An Empirical Study on Identifying
Sentences with Salient Factual Statements

Damian Jimenez
Computer Science and Engineering
The University of Texas at Arlington
Arlington, Texas
damian.jimenez @mavs.uta.edu

Abstract—In this paper, we show that by using a relatively
simple neural network architecture and including edge (i.e.,
nonsensical) cases into a dataset we can more reliably identify
factual claims than predecessor SVM models. Doping the dataset
with these nonsensical example results in a more robust model
overall that is resistant to being tricked into classifying sentences
into a certain category based on easily met criteria. Furthermore,
we show that the use of multiple word-embeddings makes little
difference to the overall accuracy of the model, but particular
embeddings perform differently on text that contains digits (i.e.,
0-9) which can be leveraged by using multiple models to come to a
conclusion on the score for a particular piece of text. Our results
also show, that for our particular dataset trying to differentiate
sentences into more than two categories might hurt the overall
accuracy of the models, or at least not provide any substantial
benefits compared to the binary classification scenario.

I. INTRODUCTION
A. Background

Over the past few years, work in automated fact-checking
has steadily increased and gained traction as our society begins
to tackle the many challenges and issues that have arisen
due to misinformation and an attack on the integrity of the
news complex. Efforts in this area focusing on detecting
“check-worthy” claims [1] and subsequently automating the
process of fact-checking itself [2] [3] are gaining prominence.
In order to make these efforts a reality, machine learning
models have been trained to detect the check-worthiness of
a claim. These methods have demonstrable short-comings in
that they are susceptible to classifying sentences with digits
as more “check-worthy” than those without. In essence, they
are vulnerable to attacks of sorts that could be used to exploit
them. The types of claims that we focus on and work with
in this paper are extracted from political debates and center
around the U.S. political complex. Websites such as PolitiFact'
and more general news-websites regularly fact-check political
statements made by entities in government. The pipeline for
this work is essentially composed of gathering raw text from
various sources that contains sentences spoken by a politician
and then sifting through this data to identify claims that are
important (i.e., in that they make claims that are important to
the populace). Out of this ecosystem a tool, ClaimBuster?,

Uhttp://www.politifact.com/
Zhttp://idir-server2.uta.edu/claimbuster/

Chengkai Li
Computer Science and Engineering
The University of Texas at Arlington
Arlington, Texas
cli@uta.edu

came to be which aims to simplify a fact-checkers work
by scoring sentences according to how likely they are to
be important. A subsequent effort to automate the process
of fact-checking a claim itself is also in the works, and
although we have a working system it is still in its infancy
and will see improvement as our research progresses. In the
fact-checking domain a model that is easily susceptible to
failing, when not so uncommon requirements are met, can
provide more work in the long run, as fact-checkers might
need to sift through sentences that might have not even gone
through a rudimentary filtering phase (i.e., if they rely on
machine learning models heavily). Moreover, entities could
easily exploit these weaknesses to mask their claims from or
spam automated systems that make use of such models.

To tackle these issues, in this paper we discuss how to
train a more robust and reliable model for this given task.
Specifically, we propose a neural network model that takes
advantage of pre-trained word embeddings available in the
public domain, and an enhancing of the data-set used in
training the previous machine learning models by doping it
with troublesome sentences (i.e., sentences containing many
numbers but are nonsensical). We show that by doing so we
can mitigate some of the shortcomings of previous models and
make progress towards better quantifying sentence salience
(i.e., “check-worthiness”), which is of utmost importance in
the fact-checking pipeline as it is the first step of the process.

