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Abstract We introduce a class of unbiased Monte Carlo estimators for multivari-
ate densities of max-stable fields generated by Gaussian processes. Our estimators
take advantage of recent results on the exact simulation of max-stable fields com-
bined with identities studied in the Malliavin calculus literature and ideas developed
in the multilevel Monte Carlo literature. Our approach allows estimating multivari-
ate densities of max-stable fields with precision ¢ at a computational cost of order
o (8’2 logloglog (1/8)).

Keywords Max-stable process * Density estimation + Malliavin calculus

1 Introduction

Max-stable random fields arise as the asymptotic limit of suitably normalized maxima
of many i.i.d. random fields. Intuitively, max-stable fields are utilized to study the
extreme behavior of spatial statistics. For instance, if the logarithm of a precipitation
field during a relatively short time span follows a Gaussian random field, then extreme
precipitations over a long time horizon (which are obtained by taking the maximum at
each location of many precipitation fields) can be argued as long as enough temporal
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independence can be assumed to follow a suitable max-stable process. It is these
types of applications in environmental science that motivate the study of max-stable
processes (see, for example, [4] for a recent study of this type).

In order to estimate the parameters of a max-stable random field, for instance using
maximum-likelihood estimation, it is desirable to evaluate the density over a finite set
of locations (i.e. multivariate density of finite-dimensional coordinates of the max-
stable field). The recent work in [3] discusses the challenges involved in applying
maximum likelihood estimation of max-stable fields. We believe that the algorithms
and techniques that we develop in this paper can be used to study maximum likelihood
estimators for max-stable fields. For example, our representations can be used to
obtain convenient expressions for the derivative of the density. In turn, as explained
in [3], differentiability of the density is useful in the asymptotic analysis of maximum
likelihood estimators. In addition, our algorithms can be implemented using common
random numbers under a wide range of parameters of the max-stable fields. Thus,
our algorithms can be used to perform approximate maximum-likelihood estimation
by optimizing over a wide range of parameters.

In order to precisely explain our estimators, we now introduce some basic facts
about max-stable processes.

We will focus on a class of max-stable random fields which are driven by Gaus-
sian processes. These max-stable fields are popular in practice because their spatial
dependence structure is inherited from the underlying Gaussian covariance structure.

To introduce the max-stable field of interest, let us first fix its domain 77 € R™, for
m > 1. We introduce a sequence, (X, (-)), of independent and identically distributed
copies of a centered Gaussian random field, X () = (X (¢) : t € T). We let (A,)
be the sequence of arrivals in a Poisson process, with unit rate and independent of
(X ().

Finally, given a deterministic and bounded function, u : T — R, we will focus
on developing Monte Carlo methods for the finite dimensional densities of the max-
stable field

M@) =sup{ —logA, + X,(t) + u(t)}, teT. (D)

n>1

(The name max-stable is justified because M (-) turns out to satisfy a distributional
equation involving the maximum of i.i.d. centered and normalized copies of M (-),
see [9, Theorem2].)

An elegant argument involving Poisson point processes (see [15] and [2, Lemma
5.1]) allows us to conclude that

P(M([])fX],...,M(td)fXd) (2)
= exp <—E [méf{ew X @) +un@)— xi)}:|) .
By redefining x; as x; — u (¢;), we might assume without loss of generality, for

the purpose of computing the density of M = (M (t,) , ..., M (t;))7, that i (t;) = 0.
We will keep imposing this assumption throughout the rest of the paper.
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Throughout the paper we will keep the number of locations, d, over which M () is
observed, fixed. So, M will remain a d-dimensional vector throughout our discussion.
To avoid confusion between M and M (-), note that we use M (-) when discussing
the whole max-stable field. We will maintain this convention throughout the rest of
the paper for the field M (-) as well as the fields X, (-), n > 1.

The joint density of M can be obtained by subsequent differentiation of (2) with
respectto x1, .. ., x4. However, the final expression obtained for the density contains
exponentially many terms. So, computing the density of M using this direct approach
becomes quickly intractable, even for moderate values of d. For example, [15] argues
that even for d = 10, one obtains a sum of more than 10’ terms.

We will construct an unbiased estimator for the density, f (x), of M evaluated
at x = (x1,...,xy) for d > 3. The construction of our estimator, denoted as V (x),
is explained in Sect.2.5. Implementing our estimator avoids the exponential growth
issues which arise if one attempts to directly evaluate the density. We concentrate on
d > 3 because the case d = 2 leads to only four terms which can be easily computed
as explained in [8]. More precisely, our contributions are as follows:

1. The properties of V (x) are summarized in Sect. 3. In particular as shown in (16),
f(x)=E(V (x)),Var (V (x)) < oo, and given a computational budget of size
b, we provide a limit theorem which can be used to estimate f (x) with complexity
0] ((b -logloglog (b))z) for an error of order O (1/b) — see Theorem 1 and its
discussion.

