
Online Set Selection with Fairness and Diversity Constraints

Julia Stoyanovich
∗

Drexel University

Philadelphia, PA

stoyanovich@drexel.edu

Ke Yang

Drexel University

Philadelphia, PA

ky323@drexel.edu

HV Jagadish
†

University of Michigan

Ann Arbor, MI

jag@umich.edu

ABSTRACT
Selection algorithms usually score individual items in isolation,

and then select the top scoring items. However, often there is an

additional diversity objective. Since diversity is a group property,

it does not easily jibe with individual item scoring. In this paper,

we study set selection queries subject to diversity and group

fairness constraints. We develop algorithms for several problem

settings with streaming data, where an online decision must be

made on each item as it is presented. We show through exper-

iments with real and synthetic data that fairness and diversity

can be achieved, usually with modest costs in terms of quality.

Our experimental evaluation leads to several important in-

sights in online set selection. We demonstrate that theoretical

guarantees on solution quality are conservative in real datasets,

and that tuning the length of the score estimation phase leads

to an interesting accuracy-efficiency trade-off. Further, we show

that if a difference in scores is expected between groups, then

these groups must be treated separately during processing. Other-

wise, a solution may be derived that meets diversity constraints,

but that selects lower-scoring members of disadvantaged groups.

1 INTRODUCTION
Diversity is desired in many contexts, ranging from results of

a Web search to admissions at a university. As algorithms are

increasingly used to make decisions, there is growing interest in

algorithms that can produce diverse results. Indeed, fairness and

diversity are central to responsible data science practice [7, 17].

Diversity is a set concept: it makes no sense to talk about

an individual item as being diverse. Fairness is less clearly a

set concept; nevertheless, fairness is often stated with respect

to some comparison standard, usually a group [5, 12, 19]. For

example, in the context of racial discrimination, we frequently

refer to under-represented minorities, which is a set construct,

with fairness requiring proportional representation.

Most algorithmic decision-making is based on the individual:

typically, a score is assigned to an individual item based on its

attributes. However, since fairness and diversity are set concepts,

they can only be guaranteed as part of a set selection procedure.

In this paper, we show how we can guarantee fairness and

diversity in set selection.We begin by developing a simple general

problem statement in Section 2, to maximize utility subject to a

set of diversity constraints. We show that our problem formulation

covers a wide range of fairness and diversity requirements. We

then solve this problem in two settings. In Section 3, we present

a baseline algorithm that make the assumption that all items are

available before any selections have to bemade. Then, in Section 4

∗
This work was supported in part by NSF Grants No. 1741047 and 1464327.

†
This work was supported in part by NSF Grants No. 1250880 and 1741022.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

we develop algorithms that decide whether to accept, reject or

defer an item in an online manner, as the items are presented. We

refer to this variant as the Diverse K-choice Secretary Problem.

Algorithms of Section 4 constitute the main technical contri-

bution of this paper. These algorithms build upon a rich body of

work on the Secretary Problem [8, 11, 14] — selecting the max-

imum element in a randomly-ordered sequence of N elements,

and on its K-choice variant — selecting K elements out of N [4].

In Section 5, we show experimentally that the online algo-

rithms of Section 4 produce solutions that both meet the diversity

requirements and are very close to the baseline algorithm of Sec-

tion 3 in terms of utility. Further, we demonstrate that theoretical

guarantees on solution quality of online algorithms are conser-

vative on real datasets. These algorithms start by observing the

scores of the items in the stream without accepting any items, to

develop a quality estimate; this is known as the warm-up period.

We show that an interesting quality-efficiency trade-off can be

achieved by tuning the length of the warm-up period. Finally, we

show that if a difference in scores is expected between groups,

then these groups must be treated separately during processing.

Otherwise, a solution may be derived that meets diversity con-

straints, but that results in selecting lower-scoring members of

historically disadvantaged groups.

We discuss related work in Section 6 and conclude in Section 7.

2 PROBLEM DEFINITION
The basic problem setting is that we have a set of items, each with

associated attributes. From this set, we wish to select K items to

maximize a utility score (to be defined below) subject to diversity

constraints (also to be defined below). The items in the set may

be presented to us together or one at a time.

We obtain the utility score for a set of K selected items as the

sum of scores of each individual selected item. The score of an
item may be pre-computed and stored as a physical attribute, or

it may be computed on the fly, and possibly even be obtained

as the result of an expensive scoring algorithm. In all cases, all

we require is that we eventually have a single scalar score value

for each item. The score is sometimes called the utility score or
utility value in the literature.

The basic top-k problem is to choose K items with the highest

score. That is, for any item j in the top-k , and any other item

q not in the top-k , we have sj ≥ sq , where sq is the score of

item q. This is equivalent to saying we choose K ≥ 0 items such

that ∀k ∈ [0,K][arдminj ∈[0,K](sj)] is maximized. This is further

equivalent to saying

∑
j ∈[0,K] sj is maximized. We will use this

last definition, since with added diversity constraints these three

definitions are no longer equivalent, and the first two may not

be appropriate.

Having described the utility maximization problem above, let

us now turn to fairness and diversity constraints. Among the

attributes associated with items, we assume that one discrete-

valued attribute is of particular concern. We call this the sensitive

Series ISSN: 2367-2005 241 10.5441/002/edbt.2018.22

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.22

attribute. Our notions of fairness and diversity are defined with

respect to the value of this sensitive attribute.

In practice, there may be multiple sensitive attributes, rather

than just one. In this case, we could consider each independently,

by making minor appropriate modifications to all statements

below. If combinations of multiple attributes are of concern, or

if dependencies between the sensitive attributes need to be cap-

tured explicitly, we could represent such combinations as a single

(Cartesian product) attribute of concern. For example, if both

race ∈ {W ,B,H } and gender ∈ {M, F } are sensitive attributes,
we could combine these into a single attribute of cardinality 6.

If a sensitive attribute is not discrete-valued, or takes on too

many discrete values, then we can bucketize the attribute value

into a finite number of discrete buckets. Attributes such as age

and salary are often treated this way in practice for many ap-

plications. In fact, sensitive attributes may also have associated

privacy concerns, and so may need to be converted to noisy

histograms, e.g., to enforce differential privacy.

We further assume that the dataset is partitioned on the value

of the sensitive attribute. That is, each item is associated with

exactly one value of the sensitive attribute. For example, a person

of mixed race should not be listed as having both White and

Black as values for the race attribute: rather this value should be

set to an appropriate single value, such as "White-Black-Mixed".

Let there be d distinct values of the sensitive attribute. Our
requirement is to choose ki elements for each distinct value
i ∈ [1...d], with each ki ∈ [0,K], and ∑

i ki = K . Of course,
this begs the question of what the ki values should be. We next
consider several notions of fairness and diversity and show how

to capture these within this framework.

Fairness by proportional representation (of values of the sensitive

attribute). Suppose that the number of items N is known, as is
the number of items ni in each sensitive category i ∈ [1...d].
Then, proportional representation requires that the desired size

K of the selected set be prorated among the d categories. That
is ki = K ∗ ni/N . We call the right hand side of this equation
proportioni , for convenience.
A difficulty we run into is that ki must be an integer: an item

in some category is either selected or it is not. Thus, fractional

values do not make sense, yetproportioni is not always an integer.
We can round proportioni to the nearest integer to determine
eachki , hoping to returnK items in total. But wemay end upwith
rounding errors resulting in violation of

∑
i ki = K . To avoid this,

it is reasonable to provide some flexibility in choosing the value of

each ki , using the formula �proportioni � ≤ ki ≤ �proportioni 	,
where �.� is the floor function and �.	 is the ceiling function.
Even weaker constraints are often acceptable in practice. For

example, in a class of 821 students, and with a binary assignment

of the gender attribute, we may desire to see 410 students of one

gender and 411 of the other. However, it is unlikely that an insti-

tution would be accused of discrimination if they admitted 407

women and 414 men. Generally, it is acceptable to set thresholds

on the relative representation of different categories. This idea is

a generalization of the 80% rule of disparate impact [10].

