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Abstract— The coupling interactions between two spherical
swimmers in an ideal fluid have known analytic approximations
for certain types of motion. We apply these results to produce
locomotion and coordination through the actuation of internal
masses inside each swimmer. Through control of either both
swimmers or one of them, the latter case taking advantage of
compliance in the passive swimmer, desired motion along the
spheres’ line of centers can be achieved. We subsequently treat
general 2D motion as a superposition of motion components
along and perpendicular to the spheres’ line of centers, leading
to a derivation of a full model of controlled locomotion and
coordination of two spheres in a planar fluid.

I. INTRODUCTION

The swimming locomotion of deformable or rigid bodies
is often difficult to model analytically due to the complexity
of the governing hydrodynamics. For solitary bodies, motion
may be achieved through temporal deformation of the body’s
shape. This “self-propulsion” has been described for various
geometries in both ideal fluids [1]-[3] and viscous incom-
pressible fluids [4]-[6]. Many of these results approximate
locomotion as a result of momentum conservation between
the body and the surrounding fluid, allowing for a generic
derivation of controllability [7]. If a body is unable to deform
its shape, then motion due to momentum exchange can also
occur by varying its internal mass geometry [8].

Alternatively, submerged rigid bodies can be induced to
move due to external interactions with the surrounding fluid
or with other bodies nearby. Lamb [9] and Milne-Thomson
[10] provide approximations for the interactions between two
spheres in an ideal fluid when motion is induced either along
or perpendicular to their line of centers. Nair and Kanso [11]
build upon these analyses to explore the coupling between
generic rigid bodies along a common axis, including motion
coordination between a fixed and a free body.

In this work we combine various aspects of the cited works
to develop a general planar model for actuated locomotion
of two rigid spheres in an ideal fluid. Like the analysis of
Kozlov and Onishchenko [8], the spheres move in response to
variation in internal mass distribution. We use the results of
Lamb [9] and Milne-Thomson [10] to derive an approximate,
analytic form of a multi-body Lagrangian. Unlike Nair and
Kanso [11], we can accommodate free bodies as well as
motion that is not along a common axis. We mainly consider
periodic actuation of these bodies, wherein movement of the
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Fig. 1: Two spherical swimmers, each with an internal mass.
The swimmers can move along the inertial x axis, with
positions given by x; and s, as can the internal masses,
with positions &; and £» from the respective sphere centers.

bodies’ internal masses is constrained by linear springs. This
feature allows us to study aspects of submerged mass-spring
systems, such as passive locomotion [12] and synchroniza-
tion [13], [14], in the context of coupled rigid bodies.

The organization of the rest of this paper is as follows.
The following section will review the solution of spheres
oscillating along the line of centers and introduce the actua-
tion mechanism of using controlled internal masses in each
sphere. We use transfer function analysis to show that only
one input is actually necessary for both spheres to move in
a desired way, with the passive sphere simply reacting to
an external propulsion. The next section then summarizes an
analogous derivation for perpendicular oscillations, followed
by a derivation of the full planar locomotion model as a
superposition of the previous two.

II. SPHERICAL SWIMMERS MOVING ON A LINE

A. Hollow Spheres Model

The locomotion of two spheres moving either toward or
away from each other along their line of centers can be
described using the Lagrangian method. The derivation is
done in detail by Lamb [9] and Milne-Thomson [10]; here,
we briefly summarize the key points and explicitly show the
order of the Lagrangian used in derivations in the rest of the
paper. We first deal with the spheres without internal masses,
as the latter contributions can be added later on.

As shown in Fig. 1, the positions of the spheres with
respect to an inertial frame are given by (z1,0) and (x2,0),
their radii are R, and R», and their masses m; and ms. The
surrounding fluid has density p. We consider the velocity
potential ¢; of the fluid, which must everywhere satisfy
Laplace’s equation, V241 = 0. The boundary conditions are
that the fluid is at rest infinitely far away from the spheres,
while the motion of the spheres leads to a flux condition on



the bodies’ surfaces. The latter takes the form
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where —%“:Tl is the flux going into each of the sphere
surfaces. The coefficient in front of &; is such that the flux
is greatest along the line of the spheres’ motion and zero
where the spherical surface tangent is parallel to it.

A solution can be obtained for ¢; in the form of an infinite
series using the method of image doublets [9], [10]. The
kinetic energy of the fluid is then given by the integration
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over the surfaces of each sphere, denoted by S; and S». The
idea here is that —% is the normal fluid velocity into each
sphere, and p¢; is an impulse that generates the motion.
Integrating their product over both of the sphere surfaces
then gives us the total kinetic energy from their motion.