B. Related Work

Our work follows and builds upon many others in the
NLP realm that have explored either the construction of new
embeddings or word modeling methods [4] [5] [6] [7]. We also
make use of well-established neural network model baselines
that served to guide us in constructing the network we used to
train our models [8] [9] [10]. There have also been other efforts
in fact-checking domain as well, FullFact [11] for one has
ongoing efforts to automate fact-checking and claims to have
made substantial progress in this respect. Other efforts include
those to identify “check-worhty” tweets [12] and platforms
for tracking misinformation [13]. Some of our collaberators at
Duke also have substantial work done in this domain [14] as



well as working systems®. Although, this field is somewhat of
an emergent field that has come about due to the unforeseen
interactions between the political and social-media complexes
that envelop the daily lives of any person that lives in a
nation with some sort of structured government. We see that
both interact and influence the other in unique ways that lend
themselves to outside entities introducing entropy into either of
the systems, thereby warping perspectives and even changing
narratives.

C. Outline

Through this study we first intend to find out how multiple
word-embeddings affect a model. Secondly, how enhancing
the data-set that is used by doping it with examples that are
explicitly nonsensical, but serve to curve the the importance of
particular features (i.e., numerical characters), affect a model’s
accuracy. Most approaches make use of one embedding and
consider data that is labeled but still pertinent to their task
(i.e., most training examples have a high chance of appearing
naturally in the domain they were extracted from). We present
a thorough exploration of the affects of using one or more
word embeddings from four different sources, in different
combinations and how adding nonsensical data that might not
be considered due to it’s extreme nature (i.e., how unlikely
it is to appear naturally and therefore deemed unrelated)
can notably increase a model’s robustness. Finally, We also
explore how trying to further compartmentalize data into sub-
categories impacts model accuracy and whether it is worth
further discriminating data at the loss of some accuracy. These
three aspects are explored in tandem with testing two different
loss functions.

We limited the variations in loss functions and other param-
eters of the network in general, as our goal was to study the
aforementioned three aspects: word-embeddings, data doping,
and number of categories/classes. Our choice to explore the
two different loss functions stemmed from observations during
preliminary test runs in which both loss functions explored in
this paper produced models that showed promise. Since we did
use different loss functions for different models, we present
the results of how these models perform, so that is an emergent
aspect of this study that came out as an aside from our main
efforts.

II. PROBLEM STATEMENT, NEURAL NETWORK
ARCHITECTURE, AND DATA PREPARATION

A. Problem Statement

Our ultimate goal is to determine a sentence’s factual-
salience by using either two or three categories, where one
of the categories is where all the sentences in the dataset
containing factual statements are mapped to. In the three-
category model we categorize sentences as containing a fac-
tual statement (CFS), containing a factual but unimportant
statement (UFS), or containing a non-factual statement (NFS).
In the two-category format we classify sentences as either

3icheckuclaim.org

Input Layer
(201, 1200)

Pooling

Bidirectional
LSTM RNN

l T =

Convolutional
Layer

~
Convolutional Pooling
Layer
%’—J
T Output
Pooling Convolutional 3or2

Layer
o Classes

Fig. 1. Architecture of neural network used, where a input vector has a shape
of [201,1200]. The output can be a vector of length 3 or 2, depending on
how many categories the input data was split into.

containing a factual statement (CFS) or containing a non-
factual or unimportant statement (N-UFS). To this effect we
take a hand-labeled dataset of 8231 sentences which have
been labeled according to the three-category scenario. Our
dataset is not available yet, but it is currently being prepared
for public release. Interested parties can e-mail either of the
authors. For the two-category scenario we simply concatenate
the NFS and UFS classes into one. The overarching goal is
to produce a model that can accurately identify salient-factual
sentences versus non-factual sentences or unimportant factual
sentences. The current baseline [1] achieves this to an extent,
but has issues which have been mentioned previously. To that
extent we not only want to produce a viable model, but one
that addresses the issues present in the current baseline. To
tackle these issues we chose to take a deep learning approach
given that the current baseline is an SVM model, we wanted
to explore how a deep learning framework would perform at
this task and if it could indeed provide us with a better model.