Another potentially appropriate fairness metric is the normal-

ized difference: the mean difference normalized by the rate of pos-

itive outcomes, which in our case corresponds to being selected

among the top-k . Another is the elift ratio: the ratio of positive
outcomes for the historically disadvantaged demographic group

over the general group. A ratio of 1 indicates no discrimination,

while a ratio below 0.8 has been construed as discrimination by

US courts. These and other proportional representation metrics

can be found in a recent survey by Zliobaite [19].

Coverage-based diversity. A popular measure of diversity is

coverage [7]: is there representation for every category in the

selected set? Whether this is possible depends on how K , the
number of items selected in total, compares to d , the number
of categories of items. If d ≥ K , then each ki ≤ 1. We cannot
get full coverage, but by not choosing 2 from any category, we

make sure to include a representative from as many categories as

possible. If d ≤ K , then each ki ≥ 1. Since K is large enough in
this case, we can have multiple items from each category as long

as we make sure that we have at least one from each category.

To avoid “tokenism” — selecting a single representative of

each category, we may want to specify coverage diversity in

terms of a larger minimum number per category. For example,

we may require that there be at least 5 members of each race in

the selected set. Such a choice would typically be made only if

5d ≤ K , and our requirement becomes that each ki ≥ 5.
Summarizing the scenarios considered above, we can state

the specific diversity or proportionality constraint of interest

as f loori ≤ ki ≤ ceili , where f loori and ceili are integers that
are determined, for each i , based on the particular constraint
of interest. This formulation allows us to treat combinations of

sensitive attributes (represented by a single Cartesian product

attribute) in a way that captures attribute dependencies. For

example, we can derive the constraint for the number of female

candidates of a minority race to be higher or a lower than what

would result from proportionf emale × proportionminor ity .

The general statement of our problem is as follows:

Diverse Set Selection Problem Statement: Given N items,

each with an associated utility score and an identified sensitive

attribute, for each value i of the sensitive attribute, choose ki
items such that the summation utility of the selected set is max-

imized, subject to f loori ≤ ki ≤ ceili and subject to Σiki = K .
The f loori and ceili values depend on the specific constraint to
be applied. These values are computed prior to the optimization

problem, and are assumed to be given.

All N items may be given together; we call this the static case
and study it in Section 3. Alternatively, the items may arrive one

at a time; we call this the online case and study it in Section 4.

The standard cost-metric in the top-k problem is the number
of items examined: ideally, this should be much less than N . We
carry over this metric to our problem domain as well. This metric,

which we call walking distance (it is sometimes called depth in

the top-k literature), is a simple surrogate for the incurred CPU
cost, and has the advantage of being independent of the imple-

mentation and of the execution environment. We will discuss in

Section 4 that walking distance relates to solution utility in the

online case, and so is more informative than wall-clock time.

Another standard top-k costmetric is buffer size: the in-memory
storage cost for running the algorithm. We do not present ex-

perimental results on buffer size, but note that all algorithms

proposed here use buffers of constant size, under the assumption

that K and
∑
i ceili are constants.

Finally, as we shall see when we get to the online algorithms,

we cannot always get the best answer if we are required to decide

for each item on the spot. An accuracy metric we develop will

reflect how close the online solution comes to the true optimum.

We note that this optimum is the best we can do subject to the

a db c e h

8 7 3 24 1

f ig j k l

9 6 5 5 2 1

Figure 1: An illustration of the static scenario. N = 12

items, labeled a through l, belong to one of two classes,

blue and red. The goal is to select K = 3 items subject to

1 ≤ kblue ≤ 2 and 1 ≤ kr ed ≤ 2. Items arrive in score-sorted

order, with scores ranging from 9 down to 1.

diversity or fairness constraints: a higher score may be possible

without these constraints. We describe all metrics in Section 5.3.

3 THE STATIC PROBLEM

In this section, we solve the problem for the case when we have

access to all items. We call this the static case. In the next section,

we will turn to the online (streaming) case.

In the traditional set up for the top-k problem with multi-
attribute criteria, the problem setting assumes that we have items

sorted by attributes of interest, with our ranking criterion being

some monotone aggregation function of these attribute values

(e.g., weighted sum). We proceed down the sorted list(s), stopping

when we can predict that an unseen item cannot possibly be

included in the selected set [9].

In our problem setting, item scores are precomputed, and so

we consume a single list of items, sorted by decreasing score. But

we have a more complex selection criterion: Diversity constrains

each ki , the number of items with a value i for the sensitive
attribute, to f loori ≤ ki ≤ ceili .
Recall that d is the number of distinct values of the sensitive at-

tribute. Let us define required = Σdi=1 f loori . For our set of floor
and ceiling constraints to be feasible, we must have required ≤ K .
The difference K − required = slack , represents the total slack
that we have to choose items after all floor constraints are satis-

fied. To return a set of items with the highest utility (total score),

we are best off filling the slack with items of highest utility, un-

constrained by sensitive attribute value, as long as the number

of items per category does not exceed the respective ceiling con-

straint. We use this observation in Algorithm 1. We illustrate the

algorithm with an example.

Example 3.1. Consider the score-sorted list of items in Figure 1.

N = 12 items are partitioned into d = 2 categories (blue and
red), with 6 items per category. The goal is to select K = 3 items,
with between 1 and 2 items per category. That is, f loorr ed =
f loorblue = 1 and ceilr ed = ceilblue = 2.
We process items in order, left-to-right. At step 1, blue item a

is accepted to meet the f loorblue constraint. Among the remain-
ing 2 items that will be accepted, one must be red, to meet the

f loorr ed constraint, and the other can be of either color. At step
2, blue item b is encountered and accepted. At this point, only one

item remains to be accepted, and it must be red. At step 3, blue

item c is skipped. Finally, at step 4, red item d is accepted, meeting

the f loorr ed constraint, and selecting the required K = 3 items.
The algorithm terminates after consuming 4 items.

Let us now consider the pseudocode of Algorithm 1. As il-

lustrated in Example 3.1, the algorithm accepts an item if the

floor constraint of its category has not been met (line 7), or if

the ceiling constraint of its category has not been met and some

Algorithm 1 Diverse top-k selection from a sorted list.

Require: List of items I sorted by score,
number of items to select K , number of categories d ,
constraints f loori ≤ ki ≤ ceili for each i ∈ [1 . . .d].
{Initialize the output list L.}

1: L = ∅
{Initialize the counts of per-category selected items C .}

2: C = [k1 = 0, . . . ,kd = 0]
{Compute the slack value s .}

3: slack = K −∑d
i=1 f loori

4: while |L| < K do

5: x = дetNextItem(I)
6: i = cateдory(x)
7: if ki < f loori then
8: L ← x
9: ki = ki + 1
10: else if (ki < ceili) ∧ (slack > 0) then
11: L ← x
12: ki = ki + 1
13: slack = slack − 1
14: end if

15: end while

16: return L

slack remains (line 10). Algorithm 1 terminates once K items are
selected.