As previously mentioned, the full form of ¢; is that of an
infinite series whose higher-order terms can be effectively
ignored, since the two spheres cannot approach arbitrarily
close to each other due to their finite radii. An analytical
form for the kinetic energy can be written as

&y, =12, (1)
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where M, are the effective masses of each swimmer and N is
a cross-coupling term between the two. Written up to order
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For the simulations that we perform, higher-order terms are
negligible even when the spheres are adjacent to each other.
The relative contributions of these terms can be computed for
different model parameters, but this truncation is generally
sufficient when the two spheres are of similar size.

By deriving the Euler-Lagrange equations from Eq. (3),
one can find the forces acting on each swimmer due to
the motion of both. In particular, Lamb [9] notes the result
of each sphere making small oscillations about their initial
position along their line of centers. Assuming the same
frequency for @, and @9, the mean value of the second-order
terms in the Lagrange equations will be 0, and the average
forces acting on the spheres are opposite with magnitude
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where [£12] is the mean value of dq9. If the phase offset
between the two velocities is less than a quarter period, then
[#1d:2] is positive and the spheres experience repulsion from
each another; otherwise, the spheres experience an attractive
force toward each other. Although the magnitude of F, varies
inversely with the spheres’ distances from each other, we
need not worry about [F, becoming unbounded since we
assume finite, rigid radii for both spheres.
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Fig. 2: The attraction of two spheres in response to out-of-
phase perturbations of their internal masses. Solid trajectories
x;(t) are computed via the full equations of motion; the
dashed #;(t) are a sum of individual and coupled approx-
imations.

B. Adding Internal Masses

We now consider the presence of a small mass inside each
sphere, each of which can move along the line of centers as
an actuation mechanism for the spheres. Each sphere will
also move along this axis as a result. If the masses inside
swimmer 1 and swimmer 2 are p; and po, respectively, and
their configurations measured from their respective sphere
centers are & and £, then their kinetic energy is
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The total kinetic energy of the system is then T, + T¢,
and by going through the derivation of the Euler-Lagrange
equations as before, we can obtain the updated equations of
motion and description of forces on the spheres. In particular,
exciting &; and & with periodic oscillations ensures that
the force contributions from 7¢ have a mean value of 0,
so Eq. (4) acting on the spheres remains unchanged.

If we assume that we have direct control over &; and &o,
then this problem can be recast into a principal fiber bundle
formulation [15], [16]. Specifically, we have a base space
B = R? formed by all possible mass configurations (£1,&2)
and a set of fibers R? defined by the positions (x1,72)
over B. In typical locomotion problems, the fibers form a
symmetry group, allowing for reduction of the equations
of motion to a simple mapping between the base and fiber
velocities via a local connection form. In this problem, the
fibers do not exhibit a group symmetry, since the spheres’
effective masses depend on their relative displacement.

In cases in which the spheres are sufficiently far away
from each other, the following approximation of a principal
connection can be made. Momentum conservation dictates
the response of each sphere due to actuation of its own
internal mass, ignoring the presence of the other sphere. This
gives us a constant, diagonal mechanical connection relating
the mass velocities to the sphere’s perturbation velocities as
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Fig. 3: Transfer function response from ; to &5 as a function
of input frequency of &;. The resonant frequency of the mass
&5 is 1 rad/s, close to the frequency of peak phase offset.
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Fig. 4: Same as the previous figure, except with resonant
frequency 3 rad/s. As a result, both the magnitude and phase
response maxima are scaled up and shifted rightward.

A separate coupled response of the spheres’ slow motion
can then be computed by finding [&142] = [#1 %2,y and
integrating Eq. (4). The sum of the two responses, one kine-
matic and one dynamic, approximates that generated by the
full equations of motion derived from Eq. (5). An example
simulation showing the validity of this approximation is
shown in Fig. 2. We set the parameters p = 1, R = Ry = 2,
m; = mg = 0, gy = pe = 5, and command the inputs
&1 = cost, & = cos(t — L),

Our first observation is that because the spheres’ os-
cillations are nearly a half-cycle out of phase with each
other, the forces on each are attractive, verifying Lamb’s
assertion [9]. Furthermore, the trajectories #;(t) obtained
from superimposing the individual and coupled responses of
the spheres follow very closely the actual trajectories x;(t)
from the full equations of motion. They only begin to diverge
around ¢ = 90 as the spheres nearly collide. On the other
hand, if the spheres were actuated so as to repel each other,
this approximation would hold throughout.