2. As far as we know, this is the first estimator which uses Malliavin calculus in the
context of max-stable density estimation. We believe that the techniques that we
introduce are of independent interest in other areas in which Malliavin calculus
has been used to construct Monte Carlo estimators. For example, we highlight
the following techniques in this regard,

a. We introduce a technique which can be used to estimate the density of the
(coordinate-wise) maximum of multivariate variables. We apply this tech-
nique to the case of independent Gaussian vectors, but the technique can be
used more generally, see the development in Sect. 2.2.

b. We explain how to extend the technique in item 2(a) to the case of the maxima
of infinitely many variables. This extension, which is explained in Sect.2.3,
highlights the role of a recently introduced record-breaking technique for the
exact sampling of variables such as M.

c. We introduce a perturbation technique which controls the variance of so-
called Malliavin—Thalmaier estimators (which are explained in Sect.2.1).
These types of estimators have been used to compute densities of multivariate
diffusions (see [10]). Our perturbation technique, introduced in Sect. 2.4, can
be directly used to improve upon the density estimators in [10], enabling a
close-to-optimal Monte Carlo rate of convergence for density estimation of
multivariate diffusions.

3. The perturbation technique in Sect. 2.4 is combined with randomized multilevel
Monte Carlo techniques (see [13, 14]) in order to achieve the following: Starting
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from an infinite variance estimator, we introduce a perturbation which makes the
estimator biased, but with finite variance. The randomized multilevel Monte Carlo
technique is then used to remove the bias while keeping the variance finite. The
price to pay is a small degradation in the rate of convergence in the associated
Central Limit Theorem for confidence interval estimation. Instead of an error rate
of order O(1/b'/?) as a function of the computational budget b, which is the
typical rate, we obtain a rate of order O ((log loglog (b))'/? /b"/ 2). The Central
Limit Theorem is obtained using recently developed results in [18].

The rest of the paper is organized as follows: In Sect.2 we explain step-by-step,
at a high level, the construction of our estimator. The final form of our estimator
is given in Sect.2.5. The properties of our estimator are summarized in Sect.3. A
numerical experiment is given in Sect. 4. Finally, the details of the implementation
of our estimator, in the form of pseudo-codes, are given in the Sect.5 Appendix.

2 General Strategy and Background

The general strategy is explained in several steps. We first review the Malliavin—
Thalmaier identity by providing a brief explanation of its origins and connections
to classical potential theory. We finish the first step by noting that there are several
disadvantages of the identity having to do with variance properties of the estimator
and the implicit assumption that a great degree of information is assumed about the
density which we want to estimate. The subsequent steps in our construction are
designed to address these disadvantages.

In the second step of our construction, we introduce a series of manipulations
which enable the application of the Malliavin—Thalmaier indirectly, by working only
with the X,,’s. These manipulations are performed assuming that only finitely many
Gaussian elements are considered in the description of M.

The third step deals with the fact that the description of M contains infinitely
many Gaussian elements. So, first, we need to explain how to sample M exactly.
We utilize a recently developed algorithm (see [11]). Based on this algorithm, we
explain how to extend the construction from the second step in order to obtain a
direct Malliavin—Thalmaier estimator for the density of M.

The fourth step of our construction deals with the fact that a direct Malliavin—
Thalmaier estimator will generally have infinite variance. We introduce a small ran-
dom perturbation to remove the singularity appearing in the Malliavin—Thalmaier
estimator, which is the source of the poor variance performance. Unfortunately, such
a perturbation also introduces bias in the estimator.

In order to remove the bias, we then apply randomized multilevel Monte Carlo
methods (see [13, 14]). Our resulting estimator then is unbiased and has finite
variance as we explain in Sect.3. The price to pay is a small degradation in the
rate of convergence of the associated Central Limit Theorem to obtain confidence
intervals.
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2.1 Step 1: The Malliavin—-Thalmaier Identity

The initial idea behind the construction of our estimator comes from the Malliavin—
Thalmaier identity, which we shall briefly explain. First, recall the Newtonian poten-
tial, given by

G =g || =

with k; = (d (2 — d) wg)~", where w, is the volume of a unit ball in d dimensions,
for d > 3.1t is well known, see [5], that G (-) satisfies the equation

AG(x —y)=68(x—y)

in the sense of distributions (where & (x) is the delta function). Therefore, if M € R?
has density f (-) we can write

f(X)=/f(y)AG(x—y)dy=E(AG(X—M))~ 3)

But the previous identity cannot be implemented directly because G (-) is harmonic,
that is, one can easily verify that AG (x) = 0 for x # 0 (which is not surprising
given that one expects AG to act as a delta function). The key insight of Malliavin
and Thalmaier is to apply integration by parts in the expression (3). So, let us define

and therefore write

d d

332G (x — ) 0G; (x —y)

AG(X—}’)ZE TZE A
i=1 i i=1

Consequently, because

Gi(x—y)  9Gi(x—Yy)
ox; B 0yi ’

we have that

9 5
( Gi (x > / / G; (x f(yl,_,,,yd)dyldyz...dyd

3Gz(x— )
—/“‘/3—yyf(y1,-.-,YJ)d)’ld)’2~--dyd



80 J. Blanchet and Z. Liu

f /G *x 3f(y1,-y.-,yd)d dyy. . dya

1

—E(G[(x—M)a—ylogf(M)>.