In general, we only have inequality constraints on each of the

ki values. However, note that in the special case that for each i ,
f loori = ceili , we have the value of eachki determined exactly. In
this case, once the floor constraints are met for each category, we

will have selected K items in total, since K =
∑
i ki =

∑
i f loori .

Algorithm 1 never examines any item with score lower than

the smallest score included in the selected set. In this sense, the

number of items examined is optimal — there is no way to ex-

amine fewer items if we proceed strictly in score order. This

optimality result holds even though the worst case number of

items examined is still N .
Besides the computational cost, we have one additional im-

portant notion of goodness to consider: that of the utility score.

It is straightforward to establish the following Theorem.

Theorem 3.2. Algorithm 1 produces a solution that has the

highest possible utility score, subject to the given constraints.

Even though Algorithm 1 is optimal, subject to the diversity

constraints, in general it will return K items with the combined
utility score that is lower than would be possible in the absence

of these constraints. This cost of diversity was illustrated in

Example 3.1: we skipped item c although accepting it would

maximize utility, but would result in selecting all items from

the same category, blue. We will quantify the cost of diversity

experimentally in Section 5 (Figure 7).

4 THE ONLINE PROBLEM

In practice, even though a set has to be selected, not all items in

the set may be available for evaluation at once. Rather, they may

appear one at a time, with a decision to be made on the specific

item instantaneously. For example, we may wish to hire a diverse

set of employees. However, each hiring decision may have to be

made individually on each job applicant when the job application

arrives. The order of arrival of applications is not, in general,

determined by the quality of the applicants. More generally, we

have to classify each individual item, as presented, into one of

two buckets: “selected” or “not selected,” subject to the utility

and diversity criteria in our problem statement, for the selected

set. Such situations motivate us to consider an online scenario,

which is sometimes referred to as streaming.

Returning to the hiring example, we note that, while the qual-

ity of an applicant may be unknown ahead of the job interview,

it is reasonable to assume that the number of applicants, both

over-all and in each demographic category (e.g., by race, gender

or some other sensitive attribute) can be known ahead of time,

because these properties are declared by the applicants. The clas-

sic Secretary Problem and its variants, described next, and our

proposed solution presented in the remainder of this section, rely

on this information.

4.1 Background and Problem Statement

The problem of designing an online algorithm to optimize the

probability of selecting the maximum element in a randomly-

ordered sequence has been studied extensively [8, 11, 14], and is

traditionally known as the Secretary Problem. In this problem,

the goal is to hire one secretary from a pool of N candidates,
where N is known, and candidates arrive in random order. When
a candidate is interviewed, the decision must be made to hire

or reject the candidate, and this decision is irreversible. It was

shown by Lindley [14] and by Dynkin [8] that the optimal hiring

strategy is to interview m = � Ne � candidates without making
any offers (this is called the warm-up period), and make an offer

to the first candidate who is better than the best of the firstm
candidates (or accept the last candidate if no better candidate is

seen). This strategy yields the best candidate with probability 1e ,

and is said to have competitive ratio e . Further, this is the best
such strategy for the Secretary Problem, i.e., with the highest

competitive ratio [11].

A generalization of the Secretary Problem called the K-choice
Secretary Problem is stated as follows: design an online algo-

rithm for picking K out of N non-negative numbers presented in
random order, to maximize their expected sum. While a straight-

forward extension of the Secretary Problem is natural here (with

the same length of warm-up, � Ne �, remembering the scores of
the K highest-scoring candidates), the exact optimal competitive
ratio for this problem is not known for K > 1. This quantity

is known to lie between 1 + c
√
k and 1 +C

√
k for some pair of

constants c < C [3].
Another interesting variant is the Poset Secretary Problem: If

the elements of the permutation (candidates) are only partially

ordered, how to maximize the probability of returning a maximal

element in the poset? The incomparable elements present the

main challenge: many simple modifications of the total order

algorithm to handle incomparable elements were shown to have

vanishing success probabilities [13].

In this section, we state, and then present a solution to, the

online variant of the Diverse Set Selection Problem of Section 2:

Diverse K-choice Secretary Problem Statement: Design

an online algorithm for picking K out of N items, each with an
associated non-negative utility score and an identified sensitive

attribute, presented in random order. Select items to maximize

their expected sum, subject to diversity constraints of the form

f loori ≤ ki ≤ ceili for each value i of the sensitive attribute, and
subject to Σiki = K .

a b c d e f

6 1 3 2 9 7

g h i j k l

4 8 2 1 5 5

Figure 2: An illustration of the online scenario. N = 12
items belong to one of two classes: blue and red, with

nblue = nr ed = 6. The goal is to select K = 3 items subject

to 1 ≤ kblue ≤ 2 and 1 ≤ kr ed ≤ 2.

4.2 Online Algorithm

We now present Algorithm 2 that solves the Diverse K-choice
Secretary Problem. The basic idea of this algorithm is to solve d
K-choice Secretary Problems [4] in parallel, one for each category,
to satisfy the per-category f loor constraints. But that in itself is
not enough: we also have to run a category-insensitive K-choice
Secretary algorithm to select the remaining items, subject to

ceilinд constraints.
Algorithm 2 relies on the estimates of the number of items

per category in the stream (ni represents the estimate of the
number of items from category i), and guarantees that diver-
sity constraints are met if these estimates are accurate. We now

illustrate Algorithm 2 with an example.

Example 4.1. Consider the stream of items in Figure 2. N = 12
items are partitioned into d = 2 categories, with 6 items per
category: nr ed = nblue = 6. Like in Example 3.1, the goal is to
select K = 3 items subject to 1 ≤ kblue ≤ 2 and 1 ≤ kr ed ≤ 2. In
contrast to Example 3.1, items arrive in random order.

To start, we compute the lengths of the per-category warm-up

periods: rblue = � nbluee � = 2 and rr ed = � nr ede � = 2. There-
fore, we will consider, and discard, 2 items in each category

before accepting any items in that category. As we consider the

warm-up items, we record f loorblue = 1 highest blue item score,
and f loorr ed = 1 highest red item score in the respective per-
category threshold heaps Tr ed and Tblue .
Similarly, we compute the length of the category-independent

warm-up period r = � Ne � = 4. The number of items we will
accept irrespective of their category membership corresponds to

the difference betweenK and the sum of the floor constraints, and
is 1 in our example. (We called this quantity slack in Algorithm 1.)
Therefore, we will record the score of the highest-scoring item

(of any category) among the first r = 4 items in the threshold
heap T , setting T = {8} (the score of item d).

The warm-up period for the blue category will terminate at

step 3, after items a and c are considered, with Tblue = {6}. At
step 4, a blue item d is encountered, with score 8, higher than

дetMinElement(Tblue) = 6, and this item is accepted.
The warm-up period for the red category will terminate at

step 5, after items b and e are considered, with Tr ed = {4} (score
of b). We will reject the next red item, g, because its score is

lower than дetMinElement(Tr ed), and will accept the following
red item i at step 9 to satisfy f loorr ed .
We are also looking to accept an item with a score higher than

дetMinElement(T) = 8 from any category, as long as its ceiling
constraint is not exceeded. However, because i (score 9) was

used to satisfy f loorr ed , which takes precedence, no such item
is encountered. To return K items, we must accept the last item
in the stream, l with score 5.

