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Abstract- The coupling interactions between two spherical 
swimmers in an ideal fluid have known analytic approximations 
for certain types of motion. We apply these results to produce 
locomotion and coordination through the actuation of internal 
masses inside each swimmer. Through control of either both 
swimmers or one of them, the latter case taking advantage of 
compliance in the passive swimmer, desired motion along the 
spheres' line of centers can be achieved. We subsequently treat 
general 2D motion as a superposition of motion components 
along and perpendicular to the spheres' line of centers, leading 
to a derivation of a full model of controlled locomotion and 
coordination of two spheres in a planar fluid. 

I. INTRODUCTION 

The swimming locomotion of deformable or rigid bodies 
is often difficult to model analytically due to the complexity 
of the governing hydrodynamics. For solitary bodies, motion 
may be achieved through temporal deformation of the body's 
shape. This "self-propulsion" has been described for various 
geometries in both ideal fluids [1]-[3] and viscous incom­
pressible fluids [4]-[6]. Many of these results approximate 
locomotion as a result of momentum conservation between 
the body and the surrounding fluid, allowing for a generic 
derivation of controllability [7]. If a body is unable to deform 
its shape, then motion due to momentum exchange can also 
occur by varying its internal mass geometry [8]. 

Alternatively, submerged rigid bodies can be induced to 
move due to external interactions with the surrounding fluid 
or with other bodies nearby. Lamb [9] and Milne-Thomson 
[10] provide approximations for the interactions between two 
spheres in an ideal fluid when motion is induced either along 
or perpendicular to their line of centers. Nair and Kanso [11] 
build upon these analyses to explore the coupling between 
generic rigid bodies along a common axis, including motion 
coordination between a fixed and a free body. 

In this work we combine various aspects of the cited works 
to develop a general planar model for actuated locomotion 
of two rigid spheres in an ideal fluid. Like the analysis of 
Kozlov and Onishchenko [8] , the spheres move in response to 
variation in internal mass distribution. We use the results of 
Lamb [9] and Milne-Thomson [10] to derive an approximate, 
analytic form of a multi-body Lagrangian. Unlike Nair and 
Kanso [11], we can accommodate free bodies as well as 
motion that is not along a common axis. We mainly consider 
periodic actuation of these bodies, wherein movement of the 
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Fig. 1: Two spherical swimmers, each with an internal mass. 
The swimmers can move along the inertial x axis, with 
positions given by x 1 and x 2 , as can the internal masses, 
with positions 6 and 6 from the respective sphere centers. 

bodies' internal masses is constrained by linear springs. This 
feature allows us to study aspects of submerged mass-spring 
systems, such as passive locomotion [12] and synchroniza­
tion [13] , [14], in the context of coupled rigid bodies. 

The organization of the rest of this paper is as follows. 
The following section will review the solution of spheres 
oscillating along the line of centers and introduce the actua­
tion mechanism of using controlled internal masses in each 
sphere. We use transfer function analysis to show that only 
one input is actually necessary for both spheres to move in 
a desired way, with the passive sphere simply reacting to 
an external propulsion. The next section then summarizes an 
analogous derivation for perpendicular oscillations, followed 
by a derivation of the full planar locomotion model as a 
superposition of the previous two. 

II. SPHERICAL SWIMMERS MOVING ON A LINE 

A. Hollow Spheres Model 

The locomotion of two spheres moving either toward or 
away from each other along their line of centers can be 
described using the Lagrangian method. The derivation is 
done in detail by Lamb [9] and Milne-Thomson [10]; here, 
we briefly summarize the key points and explicitly show the 
order of the Lagrangian used in derivations in the rest of the 
paper. We first deal with the spheres without internal masses, 
as the latter contributions can be added later on. 

As shown in Fig. 1, the positions of the spheres with 
respect to an inertial frame are given by (x 1, 0) and (x2, 0) , 
their radii are R 1 and R 2 , and their masses m1 and m 2 . The 
surrounding fluid has density p. We consider the velocity 
potential ¢1 of the fluid, which must everywhere satisfy 
Laplace's equation, '92¢1 = 0. The boundary conditions are 
that the fluid is at rest infinitely far away from the spheres, 
while the motion of the spheres leads to a flux condition on 



the bodies' surfaces. The latter takes the form 
0 X- X; . 