B. Architecture

The architecture of the network we used is not too un-
conventional. As can be seen in Figure 1, we start with an
input layer which takes a sentence that can be of up to 200
words in length (i.e., that sentence is converted to a vector of
length 200 where each index is the mapped word-embedding
for a given word). The longest sentence in our dataset was 167
words, so we added some padding, which was simply a vector
filled with zeroes, to fill up empty indices in the vector which
was necessary as the input needed to be standardized to a set
length. We also added an extra vector, for a total of 201 feature
vectors per sentence, that contained some features that were
extracted from the words using Google’s NLP service*. These
features include the sentiment of the sentence (i.e., a value
determining if the sentence has a negative, positive or neutral

“https://cloud.google.com/natural-language/



sentiment overall), how many entities were found 5 and what
parts of speech were found in text. Each word is described by a
300-1200 element long feature vector (since each embedding
is 300 elements long) whose entries are comprised of word
embedding values. Our dense layer takes the input and feeds
this to a convolution layer with no activation function applied
to it. From here we have 3 sets of convolutional and pooling
layers, where each convolutional layer has a different kernel,
we found that kernel sizes of 2, 3, and 4 worked best for our
dataset by experimenting with several different kernel sizes,
large and small. Our observations during this trial and error pe-
riod showed that there was a degradation in performance when
we had only 1-2 convolutional layers with small kernel sizes.
Having many layers with large kernel sizes either displayed
a degradation in performance or no significant increase in
performance to merit the inclusion of more layers. The output
of the convolutional layers is fed to a bi-directional LSTM
network that feeds its output to a dense layer to generate the
final output vector of the model. We performed experiments
where we classified sentences into either two or three classes,
so depending on the experiment the output vector of the last
dense layer changed.

With our data we train two types of models, one whose
loss function is categorical cross-entropy (CCE) defined in
Eq. 1, and another which is the logarithm of the hyperbolic
cosine of the prediction error (LHC) and is defined in Eq. 2,
as defined in the Keras® library and documentation’ 3 ° 1°. The
activation function used in the final output layer for the model
is the softmax function in Eq. 3. An L2 regularizer (Eq. 5 is
also applied to the kernel weights matrix of the output layer,
and an L1 regularizer (Eq. 4) to the output layer itself. All
of these methods are well established and based in literature
[15]. We wanted to see how the two different approaches
handle this task and how these results compare to the baseline
predecessor model this work is based on. Our use of the two
main losses, LHC and CCE, is based on our own observations
training different models with several losses and concluding
that these two were the best performing ones for our task.
Likewise, with the L1 and L2 loss functions the lambda for
these functions was chosen based on running several test runs
and observing the the accuracy of the models fluctuated with
each change. Finally, our choice of the Softmax function as
the activation function is somewhat standard, but as with the
other parameters we tested different activation functions and
Softmax consistently produced the best performing models
relative to the other activation functions.

Shttps://cloud.google.com/natural-language/docs/reference/rest/v1/Entity

Shttps://keras.io/losses/#logcosh

"https://github.com/keras-team/keras/blob/master/keras/losses.py#L.48

Shttps://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_
backend.py

“https://www.tensorflow.org/api_docs/python/tf/nn/softplus
10https://www.tensorflow.org/api_docs/python/tf/log

N

L(0) = L [gi log(pi) + (1 — ¢:) log(1 — p;)]

i=1
where N = the number of samples (1)
p; = the predicted value of the model

q; = the ground truth for the data

L(0) = (p— q) +log o(e”>*P=9 + 1) — In(2)
where p = the predicted value of the model 2)
q = the ground truth for the data

x

e
softmar(r) = ———
25:1 etk 3
where x = the tensor to be evaluated 3)
K = the number of dimensions of tensor x
Lossj (A x) = Z)\ X |24
i=1
where \ = the weight of the regularization 4)
x = the tensor to be evaluated
n = the number of dimensions of tensor x
Lossja(A, x) = Z A x (2;)2
i=1
where \ = the weight of the regularization @)

x = the tensor to be evaluated

n = the number of dimensions of tensor x

C. Use of Multiple Word Embeddings

We had initially tried to train models without using any pre-
trained embeddings, but found that the resultant models were
very poor. For this reason we began to explore the use of pre-
trained embeddings and became intrigued by the question of
whether using embeddings from more than one source would
make a difference. We test four different word embeddings,
which are Google [16] [17], the GloVe [18], Facebook [19],
and dependency based word embeddings [20]. For a given
word, each embedding source returns a vector with a length
of 300. We simply concatenate each of the vectors from the
different sources when testing multiple embeddings. If the
word happens to be missing from the lexicon of a source,
we simply ignore that source and place a dummy vector filled
with 300 zeros.