We terminate with the output {d, i, l}, with utility 8+9+5 = 22.
This is only slightly lower than the best possible utility of 24.

Algorithm 2 Diverse K-choice Secretary Algorithm

Require: Stream of items I , total number of items to select K ,
input size N , number of categories d , constraints f loori ≤
ki ≤ ceili and number of items per category ni for i ∈
[1 . . .d].
{Initialize the output list L.}

1: L = ∅
{Initialize the array of counts of per-category selected items

C .}
2: C = [k1 = 0, . . . ,kd = 0]
{Initialize counts of per-category seen itemsM .}

3: M = [m1 = 0,,md = 0]
{Compute the length of per-category warm-up.}

4: R = [r1 = ⌊ n1

e ⌋, . . . , rd = ⌊
nd
e ⌋]

{Initialize d MinHeaps, one per category, T1 . . .Td .}
5: for i=1. . . d do
6: Ti = MinHeap(f loori)
7: end for
8: slack = K −∑d

i=1 f loori
{Compute the length of category-independent warm-up.}

9: r = ⌊ Ne ⌋
{Initialize a category-independent heap T .}

10: T = MinHeap(slack)
11: while |L| < K do
12: x = дetNextItem(I)
13: i = cateдory(x)
14: if

∑
imi < r then

15: T
offer←−−−− x

16: end if
17: if mi < ri then

18: Ti
offer←−−−− x

19: else if ((ki < f loori)∧(score(x) > дetMinElement(Ti))∨
(ni −mi == f loori − ki) then

20: deleteMinElement(Ti)
21: L← x
22: ki = ki + 1
23: else if (∑imi ≥ r) ∧ (score(x) > дetMinElement(T) ∧

(ki < ceili) ∧ (slack > 0)) then
24: deleteMinElement(T)
25: L← x
26: ki = ki + 1
27: slack = slack − 1
28: else if (ki < ceili) ∧ (numFeasibleItems() == K − |L|)

then
29: L← x
30: ki = ki + 1
31: slack = slack − 1
32: end if
33: mi =mi + 1

34: end while
35: return L

In Example 4.1, we happen to satisfy both floor constraints (at

steps 4 and 9) before accepting a category-independent item at

the end of the stream. Note, however, that this may not be the

case in general. For example, we could have accepted a blue item

with a score higher than 8, had one been encountered at steps 5,

6, 7, or 8 — any time after f loorblue is met.

Processing of item d in Example 4.1 illustrates that different

streams (per-category and category-independent) are consumed

in parallel: d is part of the category independent warm-up (where

it is discarded but its score is recorded in T), and it is also part

of the post-warm-up stream for the blue category, where it is

accepted, since its score exceeds дetMinElement(Tblue).
Let us now consider the pseudocode for Algorithm 2. The

algorithm uses a MinHeap data structure to keep track of the

top-K elements seen thus far. We need one for each category

(denotedTi and initialized on line 6 with capacity f loori), and an
additional one for the extra elements after the floor constraints

have been met (denotedT and initialized on line 10 with capacity

slack). Each per-category heap Ti stores the best f loori scores
seen among the first ri items of category i . If f loori > ri , then
Ti will store the first f loori elements observed, together with

f loori − ri elements of value −1. Heap T is initialized similarly,

storing the best slack scores seen among the first r = ⌊ Ne ⌋ items,

irrespective of category.

During the warm-up period, an item x is not accepted (not

added to L) irrespective of its score, but rather is offered to

the relevant per-category heap (on line 18) or to the category-

independent heap (on line 15). Note that the same item x may be

offered to its per-category heap and to the category-independent

heap during warm-up.

An item of category i is added to the output after the warm-up

period if f loori is not yet satisfied and either (a) the item has a

sufficiently high score or (b) we are at the end of the stream for

category i (line 19). The latter condition is evaluated by compar-

ing the number of items remaining in the stream (ni −mi) to the

number of items still required for i (f loori − ki).
An item is also added to the output if its score is sufficiently

high according to the category-independent estimate and there

is sufficient slack to meet all outstanding floor constraints (line

24). Note that Algorithm 2 uses the slack mechanism in a similar

way as Algorithm 1.

Finally, an item is added to the output if it is feasible: accepting
it would not violate the ceiling constraint for its category, and if

exactly K − |L| feasible items remain in the input. We compute

the number of feasible items (line 28) as a sum of nj −mj (the

number of items that remain on the stream in category j) over
all feasible categories (those in which ceilj − kj > 0).

This final set of conditions (line 28) is required to ensure that

exactly K items are returned by Algorithm 2. Asserting that

exactly K − |L| feasible items remain in I relies on the estimates

of the number of items in each category.

Optimality. Algorithm 2 specifies per-category lengths of the

warm-up period on line 4. What is the competitive ratio of this

algorithm? To reason about this, let us first consider theK-choice
Secretary Problem, a generalization of the Secretary Problem

where K ≥ 1 rather than 1 item is to be chosen in an online

manner. Recall from Section 4.1 that, when K = 1, the optimal

competitive ratio is e , and it is achieved with a warm-up period of

length ⌊ Ne ⌋ [8, 14]. For K > 1, it is known that competitive ratio

is no worse than e under the same warm-up period length [4],

but the optimal competitive ratio is not known [3].

Our problem setting, and its solution presented in Algorithm 2,

differ from the generalized K-choice Secretary Problem in that

we are receiving items from multiple distinct categories. Algo-

rithm 2 treats items that belong to different categories as different

sub-streams of a common stream, and is guaranteed to have a

competitive ratio no less than e for selecting f loori items in each

category, by an immediate application of the result of Babaioff et

al. [4]. The remaining slack items are selected from the common

245

stream (subject to floor and ceiling constraints), and will have a

competitive ratio no less than e (subject to the same constraints).

We will empirically compare the quality of the result returned

by Algorithm 2 to that of the static algorithms of Section 3 in

Section 5.4. We will also consider the impact of warm-up period

length on accuracy in that section.

Impact of per-category warm-up on utility. An important point

to note is that, by estimating scores on a per-category basis

rather than for the entire set of items at once, Algorithm 2 ac-

commodates the case when score is not independent of category

membership. Consider an example in which there are two cat-

egories A and B, and where, for all pairs of items a ∈ A,b ∈
B, score(a) < score(b). Suppose further that a and b occur in

the input in approximately equal proportion. Then, if a com-

mon heap T of size K is maintained for both categories during

warm-up (with K < ⌊ Ne ⌋),T will contain scores of some K items

from B, and so it will be the case that, at any point in time,

∀a ∈ A,дetMinElement(T) > score(a). As a result, an online al-

gorithm will accept a subset of B with a high combined score, and

it will accept f loorA items from A that appear at the end of the

stream. This represents the worst case for category A in terms of

utility. We validate this claim experimentally in Section 5.4.

4.3 Online Algorithm with a Deferred List
In a true on-line setting, a decision must be made whether to

accept or to reject an item once it is seen. In practice, it may be

acceptable to keep a waiting list of modest size. For example,

college admissions work this way.

We now introduce Algorithm 3, an optimized version of Algo-

rithm 2 that will often return a set of K items of higher utility,

subject to diversity constraints. This is accomplished by intro-

ducing per-category deferred lists Di of bounded size. We now

give an intuition behind this algorithm using an example.

Example 4.2. Consider again the stream of items in Figure 2.

N = 12 items are partitioned into d = 2 categories, with 6 items

per category: nr ed = nblue = 6, and arrive in random order.