C. A Compliant Spring-Loaded Mass

Rather than having control of both spheres, a more chal-
lenging example may be that we can only directly control
one of the masses, while the other sphere moves according
to the known hydrodynamics. Suppose that we can control
the movement of the mass p1, while s can oscillate freely
due to attachment to the center of its sphere via a spring.
This introduces a potential energy Ve = 2ke£2, where ke is
the spring constant. The full system is now described by the
Lagrangian

nyf =T, + Tg - Vg (7)

The role of the spring in the sphere with the compliant mass,
here assumed to be o, is to allow po to continue oscillating
with no direct active input.

To produce any form of desired locomotion, a primary goal
is to be able to produce either attraction or repulsion of the
spheres while only commanding &;. To do this, it is useful
to analyze the transfer function of the sphere velocities as
a function of the input’s frequency. We linearize the Euler-
Lagrange equations derived from L, ¢ in Eq. (7) and obtain
the matrices A and B in

X = AX + B¢,

where X = (ml,xg,fg,:hl,abg,ég) comprise the states and
& is our input. The transfer function from &, to &5 can then
be derived as a function of the frequency of &;.

Figs. 3 and 4 show two instances of Bode response plots of
this transfer function, both using the same parameters from
the simulation of Fig. 2. Fig. 3 is the response with spring
constant £ = 5 N/m; Fig. 4 has spring constant £ = 45 N/m.
The magnitude plots for each show varying but finite levels
of attenuation between the amplitudes of #; and %2, which
is sensible since we only actuate &; directly.

The transfer function is biquadratic second-order in the
form
- N282 + le -+ N[)
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with all constants being positive, so the phase offset be-
tween ©; and @2 is close to O at both low and high input
frequencies. This means that for most inputs, repulsion of
the swimmers is the only result. However, close to the
resonant frequency of the compliant mass we = +/ke/po,
the phase offset can become much greater than 0, allowing
for attractive behavior.

The optimal input frequency can be found numerically or
analytically in terms of maximizing the phase or magnitude
response, and choosing one is mainly a design decision that
will impact the speed at which the swimmers are attracted or
repelled. This analysis will appear in future work. Here we
make a qualitative observation about how the phase response
changes with respect to wg. For small values of wg, such as
that of Fig. 3, the maximal phase may not be able to surpass
- so that it is impossible to produce attraction while only
commanding &;. At the limit of we = 0, po is disconnected
from its encompassing sphere, leaving the latter with no
mechanism to oscillate on its own.

For larger values of we, the peak phase also becomes
larger, allowing for a greater range of inputs that can produce
attraction. However, a practical limitation is that a physical
actuator is bounded in how fast it can operate. As wg — 00,
(o essentially becomes rigidly attached to its sphere, again
removing the oscillatory mechanism.

Finally, this analysis can be combined with that of the
previous subsection to produce desired attractive or repul-
sive forces on the spheres. The input of &; produces a
known oscillatory response in %1, through Eq. (6). We
can obtain the corresponding response of %, through the
preceding transfer function analysis. The resultant forces on
each sphere can then be computed via Eq. (4), which can
subsequently be integrated to find the full system trajectories.
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Fig. 5: Input frequencies to &; are chosen in order to produce
attractive followed by repulsive locomotion of the spheres.
The second plot shows a plot of ; around the transition time
as well as the response of the compliant mass 5.
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An example simulation is shown in Fig. 5. Here we use the
parameters of the system used to derive the transfer function
in Fig. 4, except with p; = 20 to make z; oscillate faster.
Suppose we want the spheres to be first attracted toward and
then later repelled from each other. We thus perturb p; with
two different frequency inputs, the first stage at 3.2 rad/s, and
the second at 2 rad/s. In the first half, &; and &2 are a quarter
cycle out of phase; in the second, they are nearly completely
in phase. As expected, the spheres are first attracted and then
repelled, the latter occurring following a frequency, and thus
phase, change in the input.

ITITI. SPHERICAL SWIMMERS IN THE PLANE

A. Actuation Perpendicular to the Line of Centers

In order to motivate the planar locomotion problem of
two coupled swimmers, we once again consider two hollow
spheres, each now only oscillating along the axis perpen-
dicular to their line of centers. Thus, using the inertial
configuration of Fig. 6, the positions of the spheres are
given by (z1,y1) and (22,y2). In this problem, the velocity
potential ¢, is subject to the boundary conditions
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on the sphere surfaces.