Therefore, using (3), we arrive at the following Malliavin—Thalmaier identity,

189G, (x — M) - 9
.f(x)=E<ZT =§E(ci<x—M>a—yilogf<M>). €

i=1

Refer to [10, 12] for rigorous proof of this identity.

There are two immediate concerns when applying the Malliavin—Thalmaier iden-
tity. First, a direct use of the identity requires some basic knowledge of the density of
interest, which is precisely the quantity that we wish to estimate. The second issue,
which is not evident from (4), is that the singularity which arises when x = M in the
definition of G; (x — M), causes the estimator (4) to typically have infinite variance.

2.2 Step 2: Applying the Malliavin—Thalmaier Identity
to Finite Maxima

We now shall explain how to address the first issue discussed at the end of the previous
subsection. Define
M, (1) = max {—log (Ax) + Xi (D},

where X}’s are i.i.d. centered Gaussian vectors with covariance matrix X', and put
M, =M, (1), ..., M, (t;)T. Note that

3G (x —M,) 3G, (x — M,)
dx; M, (1)

®)

In turn, by the chain rule,

0G; (x = M,) 3G, (x — M,) OM, (;)
Xy (1) IM, (1) Xk ()’

(6)

Further, with probability one (due to the fact that (A, A,, ..., Ax) has a density),

OM, (1)
= I (M, (t;) = X; (t;) — | A =1.
; X, @) ; (M, (t;) = X (1;) — log (Ay))

Consequently, from Eq. (6) we conclude that
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n

3 3G (x = M,) 3G, (x — M,)
AXe () M, (1)

’

k=1
and therefore, from (5), we obtain
G (x = M,) <~ 3G (x — M)
Ax; N OXp (1)

k=1

We now can apply integration by parts as we did in our derivation of (4). The
difference is that the density of Xy = (X (#1), ..., Xk ()T is known and therefore
we obtain that

0G; (x — M,)
( X (1)

) =E(Gi(x—M,) - ¢ Z7'Xy),

where ¢; is the ith vector in the canonical basis in Euclidean space.
Consequently, we conclude that

3G (x = M)\ . [(9Gi (x — M,)
E< 0x; >__;E< Xy (1) )

—E (Gi (x—M,) el 57! Zxk> .

k=1

In summary, if f, is the density of M,, we have that

d
aGi _Mn
fn(xlv.-.,xd):E<Z#) -

i=1

d n
—E (Z Z Gi(x — M,) - eiTEle) )

i=1 k=1

The verification of this identity follows a very similar argument as that provided for
the proof of (4) in [12].

2.3 Step 3: Extending the Malliavin—-Thalmaier Identity
to Infinite Maxima

In order to extend the definition of the estimator (7), we wish to send n — oo and
obtain a simulatable expression of an estimator. Because we will be using a recently
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developed estimator for M in [11], we need to impose the following assumptions on
Xn ()

(B1) In addition to assuming E[X, (t)] = 0, we write o2(t) = Var (X (1)).
(B2) Assume that o = sup,.; 0 (f) < oo.
(B3) Suppose that E (exp (supteT X (t))) < 00.

A key element of the algorithm in [11] is the idea of record breakers. The
general idea is to utilize the properties of those record breakers to construct a
Malliavin—Thalmaier estimator for the infinite maxima with finite but random num-
ber of Gaussian vectors. In order to describe this idea, let us write || X, |l =
maxi=i,...a | Xn(%)I.

Following the development in [11], we can identify three random times as follows.

The firstis Ny = Nx(a) < oo, defined for any a € (0, 1), and satisfying that for
alln > Ny,

1X,lloo < alogn.

The time Ny is finite with probability one because || X, || o, is well known to grow at
rate O, ((logn)'/?) as n — oc.
The second is Ny = N4(y) < oo chosen for any given y < E (A;), satisfying
that forn > Ny
A, > yn. (8)

The time N, is finite with probability one because of the Strong Law of Large
Numbers.
The third is N, such that, for all n > N,, we have

ny = Ajn®exp(Xillo)- (€))

It is immediate that N, is finite almost surely because a € (0, 1).
By successively applying the preceding three equations, we find thatforn > N :=
max(Ns, Nx, N;) andany t =11, ..., t;, we have

—log A, + X, (1) = —log Ay + | Xnlloo

< —logA,+alogn

< —log(ny) +alogn

< —logA| — || Xillec < —logA; + X (?).