The goal is to select K = 3 items subject to 1 ≤ kblue ≤ 2 and

1 ≤ kr ed ≤ 2. We now highlight the differences in the processing

of this input when a deferred list is allowed, as compared to that

of Example 4.1 (Algorithm 2).

We conduct a warm-up period of length 2 for each category,

storing f loorblue = f loorr ed = 1 highest score in each Tblue =
{6} andTr ed = {4}. In contrast to Example 4.1, we do not conduct

a category-independent warm-up period (there is no T).
Also in contrast to Example 4.1, items encountered during the

warm-up period are not immediately discarded, but rather are

placed into per-category deferred lists Dblue and Dr ed , which

maintain up to ceilblue = 2 and ceilr ed = 2 items, respectively.

Even beyond the warm-up period, we consider the scores of all

encountered items, and always keep 2 best items of the appro-

priate category seen so far in each Dblue and Dr ed . Note that

Dblue and Dr ed are MinHeaps, which we denote by sorting the

elements in the order of increasing score.

In our example, Dblue = {c, a} at step 3 (end of warm-up

for blue), Dblue = {a, d} at step 4 (d has a higher score than c
and replaces c), and Dr ed = {e, b} at step 5 (end of warm-up

for red). We continue processing until a sufficient number of

items post the warm-up period is seen (1 post-warm up item

in each category in our example) and once there are at least K
items in the union of deferred lists. We continuously update the

Algorithm 3 Diverse K-choice Secretary Algorithm with a de-

ferred list

Require: Stream of items I , total number of items to select K ,
input size N , number of categories d , constraints f loori ≤
ki ≤ ceili and number of items per category ni for i ∈
[1 . . .d].
{Initialize the output list L.}

1: L = ∅
{Initialize i deferred lists Di of capacity ceili for each cate-

gory.}

2: for i=1. . . d do
3: Di = MinHeap(ceili)
4: end for
{Initialize the list of counts of per-category selected items C .}

5: C = [k1 = 0, . . . ,kd = 0]
{Initialize the list of counts of per-category seen itemsM .}

6: M = [m1 = 0,,md = 0]
{Compute the length of per-category warm-up.}

7: R = [r1 = ⌊ n1

e ⌋, . . . , rd = ⌊
nd
e ⌋]

{Initialize d MinHeaps, one per category, T1 . . .Td .}
8: for i=1. . . d do
9: Ti = MinHeap(f loori)
10: end for

{Initialize the number of unsatisfied categories u.}

11: u = d −∑d
i=1 1[f loori == 0]

{Initialize the total number of deferred items w (for “wait-

ing”).}

12: w = 0

13: while (u > 0) ∨ (w < K) do
14: x = дetNextItem(I)
15: i = cateдory(x)
16: if mi < ri then

17: Ti
offer←−−−− x

18: else if (ki < ceili)∧(score(x) > дetMinElement(Ti) then
19: ki = ki + 1
20: deleteMinElement(Ti)
21: if (f loori > 0) ∧ (ki == f loori) then
22: u = u − 1
23: end if
24: end if
25: Di

offer←−−−− x
26: mi =mi + 1

27: w =
∑
i |Di |

28: end while
29: W = MaxHeap(w)
30: W ← ⋃

i Di
31: Invoke Algorithm 1 onW (sorted by score), compute L.
32: return L

per-category deferred lists as we process, evicting lower-scoring

items and keeping 2 highest-scoring items in each category.

In our example, the algorithm terminates after step 9 (item

i), with Dblue = {a,d} and Dr ed = {b, i}. The union of these

lists is then passed to Algorithm 1, which returns {a,d, i}, with
combined utility 23. Per Example 4.1, this utility is 1 point higher

than of executing Algorithm 2 on this input.

We will illustrate experimentally in Section 5.4 that Algo-

rithm 3 usually returns a set of K items of higher utility than

Algorithm 2. Note, however, that Algorithm 3 may sometimes

246

return items of lower combined utility, because it may terminate

sooner than Algorithm 2.

We now describe Algorithm 3 in detail. To start, set u (unsat-

isfied) to the number of categories with f loori > 0. Add the first

ceili items to Di irrespective of their score, then maintain no

more than ceili items in Di , replacing the lowest-scoring item

y ∈ Di with item x if score(y) < score(x).
A category becomes satisfied once f loori items in Di have a

sufficiently high score (post warm-up). If a sufficient number of

high-scoring items cannot be found, we satisfy f loori by adding

the required number of items of category i from the end of its

stream.

The algorithm stops consuming its input once all unsatisfied

categories become satisfied (i.e., once u == 0) and the total size

of allDi is at leastK . Note that, even after a category i is satisfied,
we can still add item x to Di (while waiting for the remaining

categories to be satisfied), if x happens to have a higher score

than the lowest-scoring item currently in Di .

Having filled the deferred lists, the algorithm will first add

f loori items from each Di to the output list L, and will then fill

the remaining slack positions with the highest-scoring items

from the remaining deferred lists, irrespective of their scores.

Algorithm 1 can be invoked for this purpose, with I =
⋃
i Di .

Note that when Algorithm 1 is invoked on line 31, it is invoked

on inputW , a sorted list whose size is bounded by

∑
i ceili . We

assume that ceili << |I |. In fact, setting any ceili higher than
K is not meaningful. Further, since K is commonly treated as a

constant, then

∑
i ceili can also be treated as such.

5 EXPERIMENTAL EVALUATION
In this paper, we have introduced diversity and fairness con-

straints into set selection queries under several different settings.

Most importantly, we have introduced two streaming algorithms.

For all our agorithms we are interested in evaluating the cost

of introducing a diversity or fairness constraint in terms of the

lower utility achieved. For streaming algorithms, we are further

interested in how well we manage to satisfy a group constraint

and make a group selection, while being forced to make decisions

regarding individual items as they are presented.

5.1 Experimental Datasets
Our experimental evaluation is conducted on both real and syn-

thetic datasets. The real data gives us a sense for what would

happen in a real scenario, while the synthetic data let us vary

parameters to dive deeper into understanding "what if" questions.

Forbes Richest. We selected two Forbes Richest People lists

from 2016: US Richest with 400 individuals (https://www.forbes.

com/forbes-400/list/) and World’s Richest with 526 individuals

(https://www.forbes.com/billionaires/list/). Both lists are natu-

rally ranked by net worth. We used gender as the sensitive at-

tribute in the US list, with a break-down of 27 female vs. 373

male individuals (d = 2 categories). We used country as the sen-

sitive attribute in the World list, creating separate categories for

US (197 individuals), Germany (44), China (43), Russia (25), and

assigning the remaining 217 individuals to the category “other”,

resulting in d = 5 categories.

NASA Astronauts. This dataset is available at https://www.

kaggle.com/nasa/astronaut-yearbook/data and consists of 357

astronauts, with their demographic information. We ranked this

dataset by the number of space flight hours, and assigned indi-

viduals to categories based on their undergraduate major. A total

of 83 majors are represented in the dataset, we assigned 9 most

frequent - Physics (35), Aerospace Engineering (33), Mechanical

Engineering (30) etc, to their individual categories, and combined

the remaining 141 individuals into the category “other”, resulting

in d = 10 categories.