An approximate analytical solution can then be obtained
for ¢2 and subsequently for the kinetic energy 7}, in a
manner similar to that in the preceding section. This is

(m 2, y2)
»

Fig. 6: Two spherical swimmers, each with an internal mass.
Each of the latter can move in the inertial y direction,
described by configurations n; and 72 with respect to the
sphere centers.

provided by Lamb [9] as

Ty (w2 = w0, 01,32) = 5 Mis + Nyt + 5 Mo, )
where A; and M, are the same as in 7, (Eq. 3) and
Ny = %ﬁ Unlike 77, the kinetic energy in this case has
dependencies on all four configuration variables or their
velocities, allowing for planar movement. Because we are
ignoring &, and 5 contributions to the Lagrangian here, this
model is only valid as long as these velocities are sufficiently
small; we consider the full model in the next subsection.

If we derive the Euler-Lagrange equations from 7} and
assume that each sphere makes small oscillations in the y
direction, we find that there is a equal and opposite average
force on the spheres in the x direction with magnitude
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The direction that F}, acts on each of the spheres is opposite
to that of F),. The spheres thus experience attraction when
and g9 are in phase by at least a quarter cycle and repulsion
otherwise. On the other hand, the average forces acting on
the spheres in the y direction are 0, ensuring that the line
of centers does not have net displacement or rotation over
time. The present model assumes that the line of centers
does not move at all, which is approximately true for small
perturbations relative to the inter-sphere distance. However,
this assumption will also be dropped in the next subsection
for a more complete model.

For the actuation mechanism, we again assume the pres-
ence of an internal mass inside each sphere with configura-
tions 7; and 72, each allowed to move in the y direction.
Note that the local mechanical connection relating the mass
velocities to ; and g2 is the same as in Eq. (6), due to
spherical symmetry. If we can command 7; directly and
allow 775 to be passively attached to a spring, then a transfer
function analysis analogous to that in the previous section
gives a range of input frequencies that lead to either attractive
or repulsive locomotion.

Fig. 7 shows a Bode plot of the transfer function of 5 in
response to g; for the parameters p = po = 20, k = 30,
and the rest as previously assigned. Note that we use much
heavier masses and a stiffer spring in order to obtain an
appreciable magnitude response, as it is more difficult to
make the passive mass move when perturbation is in the
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Fig. 7: Transfer function response from 3; to g2 as a function
of input frequency of n;. For most frequencies, the two
spheres move completely out of phase, leading to repulsion
in the z direction.
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Fig. 8: Sphere trajectories starting from initial positions
(—4,0) and (4,0). Small oscillations of sphere 1 produce
a small in-phase response in sphere 2, leading to attraction
of the spheres along the x axis.

orthogonal direction. In contrast to Figs. 3 and 4, the default
behavior is for the spheres to oscillate out of phase in the y
direction, resulting in repulsion in the x direction. Close to
the resonant frequency w, = \/ky/ji2, there is again a range
of input frequencies that will possibly result in the spheres
moving in phase and being attracted to each other.

A parametric plot of the two spheres starting 8 units apart
and subsequently moving toward each other is shown in
Fig. 8. We perturb n; with a frequency of 1.5 rad/s, resulting
in a phase difference of about —0.5 radians. Although the
resultant magnitude of gy, is very small, the phase offset
is sufficiently small enough to generate attraction in the
x direction over time, even though both spheres are only
oscillating in y.

B. General Planar Actuation

For general two-dimensional motion of the spheres, the
velocity potential satisfies both boundary conditions (1) and
(8) on the surfaces of each sphere and ends up as the
superposition ¢ = ¢1 + ¢o due to linearity of Laplace’s
equation. On the other hand, the resultant kinetic energy
is not exactly the sum 7, + T, as this does not account
for energy contributions from the cross terms, such as the
y velocity of sphere 2 associated with an impulse of sphere
1 in the z direction and vice versa. One can verify from ¢
given in Milne-Thomson [10] that they are at least an order
of magnitude smaller than NV, and N,, the cross terms due
to both spheres moving along the same direction. We thus
posit that T, + T, is a reasonable approximation for the total
energy of the system.