- "'n(h(x,y) = x;, i = 1, 2, (1) 
u J(x -x;)2+ y2 

where -~ is the flux going into each of the sphere 
surfaces. The coefficient in front of x; is such that the flux 
is greatest along the line of the spheres' motion and zero 
where the spherical surface tangent is parallel to it. 

A solution can be obtained for ¢ 1 in the form of an infinite 
series using the method of image doublets [9], [10]. The 
kinetic energy of the fluid is then given by the integration 

Tx = - ~pi cP1 o¢1 dS1 - ~pi cP1 o¢1 dS2 
2 on 2 on (2) 

over the surfaces of each sphere, denoted by S1 and S2 . The 
idea here is that - 0:,,' is the normal fluid velocity into each 
sphere, and p¢1 is an impulse that generates the motion. 
Integrating their product over both of the sphere surfaces 
then gives us the total kinetic energy from their motion. 

As previously mentioned, the full form of ¢1 is that of an 
infinite series whose higher-order terms can be effectively 
ignored, since the two spheres cannot approach arbitrarily 
close to each other due to their finite radii. An analytical 
form for the kinetic energy can be written as 

1 1 
Tx(x2- x1,±1,±2) = 2 M1xi- Nx:hi:2 + 2 M2:i:~, (3) 

where M; are the effective masses of each swimmer and N is 
a cross-coupling term between the two. Written up to order 
(x2 - xl) - 6 , they are 

2 3 ( 3RiR~ ) M ; = m, + -1rpR; 1 + ( )6 , i = 1, 2; 
3 X2- X1 

RiR~ 
Nx=27rpl 13" X2- X1 

For the simulations that we perform, higher-order terms are 
negligible even when the spheres are adjacent to each other. 
The relative contributions of these terms can be computed for 
different model parameters, but this truncation is generally 
sufficient when the two spheres are of similar size. 

By deriving the Euler-Lagrange equations from Eq. (3), 
one can find the forces acting on each swimmer due to 
the motion of both. In particular, Lamb [9] notes the result 
of each sphere making small oscillations about their initial 
position along their line of centers. Assuming the same 
frequency for ±1 and ±2 , the mean value of the second-order 
terms in the Lagrange equations will be 0, and the average 
forces acting on the spheres are opposite with magnitude 

. . RiR~ .. 
Fx(x2- x1, x1, x2) = 61rp ( . . )4 [x1x2], (4) 

X2- X1 

where [x1:i:2] is the mean value of ±1±2. If the phase offset 
between the two velocities is less than a quarter period, then 
[x1x2 ] is positive and the spheres experience repulsion from 
each another; otherwise, the spheres experience an attractive 
force toward each other. Although the magnitude of Fx varies 
inversely with the spheres' distances from each other, we 
need not worry about Fx becoming unbounded since we 
assume finite, rigid radii for both spheres. 
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Fig. 2: The attraction of two spheres in response to out-of­
phase perturbations of their internal masses. Solid trajectories 
x; ( t) are computed via the full equations of motion; the 
dashed i;(t) are a sum of individual and coupled approx­
imations. 

B. Adding Internal Masses 

We now consider the presence of a small mass inside each 
sphere, each of which can move along the line of centers as 
an actuation mechanism for the spheres. Each sphere will 
also move along this axis as a result. If the masses inside 
swimmer 1 and swimmer 2 are J.L1 and J.L2, respectively, and 
their configurations measured from their respective sphere 
centers are 6 and 6. then their kinetic energy is 

.... 1. "21. "2 
T~(x1,x2,6,6) = 2J.L1(x1 +6) + 2J.L2(x2 +6). (5) 

The total kinetic energy of the system is then Tx + T~, 
and by going through the derivation of the Euler-Lagrange 
equations as before, we can obtain the updated equations of 
motion and description of forces on the spheres. In particular, 
exciting 6 and 6 with periodic oscillations ensures that 
the force contributions from T~ have a mean value of 0, 
so Eq. (4) acting on the spheres remains unchanged. 

If we assume that we have direct control over 6 and 6, 
then this problem can be recast into a principal fiber bundle 
formulation [15], [16]. Specifically, we have a base space 
B = JR2 formed by all possible mass configurations (6, 6) 
and a set of fibers JR2 defined by the positions (x1 , x2 ) 

over B. In typical locomotion problems, the fibers form a 
symmetry group, allowing for reduction of the equations 
of motion to a simple mapping between the base and fiber 
velocities via a local connection form. In this problem, the 
fibers do not exhibit a group symmetry, since the spheres' 
effective masses depend on their relative displacement. 