Pantheon. This dataset is a ranking of 11,341 individuals based
on the popularity of their biographical page in Wikipedia, and is

available at http://pantheon.media.mit.edu/rankings/people/all/

all/-4000/2010/H15. Individuals in the dataset include historical

and present-day figures, and are described with name, gender,

birth year, place of birth, and occupation. Occupation is aggre-

gated into a set of d = 8 cultural domains (http://pantheon.media.

mit.edu/methods), which we use as the sensitive attribute to state

diversity constraints.

Synthetic data. We also used synthetic data in our experiments,

in cases where it was important to control dataset composition

and assignments of scores to items in particular categories. Syn-

thetic datasets consisted of three attributes: identifier of a tuple,

value of the sensitive attribute and score. Additional details about

specific datasets will be given as appropriate.

In our discussion, we will find it convenient to use the term

balanced to describe datasets in which different categories are

represented in the same proportion. For example, a dataset in

which diversity is stated with respect to gender is balanced if

about 50% of the individuals in the input are male and about 50%

are female.

5.2 Diversity Constraints
Recall that our algorithms are designed for diversity constraints

stated in terms of size limits on each category. The specific con-

straints chosen can implement different notions of diversity or

fairness as discussed in Section 2. We explore several families

of constraints, generated using the procedure described below,

after a brief discussion of requirements on the constraints.

A single per-category constraint of the form f loori ≤ ki ≤
ceili is satisfiable if f loori ≤ ni , where ni is the number of items

in category i in the input.While it is not incorrect to set ceili > ni ,
this will not lead to sensible subset selection in practice, and will

make satisfiability of a set of constraints more cumbersome to

state. For these reasons, we also require that ceili ≤ ni .
A set of per-category constraints is satisfiable if two conditions

hold:

∑d
i=1 f loori ≤ K and

∑d
i=1 ceili ≥ K .

We use several measures of diversity, listed below, to generate

a set of per-category constraints of the form f loori ≤ ki ≤ ceili
for a given selected set size K and number of categories d . We

generate constraints that are satisfiable individually and as a

set, as discussed above. In what follows, we assume that each

category i is represented in the input dataset, that is, that ni ≥ 1.

Minimum: (Cover as many categories as possible.)

If K ≥ d , set f loori = ceili = 1 for all d categories. Next,

compute r = k − d . If r > 0, assign the remaining r positions

in the top-K to a random category j by setting ceilj = ceilj + r .
Select category j from among categories in which nj ≥ ceilj + r .

If K < d , assign f loori = ceili = 1 to a random set of K out

of d categories, and f loori = ceili = 0 to the remaining d − K
categories.

247

(a) full warm-up (b) 1/4 warm-up (c) 1/16 warm-up

Figure 3: Accuracy ofAlgorithm2 as function ofwalking distance, for differentwarm-upperiod lengths. ForbesUSRichest,

K = 4, N = 400 items, diversity on gender (d = 2), with average constraints f loori = ceili = K/d .

(a) full warm-up (b) 1/4 warm-up (c) 1/16 warm-up

Figure 4: Accuracy ofAlgorithm3 as function ofwalking distance, for differentwarm-upperiod lengths. ForbesUSRichest,

K = 4, N = 400 items, diversity on gender (d = 2), with average constraints f loori = ceili = K/d .

Average: (Select equal numbers from each category.)

IfK ≥ d , set f loori = MIN (�K/d�,ni) and ceili = MIN (�K/d	,ni)
for all d categories. Next, compute r =

∑d
i=1 ceili . If r < K , assign

the remaining r positions in the top-K to a random category j by
setting ceilj = ceilj + r . Select category j from among categories
in which nj ≥ ceilj + r .
If K < d , set constraints as inminimum above.

Proportion: (Select equal proportions from each category.)

Recall that N denotes the size of the input.
If K ≥ d , set f loori = �K ∗ ni/N � and ceili = �K ∗ ni/N 	.
If K < d , set constraints as inminimum above.

Relaxed average: Let integer t denote the tightness threshold.
IfK ≥ d , set constraints as in average above. Next, set f loori =

MAX (f loori − t , 0) and ceili = MIN (ceili + t ,ni).
If K < d , set constraints as inminimum above.

Relaxed proportion: Let integer t denote the tightness thresh-
old.

If K ≥ d , set constraints as in proportion above. Next, set

f loori = MAX (f loori − t , 0) and ceili = MIN (ceili + t ,ni).
If K < d , set constraints as inminimum above.

Note that in balanced datasets, average and proportion con-

straints are equivalent, as are relaxed average and relaxed pro-

portion (for the same tightness threshold t).

5.3 Metrics

Recall that Algorithms 2 and 3 both consume the input one item

at a time, and decide whether to accept or reject an item when

it is encountered. Algorithm 3 differs from Algorithm 2 in that

it can place an item on the deferred list, and decide after it has

considered all feasible items which of these to accept. For a given

input (a fixed set of items received in some fixed order), Algo-

rithms 2 and 3 will stop consuming the input at some point. We

refer to this point — the number of items considered from the

input stream, as the walking distance, and use it as our primary

measure of efficiency. This measure is sometimes called depth in

the top-k literature.
In several experiments with online algorithms, we quantify

the relationship between algorithm efficiency and accuracy. To

quantify accuracy, we use an intuitive normalized measure that

compares the scores of the K retrieved items with the best pos-
sible K scores, subject to diversity constraints. Based on our
statement of optimality in Theorem 3.2, we use scores returned

by Algorithm 1 as the gold standard.

To make accuracy insensitive to shifts in the score distribution,

we subtract the minimum observed score from each value. For

example, suppose that the lowest net worth of any individual

(a) Common warm-up. (b) Per-category warm-up.

Figure 5: Per-category accuracy of Algorithm 2 as a function of K , on a balanced synthetic dataset of size N = 10, 000 with

average constraints. Category A items in the input have strictly lower scores than category B items. A common warm-up

period leads to lower accuracy for both categories compared to per-categorywarm-up periods, and places items in category

A at a particular disadvantage.

was 100, that K = 2 individuals were selected, with scores 225
and 200, and that the two highest-scoring individuals in the

dataset, subject to diversity constraints, have scores 300 and 250,

respectively. Then accuracy is computed as
(225−100)+(200−100)
(300−100)+(250−100) .

5.4 Experimental Results: Online Algorithms

The most important question we are interested in is how well

our streaming algorithms do despite being forced to meet set-

oriented constraints while making decisions on individual items

one at a time. The way the streaming algorithms are stated, they

guarantee that the diversity constraints will be met, but do not

guarantee optimality of utility score. We measure this in terms

of accuracy, as described above.

The one parameter we can control in the streaming algorithms

is the length of the warm-up period. Therefore, we start by pre-

senting the relationship between warm-up period length and

accuracy of the online algorithms of Section 4. To show this

relationship, we will consider Figures 3 and 4, where 400 US

Richest individuals (see Section 5.1 for dataset description) were

randomly permuted, and where a diversity constraint was spec-

ified over the binary gender attribute, with 2 ≤ kF ≤ 2 and
2 ≤ kM ≤ 2 (a tight average constraint) and with K = 4. Each
point in these figures corresponds to an execution of the relevant

algorithm on a random permutation, with 100 executions per

experiment (note that points may coincide). Other datasets in

our experiments exhibited a similar trend.

We see that Algorithm 3 gets very high accuracy, often equal-

ing the gold standard, if given enough warm up. Algorithm 2 also

does not do too badly in terms of accuracy, though Algorithm 3

does substantially better.