We looked for several different embeddings to include in
our study, but these four seemed to be representative of the
state-of-the-art with respect to representational word vectors.
Currently, count-based and predict models [21] are the most
prominent (e.g., GloVe and word2vec (Google), respectively),
and from here different embeddings try incorporating different
contexts into the training process which produces embeddings
with different weights.



D. Constructing Negative Examples

Apart from running experiments on the original dataset
(which was used in the predecessor study to this paper) we
used an enhanced version of this dataset, which we show
results in an increased robustness to the model. The base (i.e.,
original) dataset contains about 8000 hand labeled sentences
that have been given a label describing them as factual, factual
but unimportant, or non-factual in nature. The collection was
not part of the efforts in this paper, but rather work from
the paper that the baseline model we will be comparing our
results to came out of. We saw short-comings in the baseline
model and wanted to try and address these by giving the
neural network model some more negative examples that were
exaggerated cases of what was giving the original SVM model
trouble to try and see if it could improve the accuracy of
the model. We had previously attempted to use the dataset
as was with only one embedding but had only results that
were about just as good as the baseline model. To enhance
the dataset we wrote a simple script that generated 2000
random sequences of text that contained mostly numbers but
also some words we thought might be used to exploit a
model and confuse it. We labeled these sentences as non-
factual and added them to our dataset processing them as all
the other data, using the word embeddings mentioned above.
Such training examples would have never been collected in
the wild (i.e., by tuning into broadcasts and capturing closed
caption text, scraping transcripts, etc.), also considering such
extreme examples which can only be described as nonsensical
data is not generally what one considers when training a
model. Usually, we strive to obtain high-quality data that is
representative of the problem task and contains good examples
of the positive label. Yet, we can learn from mistakes or
negative examples as much as we can learn from success,
so we wanted to try and introduce that paradigm to model
training process.

III. EXPERIMENTAL EVALUATION
A. Results

We trained the models on the 8231-sentence base dataset
and the base dataset supplemented with 2000 nonsensical
sentences mentioned in Section II-D. Each model is trained
for 15 epochs with a batch size of 128. Following this training
phase each model is saved to a file for testing and evaluation
with an entirely disjoint test dataset.

We ran 120 experiments in total, of which half were on the
base dataset and half were on the enhanced dataset. From there
they were split between training three-class output models and
two-class output models. For each of these specifications we
used all the possible combinations of the 4 word embeddings
(i.e., using 1, 2, 3, and 4 word embedding in every possible
way). We then ran post-evaluation tests where we took 2000
regular sentences that had no part in the training process during
the creation of the models, and 500 of the automatically gen-
erated nonsensical sentences, which contain mainly numbers,
and were also not part of the training process of any of the

models. Using these two test sets we tested all the models and
computed metrics for these tests.

Interestingly, the introduction of more embeddings did not
improve the models in any significant manner. Specifically, the
plots in Figure 2 do not demonstrate a marked improvement
in accuracy overall, as can be seen from the trend-lines in the
box-whisker plots that go through the medians. Our intuition
was that by introducing more foreign knowledge/context into
the training process we would be able to see some improve-
ments. But this was not the case. Moreover, as can be seen
in the plots contained in Figure 2, the real discriminator in
accuracy is a combination of the inclusion of the nonsensical
sentences into the training data as well as whether the model
is trained on two or three class labels. On that note, from the
results we can also see that the two-class models consistently
outperform their three class counterparts, although this might
not be as telling since we are consolidating two classes into
one to create the two class models.