In cases in which the spheres are sufficiently far away 
from each other, the following approximation of a principal 
connection can be made. Momentum conservation dictates 
the response of each sphere due to actuation of its own 
internal mass, ignoring the presence of the other sphere. This 
gives us a constant, diagonal mechanical connection relating 
the mass velocities to the sphere's perturbation velocities as 



Magnitude 

0.050 
0.045 

0.5 1 5 10 
w 

Phase (rad) 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.5 1 5 10 
w 

Fig. 3: Transfer function response from i:1 to i:2 as a function 
of input frequency of 6. The resonant frequency of the mass 
6 is 1 rad/s, close to the frequency of peak phase offset. 
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Fig. 4: Same as the previous figure, except with resonant 
frequency 3 rad/s. As a result, both the magnitude and phase 
response maxima are scaled up and shifted rightward. 

A separate coupled response of the spheres' slow motion 
can then be computed by finding [i:1i:2] = [i:1,pi:2,p] and 
integrating Eq. (4). The sum of the two responses, one kine­
matic and one dynamic, approximates that generated by the 
full equations of motion derived from Eq. (5). An example 
simulation showing the validity of this approximation is 
shown in Fig. 2. We set the parameters p = 1, R1 = R2 = 2, 
m1 = mz = 0, /-ll = J-lz = 5, and command the inputs 
6 = cost, 6 = cos(t - v:n. 

Our first observation is that because the spheres' os­
cillations are nearly a half-cycle out of phase with each 
other, the forces on each are attractive, verifying Lamb's 
assertion [9]. Furthermore, the trajectories Xi ( t) obtained 
from superimposing the individual and coupled responses of 
the spheres follow very closely the actual trajectories X i ( t) 
from the full equations of motion. They only begin to diverge 
around t = 90 as the spheres nearly collide. On the other 
hand, if the spheres were actuated so as to repel each other, 
this approximation would hold throughout. 

C. A Compliant Spring-Loaded Mass 

Rather than having control of both spheres, a more chal­
lenging example may be that we can only directly control 
one of the masses, while the other sphere moves according 
to the known hydrodynamics. Suppose that we can control 
the movement of the mass J-11 , while J-12 can oscillate freely 
due to attachment to the center of its sphere via a spring. 
This introduces a potential energy V~; = ~ k~; ~~, where k~; is 
the spring constant. The full system is now described by the 
Lagrangian 

(7) 

The role of the spring in the sphere with the compliant mass, 
here assumed to be f-12 , is to allow J-12 to continue oscillating 
with no direct active input. 

To produce any form of desired locomotion, a primary goal 
is to be able to produce either attraction or repulsion of the 
spheres while only commanding 6. To do this, it is useful 
to analyze the transfer function of the sphere velocities as 
a function of the input's frequency. We linearize the Euler­
Lagrange equations derived from Lx ,l; in Eq. (7) and obtain 
the matrices A and B in 

X = AX+B6 , 

where X = (xl,x2,6 , i:1 , i:2 , ~2) comprise the states and 
6 is our input. The transfer function from i:1 to i:2 can then 
be derived as a function of the frequency of 6. 

Figs. 3 and 4 show two instances of Bode response plots of 
this transfer function, both using the same parameters from 
the simulation of Fig. 2. Fig. 3 is the response with spring 
constant k = 5 N/m; Fig. 4 has spring constant k = 45 N/m. 
The magnitude plots for each show varying but finite levels 
of attenuation between the amplitudes of i:1 and i:2, which 
is sensible since we only actuate 6 directly. 

The transfer function is biquadratic second-order in the 
form 

H(s) = N2s2 + N1s + No 
D2s2 + D1s +Do 

with all constants being positive, so the phase offset be­
tween i:1 and i:2 is close to 0 at both low and high input 
frequencies. This means that for most inputs, repulsion of 
the swimmers is the only result. However, close to the 
resonant frequency of the compliant mass w~; = .Jkd J-12 , 

the phase offset can become much greater than 0, allowing 
for attractive behavior. 

