)
in the title of an issue would intuitively discriminate issues
better than the number of tags. Thus, if feature y, was to
be examined first, it would be very probable for feature y;
to be examined as well to improve the chances of accurate
classification. Alternatively, if y; was to be evaluated first,
our framework could reach a decision using one feature only.
To avoid the computational complexity of evaluating all K!
possible feature orderings, we sort features in increasing order
of ¢, (ec, + €c,) to promote low cost (i.e., ¢,,) features that at
the same time are expected to result in few errors (i.e., ¢, +
€c,)- To implement this heuristic, we find where the mass of
observations lie for each issue type, and sum the probabilities
that are left out. Our framework can be easily extended to
accommodate other heuristics.

V. NUMERICAL RESULTS

In this section, we present the evaluation of ACTION and
compare its performance to (i) a linear SVM classifier [10],
and (ii) a standard Bayesian detection approach [15] that uses
all features. In our experiments, L is set to 2 (i.e., issues may
belong to one of two categories), varying feature costs ¢, €
{0,0.00001,0.0001,0.001,0.1,0.2,0.3,0.5,0.7,1,10}  and
misclassification costs Me¢, 2, Mc,1 € {1,1.5,5,10,25,50}
are considered, and five—fold cross validation results are
reported. To test the robustness of ACTION, we experimented
with three overlapping scenarios of closely related categories:
(1) “Code Violations” and “Signs”, (ii) “Parking Enforcement”
and “Code Violations”, and (iii) “Parking Enforcement” and
“Signs”. In each case, a balanced training (and testing) dataset
is created comprising ~ 300 issues from each corresponding
type, whereas the total number of features considered
surpasses 1K (1,286, 1,064, and 1,111, accordingly).

Fig. 2 illustrates the error probability achieved by ACTION
as the average number of features used by the algorithm
increases. Results are reported for constant misclassification
costs (i.e., M¢,1 = Mc,o = 0 and M¢,2 = Me,; = 1) and
for varying values of ¢,, when all features have the same cost
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Fig. 2: Probability of error as a function of the expected number of features for (a) “Code Violations” and “Signs”, (b) ‘“Parking
Enforcement” and “Code Violations”, and (c) “Parking Enforcement” and “Signs”, respectively. Insets show the distribution
of number of features used by ACTION to classify issues in each scenario in the case of the smaller error probability.

(i.e., ¢, = ¢). The insets in Fig. 2 show the number of features
used by ACTION to classify issues in the testing dataset for
an average number of (a) ~ 508.45, (b) ~ 380.64, and (c)
~ 434.25 features, accordingly. For comparison, the error
probability achieved by a standard Bayesian method that uses
all available features is also included in the figure. The SVM
and Bayesian methods achieve 98% and 93% accuracy on
average, using however ~ twice as many features as compared
to ACTION. We note that in two out of the three scenarios (i.e.,
“Code Violations” and “Signs”, “Parking Enforcement” and
“Signs”) ACTION attains better accuracy than the Bayesian
method using at least 41% less features. This is because the
performance of the Bayesian method is inversely impacted by
the highly noisy features (e.g., similar keywords describing
parking and signs) in our dataset. As expected, when the av-
erage number of features used is small, ACTION exhibits large
error probability. However, as this number increases, perfor-
mance improves dramatically. In all cases, ACTION achieves
~ 96% accuracy when ¢, € {0,0.00001,0.0001,0.001};
ACTION achieves best accuracy using ~ 500 features in
each case. This corresponds to at least 50% reduction on
average in the number of features used while at the same
time significantly improving the overall classification accuracy.
Different values of costs ¢, and misclassification costs Mc, 2
and Mc,, result in different error probability values, while
trading—off false alarm and misdetection probabilities.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a sequential hypothesis testing formulation
was proposed to address the problem of automatic classifica-
tion of civil issue requests on an online community advocacy
platform. An optimization function was defined in terms of
the cost of features and the average cost of the classification
strategy, and the optimal solution was determined. The pro-
posed algorithm that implements the optimal solution achieves
at least 50% reduction on the average number of features used
to reach a classification decision. In future work, we plan
to extend our framework so as to exploit the multitude of

available features.
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