Walking distance takes on values between K (output size) and
N (input size). Walking distance is made up of two parts: length of
the warm-up period during which an on-line algorithm is estimat-

ing item scores, and post-warm-up, during which an algorithm is

able to accept items. In both Algorithms 2 and 3, the per-category

warm-up period has length � nie � for category i , while the total

warm-up period length is the sum of per-category warm-up pe-

riod lengths, and of � Ne � for the category-independent warm-up.
Consider Figures 3a and 4a, which show the overall accuracy

as a function of walking distance for Algorithms 2 and 3, respec-

tively. Note that accuracy of Algorithm 2 varies significantly at

walking distance 400 — the case when allN items were consumed
from the stream. This effect is so pronounced that in Figure 3a

the over-all trend in accuracy is decreasing, due exclusively to

this end-of-stream effect. In contrast, Algorithm 3 is not forced

to accept items from the end of the stream, and so its accuracy

strictly increases as a function of walking distance.

We do not have explicit control of the post-warm-up walking

distance (because we must return a valid set of results —K results
that meet the diversity constraints). However, we can impact

walking distance by changing the length of the per-category

warm-up periods, set to � nie � by default. These settings provide a
strong theoretical guarantee, but can be conservative in practice,

particularly for Algorithm 3 (the deferred list variant). Figures 3b

and 3c show accuracy when warm-up is abbreviated to a quarter

and a sixteenth of the optimal for Algorithm 2, and Figures 4b

and 4c correspond to Algorithm 3. Observe that reducing warm-

up period length introduces a trade-off between walking distance

(efficiency) and accuracy, and that accuracy is often comparable

to that which results from the full warm-up period, but at a lower

efficiency cost.

In the next experiment we demonstrate the importance of

having per-category warm-up periods. Recall that Algorithm 2

considers, and rejects, � nie � items in each category before ac-
cepting any items. This warm-up period allows the algorithm

to form an expectation on the score of an item. Suppose now

that K = 2, that there are two categories A and B in the input,
and that diversity constraints are such that exactly one item

per category is to be selected. Further, suppose that scores of

A-items are strictly lower than scores of B-items. If a common

(rather than a per-category) warm-up period were used by the

algorithm, with a common MinHeap of score thresholds T , then

(a) NASA Astronauts, N = 357, K = 30, d = 10. (b) Forbes World Richest, N = 526, K = 20, d = 5.

Figure 6: Accuracy of Algorithm 3 under different diversity constraints, at 1/8 warm-up.

Figure 7: The cost of diversity: quality of the selected

set is lower, in absolute terms, when items of a lower

score must be included to satisfy diversity constraints.

Synthetic datasets with N = 10, 000, d = 2, under aver-

age constraints. Item scores are drawn from Gaussian dis-

tributions with the same standard deviation but different

means (μA and μB).

T would contain the highes-scoring B-items that were encoun-
tered during warm-up. Since A-item scores are lower than B-item

scores, no post-warm-up A-item will have a score that exceeds

дetMinElement(T). This would force the algorithm to walk down
the end of the stream in all cases (impacting performance), and to

accept the very last A-item from the stream (impacting accuracy

for category A).

To illustrate this point, we generate a synthetic dataset of N =
10, 000 items in two categories, A and B, with a balanced break-

down — 5,000 A-items and 5,000 B-items, and with category-

dependent scores. Scores of A-items are drawn uniformly at

random from the [0, 0.5) range, while scores of B-items are drawn
uniformly at random from [0.5, 1). We vary K between 2 and

100, and impose a (tight) average diversity constraint, setting

� K2 � ≤ kF ≤ � K2 � and � K2 � ≤ kM ≤ � K2 �.
Figure 5 shows box-and-whiskers plots in which accuracy is

presented as a function of K (see Section 5.3 for a description
of how accuracy is computed). Observe that that accuracy for

category A is lower than accuracy for category B in all cases

when a common threshold is used (see Figure 5a). This is in

contrast to the per-category threshold case in Figure 5b, where

accuracy is comparable across the two categories.

Let us now compare performance of Algorithm 3 under differ-

ent diversity constraints. Figure 6 presents accuracy as a function

of walking distance, with warm-up period of length 18 of the the-

oretically optimal (so, � ni
8∗e � per category), for two real datasets:

NASA Astronauts (N = 327, d = 10 and K = 30) and the World’s
Richest (N = 526, d = 5, K = 20). We also experimented with
other real datasets, and with different values of K and warm-up
period lengths, and present here results that are representative.

The average relaxed constraint (purple line in Figure 6) uses

t = �0.3 ∗ k� as the threshold (see Section 5.3 for a description of
this and other constraints) and is easier to satisfy than the tight

constraints, leading to somewhat lower walking distance. This

difference was somewhat less pronounced in Figure 6a than in

Figure 6b, and is sensitive to the variation in dataset composition

(how balanced the categories are) and to the value of K .
In our final experiment with online algorithms, we quantified

the impact of warm-up period length on the variance in accuracy.

We generated a synthetic dataset withN = 10, 000 items and with
d = 2 categories. We requested that K = 10 items be returned by
Algorithms 2 and 3, subject to proportion constraints.

Scores of A-items were drawn uniformly at random from

[0, 0.5), while scores of B-items were drawn from [0.5, 1). (Note
that we executed per-category warm-up in both algorithms, and

so differences in scores between A and B do not impact accu-

racy, as we saw in Figure 5.) We generated three such datasets,

with A constituting 10%, 25% and 50% of the over-all dataset. For

Algorithm 2, we observed, as expected, that higher variance in ac-

curacy occurs when A appears in the dataset in lower proportion:

variance was 0.080 for 10% proportion, 0.075 for 25% proportion

and 0.019 for 50% proportion. Variance did not differ significantly

for Algorithm 3.

(a) NASA Astronauts, N = 357, d = 10. (b) Pantheon, N = 11, 341, d = 8.

(c) Forbes World’s Richest, N = 526, d = 5. (d) Forbes US Richest, N = 400, d = 2.

Figure 8: Walking distance of Algorithm 1 in proportion to N , as a function of K , for different diversity constraints.

5.5 Experimental Results: Static Algorithm

In this experiment we quantify the cost of imposing diversity

constraints, in terms of a normalized measure we call quality: the

sum of score of the diverse top-K divided by the sum of scores
of the “vanilla” (category-agnostic) top-K . Figure 7 presents
box-and-whiskers plots that quantify this cost of diversity as

a function of K for two synthetic datasets, each of size N , with
d = 2 categories represented in equal proportion, and with aver-
age diversity constraint. In the both datasets, item scores were

drawn from per-category Gaussian distributions, with different

means but the same standard deviations. The dataset presented in

green had means of A-scores and of B-scores close to each other

(μA − μB = 0.1), while in the dataset presented in blue, these
distributions were further apart (μA − μB = 0.5). As expected,
the cost of diversity is higher in the latter case, since items of

lower scores (in absolute terms) must be included into the result

to satisfy diversity constraints.

In our final experiment we use real datasets to support the

claim that, while Algorithm 1 may walk to the end of the input in

the worst case, this rarely happens in practice. Figure 8 presents

walking distance of Algorithm 1 as a function of K for different
diversity constraints, for the NASA Astronauts, Pantheon, Forbes

World’s Richest, and Forbes US Richest datasets. A value of 1 on

the y-axis denotes that the algorithm walked to the end of the list
(that is, walking distance equals N). We observe that this does
not occur often, particularly for lower values of K .