The optimal input frequency can be found numerically or 
analytically in terms of maximizing the phase or magnitude 
response, and choosing one is mainly a design decision that 
will impact the speed at which the swimmers are attracted or 
repelled. This analysis will appear in future work. Here we 
make a qualitative observation about how the phase response 
changes with respect tow~;. For small values of w~;, such as 
that of Fig. 3, the maximal phase may not be able to surpass 
-;f, so that it is impossible to produce attraction while only 
commanding 6. At the limit of w~; = 0, J-12 is disconnected 
from its encompassing sphere, leaving the latter with no 
mechanism to oscillate on its own. 

For larger values of w~;, the peak phase also becomes 
larger, allowing for a greater range of inputs that can produce 
attraction. However, a practical limitation is that a physical 
actuator is bounded in how fast it can operate. As w~; -+ oo, 
J-12 essentially becomes rigidly attached to its sphere, again 
removing the oscillatory mechanism. 

Finally, this analysis can be combined with that of the 
previous subsection to produce desired attractive or repul­
sive forces on the spheres. The input of 6 produces a 
known oscillatory response in i: 1 ,p through Eq. (6). We 
can obtain the corresponding response of i: 2 ,p through the 
preceding transfer function analysis. The resultant forces on 
each sphere can then be computed via Eq. (4), which can 
subsequently be integrated to find the full system trajectories. 
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Fig. 5: Input frequencies to 6 are chosen in order to produce 
attractive followed by repulsive locomotion of the spheres. 
The second plot shows a plot of 6 around the transition time 
as well as the response of the compliant mass 6. 

An example simulation is shown in Fig. 5. Here we use the 
parameters of the system used to derive the transfer function 
in Fig. 4, except with J..LI = 20 to make XI oscillate faster. 
Suppose we want the spheres to be first attracted toward and 
then later repelled from each other. We thus perturb J..LI with 
two different frequency inputs, the first stage at 3.2 rad/s, and 
the second at 2 rad/s. In the first half, XI and x2 are a quarter 
cycle out of phase; in the second, they are nearly completely 
in phase. As expected, the spheres are first attracted and then 
repelled, the latter occurring following a frequency, and thus 
phase, change in the input. 

III. SPHERICAL SWIMMERS IN THE PLANE 

A. Actuation Perpendicular to the Line of Centers 

In order to motivate the planar locomotion problem of 
two coupled swimmers, we once again consider two hollow 
spheres, each now only oscillating along the axis perpen­
dicular to their line of centers. Thus, using the inertial 
configuration of Fig. 6, the positions of the spheres are 
given by (xi , yi) and (x 2 , y2). In this problem, the velocity 
potential ¢2 is subject to the boundary conditions 

8¢2 y . 
-- = Yi i = 1, 2, (8) 

an J(x-xi )2+y2 ' 

on the sphere surfaces. 
An approximate analytical solution can then be obtained 

for ¢2 and subsequently for the kinetic energy Ty, in a 
manner similar to that in the preceding section. This is 

Fig. 6: Two spherical swimmers, each with an internal mass. 
Each of the latter can move in the inertial y direction, 
described by configurations TJI and ry2 with respect to the 
sphere centers. 

provided by Lamb [9] as 

T ( . . ) 1M · 2 N . . 1M · 2 
y X2- X l , Yl , Y2 = 2 lYI + yYlY2 + 2 2Y2, (9) 

where MI and M 2 are the same as in Tx (Eq. 3) and 
N y = !:ft. Unlike Tx, the kinetic energy in this case has 
dependencies on all four configuration variables or their 
velocities, allowing for planar movement. Because we are 
ignoring XI and x2 contributions to the Lagrangian here, this 
model is only valid as long as these velocities are sufficiently 
small; we consider the full model in the next subsection. 

If we derive the Euler-Lagrange equations from Ty and 
assume that each sphere makes small oscillations in the y 
direction, we find that there is a equal and opposite average 
force on the spheres in the x direction with magnitude 

F ( . . ) R{ R~ [ . . ] 
y x2 -xi , YI , Y2 = 3np( )4 YI Y2 · 

X2 - X 1 
(10) 

The direction that Fy acts on each of the spheres is opposite 
to that of Fx. The spheres thus experience attraction when i;1 

and iJ2 are in phase by at least a quarter cycle and repulsion 
otherwise. On the other hand, the average forces acting on 
the spheres in the y direction are 0, ensuring that the line 
of centers does not have net displacement or rotation over 
time. The present model assumes that the line of centers 
does not move at all, which is approximately true for small 
perturbations relative to the inter-sphere distance. However, 
this assumption will also be dropped in the next subsection 
for a more complete model. 