1 . .
AVG = > Ll f (e, )
leL

ZleL|yAl‘ B

where L = the set of labels
(6)

f = the evaluation metric (e.g., recall)
y = the set of predictions for the data
1 = the set of ground truths for the data

We calculated the average precision, recall, f1-score for two-
and three-class models on the enhanced and regular datasets.
We also calculated the weighted averages of the previous
three measures, using Eq. (6), which took into account class
imbalances by multiplying the measure over each class with
the number of true instances in that class. In Table II, we
only display the Recall since the 500 nonsensical sentences
are all mapped to one class, NFS, and therefore measures
like Precision and the F1-Score aren’t really applicable to
that scenario. For the sake of thoroughness we retrained
the original SVM algorithm using the same settings as the
one proposed in [1] with both the regular and enhanced
datasets. Using the regular dataset we attained a model whose
performance matched that of what was presented in [1], so
in that respect we were able to verify we followed the their
model creation pipeline correctly. We proceeded to run the
SVM models through the 500 nonsensical test sentence dataset
and the 2000 regular test sentence dataset. As can be seen
from the last four rows in Table I and the last row in Table II,
the SVM classifier trained on the regular dataset outperforms
the two and three-class neural network models on the 500
nonsensical test sentence dataset, but this can be attributed to
the fact that the metrics for the two and three-class models are
averages across many models and do not exclude models that
perform particularly poorly. On the 2000 sentences, the SVM
algorithm trained on the enhanced dataset seems to classify
most things as NFS. Hence its recall in that class is great but
it really suffers in every other measure. The model trained on
the regular dataset does not show much improvement. Even



TWO CLASS MODEL ACCURACY BY NUMBER OF EMBEDDINGS AND LOSS
FUNCTION ON 2000 REGULAR TEST SENTENCES
o CCE Enhanced © CCE Regular o LHC Enhanced = LHC Regular

] [
[~ N

3
o

~
o

MODEL ACCURACY (PERCENTAGE)
~ ~
~ ©

~N
@
f

~
o

1 2 3 4
NUMBER OF EMBEDDINGS USED

@
TWO CLASS MODEL ACCURACY BY NUMBER OF EMBEDDINGS AND LOSS
FUNCTION ON 500 NONSENSICAL TEST SENTENCES
o CCE Enhanced © CCE Regular ©LHC Enhanced = LHC Regular

50

40

30

MODEL ACCURACY (PERCENTAGE)

10 == i
FE— =

NUMBER OF EMBEDDINGS USED

(©)

THREE CLASS MODEL ACCURACY BY NUMBER OF EMBEDDINGS AND LOSS
FUNCTION ON 2000 REGULAR TEST SENTENCES

aCCE Enhanced = CCE Regular = LHC Enhanced =LHC Regular

75

MODEL ACCURACY (PERCENTAGE)

68
1 2 3 4
NUMBER OF EMBEDDINGS USED

(®)

THREE CLASS MODEL ACCURACY BY NUMBER OF EMBEDDINGS AND LOSS
FUNCTION ON 500 NONSENSICAL TEST SENTENCES

2CCE Enhanced ©CCE Regular @ LHC Enhanced = LHC Regular
100

920
80
70

60

50

40

30

MODEL ACCURACY (PERCENTAGE)

20

NUMBER OF EMBEDDINGS USED

()

Fig. 2. Model accuracy is represented by a series of box-whisker plots each pertaining to a particular model that was trained on either the enhanced or regular

data, and with CCE or LHC as the loss function.

though the precision for the NFS class is high, the recall is
rather low, and even though the recall for the CFS class is high,
the precision in that same class is rather low. These results
seem to suggest that, when the SVM classifier is trained on
the enhanced dataset it over-fits to the NFS class, while when
it is trained on the regular dataset it over-fits to the CFS class.