6 RELATED WORK

There is considerable work on diverse top-k , starting with [2, 16],
see also [18] (Sections 5.1, 5.6 and 6) for a survey. The work pro-

posed here differs from prior work in that we consider a family of

diversity constraints that can express coverage-based (rather than

distance-based) diversity [7], and can also be used to compute

several fairness metrics — those based on proportional represen-

tation. To the best of our knowledge, diversity in combination

with utility has not been considered in a fully online setting.

In [16] a generic method is proposed to extend top-k algo-

rithms with a diversity criterion that is based on pair-wise simi-

larity. The problem is formulated as: given a user-defined pair-

wise similarity function sim(si , sj), and a user-defined similarity

threshold τ , return the highest-scoring set of k items such that

sim(si , sj) ≤ τ . When describing top-k methods, they refer to

incremental methods (generate results in decreasing order of

scores, stop once k results were generated) vs. bounding methods

(generate results in some order, stop once the top-k are among

the results, Fagin’s TA is in this category).

More recently, diversity-aware top-k for pub/sub queries over

text streams was considered in [6]. There, diversity is a pair-wise

measure based on document similarity in the top-k (max-sum),

quality is measured as the relevance of a document to a user’s

query, and there is additionally a per-document recency score

that is appropriate for a stream of Twitter messages or Facebook

status updates, and is based on an exponential decay function.

Another related line of work is [1], where max-sum diversity is

maximized subject to a constraint on a variant of coverage-based

diversity. The problem is posed as a partition matroid, a local

search algorithm is proposed, and it is shown that it achieves a

0.5 approximation of the optimal solution.

Selection of diverse set results in an online setting is studied

in [15]. The authors consider selection of subsets of items that

are simultaneously diverse along multiple dimensions. For exam-

ple, for program committee selection it is desirable to achieve

coverage of topics, geographic diversity and gender diversity.

The paper proposes and analyzes several diversity objectives

and proposes heuristic and dynamic programming methods. The

most important difference between our method and that of [15]

is that they do not explicitly handle utility.

In [16] a set of diverse top-k items is determined that maxi-

mizes the total score of theK selected items, subject to a pair-wise

diversity constraint. The problem is modeled by representing the

items as vertices in a graph, and by including an edge between

vertices si and sj if their similarity is above a user-specified

threshold τ . A diverse set K is the independent set of a graph —

a set of vertices in which no two vertices are adjacent. This for-

mulation can accommodate the coverage diversity version of our

problem: Include an edge between two vertices if they belong to

the same category, then identify an independent subset of size d
that maximizes the total score. If d < k , we add k −d vertices that

maximize the total score. The algorithmic contributions of [16]

are in (1) determining when the set of k ′ > k items is sufficient to

compute the true diverse top-k , and (2) efficiently identifying the

independent set of a graph for a fixed k (finding an independent

set of a graph is NP-hard).

7 CONCLUSIONS
Diversity and group fairness are important objectives in algo-

rithmic decision-making. Since most algorithms are designed to

score or classify items individually, it is not easy to support these

objectives. In this paper, we showed how we can continue to

select items individually and meet desired diversity and group

fairness constraints, while paying a very small utility cost.

We demonstrated experimentally that the theoretically-motivated

setting for warm-up period length can be conservative in practice.

In our future work, wewill investigate the interaction between ex-

pected (or observed) score variance and warm-up period length.

Further, we demonstrated that different categories must be

treated separately in score estimation, to achieve comparable

accuracy irrespective of expected score, and ultimately afford

comparable opportunity to members of different groups.

REFERENCES
[1] Zeinab Abbassi, Vahab S. Mirrokni, and Mayur Thakur. 2013. Diversity maxi-

mization under matroid constraints. In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago,
IL, USA, August 11-14, 2013. 32–40. DOI:http://dx.doi.org/10.1145/2487575.
2487636

[2] Albert Angel and Nick Koudas. 2011. Efficient diversity-aware search. In

Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011. 781–792. DOI:http:
//dx.doi.org/10.1145/1989323.1989405

[3] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. 2008.

Online auctions and generalized secretary problems. SIGecom Exchanges 7, 2
(2008). DOI:http://dx.doi.org/10.1145/1399589.1399596

[4] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. 2007. Matroids,

secretary problems, and online mechanisms. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Or-
leans, Louisiana, USA, January 7-9, 2007. 434–443. http://dl.acm.org/citation.

cfm?id=1283383.1283429

[5] Solon Barocas and Andrew D. Selbst. 2016. Big data’s disparate impact. Cali-
fornia Law Review 104 (2016).

[6] Lisi Chen and Gao Cong. 2015. Diversity-Aware Top-k Publish/Subscribe for

Text Stream. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015.
347–362. DOI:http://dx.doi.org/10.1145/2723372.2749451

[7] Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.

Diversity in Big Data: A Review. Big Data 5, 2 (2017).
[8] E.B. Dynkin. 1963. The optimum choice of the instant for stopping a Markov

process. Sov. Math. Dokl. 4 (1963).
[9] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation

Algorithms for Middleware. In Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23,
2001, Santa Barbara, California, USA. DOI:http://dx.doi.org/10.1145/375551.
375567

[10] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and

Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015. 259–
268. DOI:http://dx.doi.org/10.1145/2783258.2783311

[11] Thomas S. Ferguson. 1989. Who Solved the Secretary Problem? Statist. Sci. 4,
3 (08 1989), 282–289. DOI:http://dx.doi.org/10.1214/ss/1177012493

[12] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2016.

On the (im)possibility of fairness. CoRR abs/1609.07236 (2016). http://arxiv.

org/abs/1609.07236

[13] Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani. 2011.

Hiring a secretary from a poset. In Proceedings 12th ACM Conference on Elec-
tronic Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011. 39–48. DOI:
http://dx.doi.org/10.1145/1993574.1993582

[14] D. V. Lindley. 1961. Dynamic Programming and Decision Theory. Journal of
the Royal Statistical Society 10, 1 (March 1961), 39–51.

[15] Debmalya Panigrahi, Atish Das Sarma, GaganAggarwal, andAndrewTomkins.

2012. Online selection of diverse results. In Proceedings of the Fifth International
Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, WA, USA,
February 8-12, 2012. 263–272. DOI:http://dx.doi.org/10.1145/2124295.2124329

[16] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying Top-K Results.

PVLDB 5, 11 (2012), 1124–1135. http://vldb.org/pvldb/vol5/p1124_luqin_

vldb2012.pdf

[17] Julia Stoyanovich, Bill Howe, Serge Abiteboul, Gerome Miklau, Arnaud

Sahuguet, and Gerhard Weikum. 2017. Fides: Towards a Platform for Re-

sponsible Data Science. In Proceedings of the 29th International Conference on
Scientific and Statistical Database Management, Chicago, IL, USA, June 27-29,
2017. 26:1–26:6. DOI:http://dx.doi.org/10.1145/3085504.3085530

[18] Kaiping Zheng, Hongzhi Wang, Zhixin Qi, Jianzhong Li, and Hong Gao. 2017.

A survey of query result diversification. Knowl. Inf. Syst. 51, 1 (2017), 1–36.
DOI:http://dx.doi.org/10.1007/s10115-016-0990-4

[19] Indre Zliobaite. 2017. Measuring discrimination in algorithmic decision mak-

ing. Data Min. Knowl. Discov. 31, 4 (2017), 1060–1089. DOI:http://dx.doi.org/
10.1007/s10618-017-0506-1

252

	Online Set Selection with Fairness and Diversity ConstraintsJulia Stoyanovich, Ke Yang, H. Jagadish