For the actuation mechanism, we again assume the pres­
ence of an internal mass inside each sphere with configura­
tions 7]I and ry2 , each allowed to move in the y direction. 
Note that the local mechanical connection relating the mass 
velocities to YI and i;2 is the same as in Eq. (6), due to 
spherical symmetry. If we can command 7]I directly and 
allow 7]2 to be passively attached to a spring, then a transfer 
function analysis analogous to that in the previous section 
gives a range of input frequencies that lead to either attractive 
or repulsive locomotion. 

Fig. 7 shows a Bode plot of the transfer function of i;2 in 
response to YI for the parameters J..LI = J..L2 = 20, k = 30, 
and the rest as previously assigned. Note that we use much 
heavier masses and a stiffer spring in order to obtain an 
appreciable magnitude response, as it is more difficult to 
make the passive mass move when perturbation is in the 
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Fig. 7: Transfer function response from y1 to iJ2 as a function 
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in the x direction. 

y 
0.5 

-----_-2-------------------2----------4-- x 

-0.5 

- Sphere 1 - Sphere 2 

Fig. 8: Sphere trajectories starting from initial positiOns 
( - 4, 0) and ( 4, 0). Small oscillations of sphere 1 produce 
a small in-phase response in sphere 2, leading to attraction 
of the spheres along the x axis. 

orthogonal clirection. In contrast to Figs. 3 and 4, the default 
behavior is for the spheres to oscillate out of phase in the y 
direction, resulting in repulsion in the x direction. Close to 
the resonant frequency wry = Jkry/ J.L2 , there is again a range 
of input frequencies that will possibly result in the spheres 
moving in phase and being attracted to each other. 

A parametric plot of the two spheres starting 8 units apart 
and subsequently moving toward each other is shown in 
Fig. 8. We perturb ry1 with a frequency of 1.5 rad/s, resulting 
in a phase difference of about -0.5 radians . Although the 
resultant magnitude of i;2 is very small, the phase offset 
is sufficiently small enough to generate attraction in the 
x direction over time, even though both spheres are only 
oscillating in y. 

B. General Planar Actuation 

For general two-dimensional motion of the spheres, the 
velocity potential satisfies both boundary conditions (1) and 
(8) on the surfaces of each sphere and ends up as the 
superposition ¢ = ¢1 + ¢2 due to linearity of Laplace's 
equation. On the other hand, the resultant kinetic energy 
is not exactly the sum T.'E + Ty, as this does not account 
for energy contributions from the cross terms, such as the 
y velocity of sphere 2 associated with an impulse of sphere 
1 in the x direction and vice versa. One can verify from ¢ 
given in Milne-Thomson [10] that they are at least an order 
of magnitude smaller than N x and Ny, the cross terms due 
to both spheres moving along the same direction. We thus 
posit that Tx + Ty is a reasonable approximation for the total 
energy of the system. 

With the spheres now possibly accumulating nontrivial 
displacement in both inertial planar directions, we do not 
assume that the line of centers remains constant. The La­
grangian is thus defined with respect to a frame in which 

Fig. 9: Two spherical swimmers whose line of centers is 
aligned with a "body frame" { xb , yb} that has an orientation 
B with respect to the inertial frame. Each sphere has an 
internal mass whose configuration is aligned with the inertial 
x axis and can be directly actuated. 

the coordinate axes rotate with the line of centers as the 
spheres move. From Fig. 9, we have that 

xg- x~ = j(x2- xi)2 + (Y2- YI) 2, 

[~f] = [ ~~~:e ~~~~] [~;] , (11) 

where 
tan B = Y2 - Y1 . 

X2- X1 

The total kinetic energy of two spheres undergoing planar 
motion is thus given by 

T b _ T ( b b · b · b) T ( b b . b . b) 
- x x2-xl,xl,x2 + y x2-xl , Yl , Y2, (12) 

with T.7 and Ty being defined as in Eqs. (3) and (9). This 
model reflects the decomposition of the system's energy due 
to motion along and perpendicular to the line of centers, 
regardless of the spheres' orientation with respect to any 
inertial frame. 