It was surprising for us to see that the SVM model,
trained on the regular dataset, performed much better on the
500 nonsensical test sentences than the other neural network
models. This however, is a small upside given the rest of
the results. Looking at Table II we can also confirm that
the neural network models models trained on the extra 2000
nonsensical sentences did learn to avoid the pitfalls that plague
their less well-rounded brothers. It should be noted, that with
the inclusion of these extra 2000 nonsensical sentences we
didn’t see an overall drop in performance in the neural network
models that were trained on them (when it comes to classifying
regular sentences), so we can conclude that while they are
successfully discriminating on number loaded sentences they

still perform well on sentences with numbers that also happen
to be in the CFS category. This is important, as we wouldn’t
want to over-fit the models to the point where they throw
out sentences with numbers haphazardly as we see the SVM
models do, if that were the case we’d end up in a similar but
opposite scenario to the one we started in.

B. Discussion

In training our models we had also included an extra feature
vector that contained information on entities found within
a sentence, the sentiment of the entities, and the parts of
speech. We found that the inclusion of this vector didn’t
affect the final model that much, but left it there since it
was part of the pipeline that we had already established in
creating our models. The paper which presented the original
SVM algorithm also sought to leverage entity information and
sentiment information, but was also unsuccessful in getting
this extra data to have an impact on the final models. Perhaps
how this data is being modeled is inadequate to provide



TABLE I
MODEL ACCURACY ON THE 2000 REGULAR SENTENCE TEST DATASET

Enhanced Dataset

Regular Dataset

Precision Recall F1-Score Precision Recall F1-Score
Two Class NFS 0.86 0.87 0.87 0.87 0.87 0.87
Models CFS 0.60 0.58 0.58 0.60 0.59 0.59
AVG 0.80 0.80 0.80 0.80 0.80 0.80
NFS 0.78 0.86 0.83 0.80 0.84 0.82
Three Class UFS 0.60 0.26 0.35 0.57 0.27 0.34
Models CFS 0.61 0.60 0.60 0.68 0.65 0.61
AVG 0.71 0.73 0.71 0.71 0.71 0.70
NFS 0.62 0.99 0.76 0.78 0.14 0.23
Original SVM  UFS 0 0 0 0.15 0.13 0.14
Model CFS 0.19 0.01 0.02 0.28 0.88 0.43
AVG 0.42 0.61 0.47 0.57 0.32 0.27

NES, CFS, and UFS refer to the classes a sentence can be labeled into, and AVG refers to
the weighted average of all the three classes for a given metric (e.g., Recall). We use two
different data-sets to construct and evaluate three different models (Two Class, Three Class,
and the Original SVM Model). The data-sets are differentiated in that one has non-sensical
sentences as negative training samples to help alleviate the issue being tackled in this paper.

TABLE II
MODEL ACCURACY ON THE 500 NONSENSICAL SENTENCE TEST
DATASET

Models Trained on the
Enhanced Dataset

Models Trained on the
Regular Dataset

Two Class Models

N/UFS Recall 081 0.07
Three Class Models
NFS Recall 0.81 0.06
SVM Model
NFS Recall 1.0 0.45

enough context for it to be relevant to the model during the
training phase. Although we found that the embedding source
didn’t really matter in our case, we only tried four different
word embeddings (and their combinations) in trying to capture
sentences with salient factual claims. There might be other
word embeddings out there that capture different aspects of
words that weren’t already captured by the ones we tried, so
that is something we will be on the lookout for.