With the spheres now possibly accumulating nontrivial
displacement in both inertial planar directions, we do not
assume that the line of centers remains constant. The La-
grangian is thus defined with respect to a frame in which

Fig. 9: Two spherical swimmers whose line of centers is
aligned with a “body frame” {z”, 1"} that has an orientation
0 with respect to the inertial frame. Each sphere has an
internal mass whose configuration is aligned with the inertial
x axis and can be directly actuated.

the coordinate axes rotate with the line of centers as the
spheres move. From Fig. 9, we have that

zh — b = /(w2 —21)2 + (12 — y1)%,
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The total kinetic energy of two spheres undergoing planar
motion is thus given by

T = Tm(xg - m?,xl{,xg) + Ty(»Tg - xlia y?v yg)v (12)

with T, and T}, being defined as in Egs. (3) and (9). This
model reflects the decomposition of the system’s energy due
to motion along and perpendicular to the line of centers,
regardless of the spheres’ orientation with respect to any
inertial frame.

If we assume now that the spheres experience a general
oscillation in any given direction, they experience an average
force depending on the oscillation’s alignment with the line
of centers. Specifically, the average force along the line of
centers will be given by

F£=Fw(mg—TI{,a"li7mg)+Fy(xg—m?,yiyé’), (13)

where F, and F) are defined as in Egs. (4) and (10). In
addition, from the Euler-Lagrange equations for y? there is
now a nonzero force that acts on each sphere perpendicular
to the line of centers when both z® and y® oscillation
components are nonzero (previously, we only assumed one
or the other, allowing us to ignore this force). The average
forces act on the spheres differently and are given by

R3R3
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Since the only difference in each of the above equations is the
last multiplier 32, the y® force of each sphere is effectively
determined by the motion of the other.

The last component of our model is to enable actuation,
again via internal masses inside each sphere. For this prelim-
inary model, we assume a single mass moving along a fixed
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Fig. 10: The trajectories of two spheres, starting at positions
(—4,4) and (4,4), due to actuation both along and perpen-
dicular to their moving line of centers.

axis. If this axis is neither aligned with the line of centers
nor perpendicular to it, motion along it will contribute both
x? and y® components of motion to the sphere. We do note
that because the components are coupled, richer motion may
be achieved adding a second degree of freedom to the mass,
a topic of exploration for future work. Here we assume that
the mass’s single degree of freedom £ is along the inertial x
axis for both spheres, which contributes a kinetic energy

TS = Z %ui ((a:i’ + & cos0)? + (g2 — & sin 9)2) (15)
i=1,2
The total kinetic energy 7° + T/lj thus constitutes the La-
grangian for this planar coupled spheres locomotion problem.
We conclude this section by showing a simple simulation
that verifies the predicted behavior of this model. The param-
eters of the system are set to be those of Section II-B, and
the inputs to each of the inertial masses along the inertial
x axis are & = cos(4t) and & = — cos(4¢). The initial
positions of the spheres will be (—4, —4) and (4,4). Because
0 = 7. both inputs have equal and out-of-phase contributions
in both the 2 and y° directions. Since |F};| > |F}| for the
same parameters, the effect of the F, term will dominate
in Eq. (13), resulting in attraction of the spheres along the
xb direction. While this is shown in Fig. 10, we can also
observe that the spheres do not move directly toward each
other, instead taking a spiral type of trajectory. This is due to
nonzero forces on each sphere in the y° direction, given by
Eq. (14). In addition, F;l and Fé’,z act in opposite directions
since the inputs are out of phase.

IV. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a novel control problem
of using known hydrodynamic interactions between two
spherical swimmers to produce desired motion. For both
the cases of motion along and motion perpendicular to the
line of centers, internal masses are used as an actuation

mechanism, and we showed that transfer function analysis
can help in choosing the right frequency or phase of input
commands for a partially actuated system. Finally, we used
our approximations for the aforementioned cases to justify a
full model for general planar locomotion.

A more complete characterization of locomotive control
in the single degree-of-freedom cases can be aided by an
analysis of how the transfer functions depend on parameters
such as resonant frequency or initial conditions. It would
also be desirable to examine how the choice of input affects
behavior such as speed of attraction or repulsion, or tran-
sitions from one behavior to another. For the planar case,
a formal proof of the negligibility of velocity cross terms
in the Lagrangian would make the proposed model more
rigorous. Following this, we would like to further explore
the implications of having coupled input components in a
rotating coordinate frame and how this impacts the choice
of control and achievable behavior. Our last simulation also
hinted at a rich set of two- and multi-body dynamics that
may emerge from these systems.
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