If we assume now that the spheres experience a general 
oscillation in any given direction, they experience an average 
force depending on the oscillation's alignment with the line 
of centers. Specifically, the average force along the line of 
centers will be given by 

F b _ F ( .b ,b ·.b ·.b) F ( .b .b . b . b) 
x - x X2 - :r.1, x1 , x2 + y X2 - x1,y1 , Y2 , (13) 

where Fx and Fy are defined as in Eqs. (4) and (10). In 
addition, from the Euler-Lagrange equations for yf there is 
now a nonzero force that acts on each sphere perpendicular 
to the line of centers when both xb and yb oscillation 
components are nonzero (previously, we only assumed one 
or the other, allowing us to ignore this force). The average 
forces act on the spheres differently and are given by 

R3R3 
F b 3 1 2 [("b ·b)-b] 

y,l = 71P( b _ b) 4 X2- X1 Y2' 
x 2 x 1 

F b Rf R~ [( . b . b . b] 
y,2 = 3Ttp ( b b) 4 x2 - xdyl . 

x2- xl 
(14) 

Since the only difference in each of the above equations is the 
last multiplier i;f, the yb force of each sphere is effectively 
determined by the motion of the other. 

The last component of our model is to enable actuation, 
again via internal masses inside each sphere. For this prelim­
inary model, we assume a single mass moving along a fixed 
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Fig. 10: The trajectories of two spheres, starting at positions 
( -4, 4) and ( 4, 4) , due to actuation both along and perpen­
dicular to their moving line of centers. 

axis. If this axis is neither aligned with the line of centers 
nor perpendicular to it, motion along it will contribute both 
xb and yb components of motion to the sphere. We do note 
that because the components are coupled, richer motion may 
be achieved adding a second degree of freedom to the mass, 
a topic of exploration for future work. Here we assume that 
the mass's single degree of freedom ~ is along the inertial x 
axis for both spheres, which contributes a kinetic energy 

Ti = L ~/li ((xY + ~icosB) 2 + (yf - ~isinB) 2 ) (15) 
i=1 ,2 

The total kinetic energy Tb + T,~ thus constitutes the La­
grangian for this planar coupled spheres locomotion problem. 

We conclude this section by showing a simple simulation 
that verifies the predicted behavior of this model. The param­
eters of the system are set to be those of Section 11-B, and 
the inputs to each of the inertial masses along the inertial 
x axis are 6 = cos(4t) and 6 = - cos(4t) . The initial 
positions of the spheres will be ( - 4, - 4) and ( 4, 4). Because 
e = i· both inputs have equal and out-of-phase contributions 
in both the xb and yb directions. Since IFx I > IFY I for the 
same parameters, the effect of the Fx term will dominate 
in Eq. (13), resulting in attraction of the spheres along the 
x b direction. While this is shown in Fig. 10, we can also 
observe that the spheres do not move directly toward each 
other, instead taking a spiral type of trajectory. This is due to 
nonzero forces on each sphere in the yb direction, given by 
Eq. (14). In addition, F~,l and Fj,2 act in opposite directions 
since the inputs are out of phase. 

IV. CONCLUSIONS AND FUTURE WORK 

In this work we have introduced a novel control problem 
of using known hydrodynamic interactions between two 
spherical swimmers to produce desired motion. For both 
the cases of motion along and motion perpendicular to the 
line of centers, internal masses are used as an actuation 

mechanism, and we showed that transfer function analysis 
can help in choosing the right frequency or phase of input 
commands for a partially actuated system. Finally, we used 
our approximations for the aforementioned cases to justify a 
full model for general planar locomotion. 

A more complete characterization of locomotive control 
in the single degree-of-freedom cases can be aided by an 
analysis of how the transfer functions depend on parameters 
such as resonant frequency or initial conditions. It would 
also be desirable to examine how the choice of input affects 
behavior such as speed of attraction or repulsion, or tran­
sitions from one behavior to another. For the planar case, 
a formal proof of the negligibility of velocity cross terms 
in the Lagrangian would make the proposed model more 
rigorous. Following this, we would like to further explore 
the implications of having coupled input components in a 
rotating coordinate frame and how this impacts the choice 
of control and achievable behavior. Our last simulation also 
hinted at a rich set of two- and multi-body dynamics that 
may emerge from these systems. 
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