Although, the performance of the models didn’t really differ
in a significant manner when different numbers of embeddings
were used, we were interested in seeing if different models
could be used to create a voting type scenario where the
final outcome would be the aggregated response of two or
more models. During this exploration, we noticed that models
trained on the Dependency embeddings seemed to perform
much better at handling sentences with digits (i.e., 0 — 9)
in them. These models also tended to be a bit to harsh
on sentences without them. With this in mind we set up
a comparison showing how these models scored 7 hand
constructed sentences meant to showcase different features
that affect each of the models in different ways. It seems,
from these preliminary tests, shown on Table III where the
scores represent how likely the given model thinks a sentence

contains a salient factual statement, that the usage of two
different models that handle text with digits differently might
provide the best results overall. On Table III we also list the
scores for the sentences that were given to them by the both
SVM models (i.e., the one trained on the enhanced dataset
and the one trained on the regular dataset). The SVM model
trained on the enhanced dataset gives every sentence a low
score, while the SVM model trained on the regular dataset is
a bit more balanced in its results. However, it still does not
out perform, in terms of differentiating sentences, the neural
network model trained on the GloVe, Google, and Facebook
embeddings let alone the aggregation of both neural network
models presented in Table III as explained earlier.

We also have data we can leverage in future studies that
gives further insight into the labels that are attached to each
sentence. For a particular sentence 3 people might have voted
for CFS, 0 for NFS, and 2 for UFS, while for another sentence
the scores might be 5 CFS, 0 NFS, and 0 UFS. In the
previous scenario the second sentence would have a larger
shadow of doubt cast over it’s classification than the second, by
leveraging this information we might be able to capture more
nuanced characteristics that make a sentence more salient,
within a factual context, than another. In this scenario it might
be more difficult to give a final classification to a sentence as
the lines between the 3 classes would most likely become
more blurred, but it is a viable branch to explore considering
we have that information.

One of the hardest things to address in tackling this problem,
is that factual-salience isn’t an objective quality, but rather
subjective and influenced heavily by the zeitgeist of a partic-
ular region. Of course, our efforts are heavily biased towards
political factual-salience but there is substantial overlap in
what makes a sentence salient in a political context and in a



TABLE III
SCORES ON SENTENCES BY FOUR DIFFERENT SELECT MODELS

Model Scores

Sentence GloVe, Gooogle, Dep  GloVe, Google, Facebook SVM Model SVM Model
Embeddings Embeddings Enhanced Dataset Regular Dataset

I ate apples. 0.06 0.02 0.10 0.20
I ate 2 apples. 0.06 0.02 0.10 0.20
I ate 500 apples. 0.06 0.02 0.10 0.23
Iraq does not have weapons of mass destruction. 0.05 0.76 0.16 0.33
Millions of illegal immigrants voted last year. 0.014 0.98 0.07 0.65
The U.S. allowed 320 million illegal immigrants

to vote in the 2016 elections. 0.91 0.98 0.09 0.82
The 534 apples spread out across 3 tables had been 0.09 0.97 0.09 0.80

left out for 1 day 9 hours and 23 minutes.

The scores given represent how likely a given model (discriminated by the word-embeddings or data it was trained on) thought a sentence contained
a salient factual statement, thus making it check-worthy. A score of 1 is a highest score and thus means the model thought this was definitely a check-
worthy sentence. A score of 0 means the model thought it was an unimportant sentence overall. We assess how each model weighs a sentence that has
numbers and how different word-embeddings affect the score. We compare two neural network models and an SVM model trained on different data-sets.

more general context as well. Is it referencing something that
affects a large group of people, places, things? Is it talking
about well known and prominent entities? Is it trying to assert
some interpretation of reality that is being presented as an
objective truth? Most of these questions require contextual
knowledge to answer which is hard to acquire in the correct
context and furthermore parse.

IV. CONCLUSION

Although, the results we presented are not what we expected
when we began our research there are some promising aspects
to these. We saw that trying to differentiate our data into
more categories than just two provided little to no benefit and
that word-embeddings weren’t that important in the sense that
having them was important but how many wasn’t, although
we did find that some embeddings tend to produce models
that have an affinity for sentences with digits in them. We
also found that the inclusion of nonsensical data that was
used to mitigate some issues with the base models did not
negatively impact the accuracy of these enhanced models on
regular sentences, which was key to the success of this study.
We conclude that perhaps the best approach might be to use
multiple models working together to effectively and accurately
score sentences.

A. Future Work

In the near future we will integrate our best performing
model into the platform that currently makes use of all
work based on [1]'''2. We also plan to leverage the voting
information regarding the labels attached to each sentence,
explained in the Discussion, to try and train better models.
We have yet to exlpore how creating a voting system, wherein
more than two models are used to score a sentence and then
a label is given based on the majority score (i.e., given a
particular threshold). There are many different paths we can
explore from here, but those are the ones we are currently

idir-server2.uta.edu/claimbuster/
12idir-server2.uta.edu/factchecker/apidocs.html#!/apidocs/get_0_1_2_3

considering and assessing. The code used to develop these
models and write this paper is available at https://github.com/
damianj/ijcnn2018_factualsalience.

REFERENCES

[11 N. Hassan, C. Li, and M. Tremayne, “Detecting check-worthy factual
claims in presidential debates,” in Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management,
ser. CIKM 15, 2015, pp. 1835-1838.

[2] N. Hassan, G. Zhang, F. Arslan, J. Caraballo, D. Jimenez, S. Gawsane,
S. Hasan, M. Joseph, A. Kulkarni, A. K. Nayak, V. Sable, C. Li,
and M. Tremayne, “Claimbuster: The first-ever end-to-end fact-checking
system,” Proc. VLDB Endow., pp. 1945-1948, 2017.

[3] D. Jimenez, “Towards building an automated fact-checking system,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, ser. SIGMOD SRC 17, 2017, pp. 7-9.

[4] J. Cheng and D. Kartsaklis, “Syntax-aware multi-sense word embed-
dings for deep compositional models of meaning,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
2015, pp. 1531-1542.

[5] M. T. Pilehvar, J. Camacho-Collados, R. Navigli, and N. Collier,
“Towards a seamless integration of word senses into downstream nlp ap-
plications,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2017, pp. 1857-1869.

[6] X. Yu and N. T. Vu, “Character composition model with convolutional
neural networks for dependency parsing on morphologically rich lan-
guages,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Association
for Computational Linguistics, 2017, pp. 672-678.

[71 A. Herbelot and M. Baroni, “High-risk learning: acquiring new word
vectors from tiny data,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2017, pp. 304-309.

[8] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).  Association for Computational
Linguistics, 2014, pp. 1746-1751.

[9] R.Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proceedings of the 32Nd Inter-
national Conference on International Conference on Machine Learning
- Volume 37, ser. ICML’15, 2015, pp. 2342-2350.

[10] B. Plank, A. Sggaard, and Y. Goldberg, “Multilingual part-of-speech
tagging with bidirectional long short-term memory models and auxiliary
loss,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Association for
Computational Linguistics, 2016, pp. 412-418.

[11] FullFact.org, “The State of Automated Factchecking,” Full Fact, August,
2016. https://fullfact.org/blog/2016/aug/automated-factchecking/.



[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]

F. Arslan, “Detecting real-time check-worthy factual claims in tweets re-
lated to U.S. politics,” Master’s thesis, University of Texas at Arlington,
2015.

C. Shao, G. L. Ciampaglia, A. Flammini, and F. Menczer, “Hoaxy: A
Platform for Tracking Online Misinformation,” in Proceedings of the
25th International Conference Companion on World Wide Web, 2016.
B. Walenz, J. Gao, E. Sonmez, Y. Tian, Y. Wen, C. Xu, B. Adair, and
J. Yang, “Fact checking congressional voting claims,” in Proceedings of
the 2016 Computation+Journalism Symposium, 2016.

K. P. Murphy, Machine Learning: A Probabilistic Perspective. —The
MIT Press, 2012.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’13, 2013, pp. 3111-3119.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135-146, 2017.

O. Levy and Y. Goldberg, “Dependency-based word embeddings,”
in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 2: Short Papers, 2014, pp. 302-308.

M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a sys-
tematic comparison of context-counting vs. context-predicting semantic
vectors,” in Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2014, pp. 238-247.