A

Therefore, we conclude that, forr = ¢, ..., t4,

sup {_ 1Og A, + Xn(t)} = 121"'1<XN {_ 1Og A, + Xn(t)} .

n>1

The work in [11] explains how to simulate the random variables Nx, N4, and N,
jointly with the sequence (A,),<y as well as (X,,),<y. Moreover, it is also shown in
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[11] that the number of random variables required to simulate Ny, N4 and N, (jointly
with Xy, ..., Xy and Ay, ..., Ay) has finite moments of any order. Therefore, N
has finite moments of any order. Moreover, E(N) = O(d®) for any ¢ > 0. In the
appendix, we reproduce the simulation procedure developed in [11].

Now, observe that conditional on X1, ..., Xy, , Nx, forn > Ny the random vec-
tors (X;);>, are independent, but they no longer follow a Gaussian distribution.
Nevertheless, the X, ’s still have zero conditional means, given that n > N. This is
because

E Xy | [ Xulloo < alogn)

=E(—Xy | |[-Xullw = alogn) = E (=X, | [ Xullc < alogn).
Consequently, we have that
E (e 27'X,ln > N) = 0.
Therefore, because M is independent of X, conditional on n > N, we obtain that

E(Gi(x—M)- ¢/ 27'X,In > N) (10)
=E(G;(x—M)n>N)-E(e] 27" X,ln > N) = 0.

One can letn — oo in (7) and formally apply (10) leading to the following result,
which is rigorously established in [1].

Proposition 1 For any (x1, ..., xq) € R%,

N
f(xl,...,xd)z—E(ZZGi(x—M)-eiTE_'Xk). (1)

i=1 k=1

2.4 Step 4: Variance Control in Malliavin-Thalmaier
Estimators

We now explain how to address the second issue discussed in Sect.2.1, namely,
controlling the variance when using the Malliavin—-Thalmaier estimator (11).

Let us write
d N

W@ ==Y Y Gix—M- ¢ 'X,,

i=1 k=1

and observe that
<M 0N, x—lxk>

W =
(0 dwallM — x|
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It turns out that the variance of W (x) blows up because of the singularity in the
denominator when M = x. This is verified in [1], but a similar calculation is also
given in the setting of diffusions in [10]. So instead, we consider an approximating
sequence defined via Wo (x) = 0, and

<M—x,2f’:l Z‘“Xk>
9 nZ
dwa||M — x||4 + dwa8,||M — x|

Wn (x) =

where
8, = 1/logloglog (n + eg) . (12)

It is apparent that lim,,_, o W,, (x) = W (x) almost surely. The use of a perturba-
tion in the denominator of the Malliavin—Thalmaier estimator is not new. In [10] also,
a small positive perturbation in the denominator is added, but such perturbation is,
in their case, deterministic. The difference here is that our perturbation contains the
factor 6, ||M — x||. We have chosen our perturbation in order to ultimately control
both the variance and the bias of our estimator.

In order to quickly motivate the variance implications of our choice, note that

(M—x,z,N:, ):—lxk> <M—x,z,"’:1 2—lxk> |
< <
dwgl|IM — x||? + dwad,||IM — x|| | ~ dwgd,||M — x|| ~ dwgby,

)

2

N
Z E*IXk
i=1

leading to abound that does not explicitly contain M. Moreover, we mentioned before
that NV has finite moments of any order and X, is normally distributed, therefore, one

can easily verify that H ZIN_I 21X ” has finite moments of any order, in particular
= 2

finite second moment and therefore W, (x) has finite variance.

The reader might wonder why choosing 8, in the definition of W, (x), because
any function of n decreasing to zero will ensure the convergence almost surely of
W, (x) toward W (x). The previous upper bound, although not sharp when n is large,
might also hint to the fact that it is desirable to choose a slowly varying function of
n in the denominator (at least the reader notices a bound which deteriorates slowly
as n grows).

The precise reason for the selection of our perturbation in the denominator obeys
to adetailed variance calculation which can be seenin [1]. A more in-depth discussion
is given in Sect. 2.5 below. For the moment, let us continue with our development in
order to give the final form of our estimator.

Even though W, (x) has finite variance and is close to W (x), unfortunately, we
have that W, (x) is no longer an unbiased estimator of f (x). In order to remove the
bias, we take advantage of a randomization idea from [13, 14], which is related to
the multilevel Monte Carlo method in [7], as we shall explain next.
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2.5 Final Form of Our Estimator

Let us define Wy (x) = 0 and for n > 1 let us write
Ay (x) = W, (x) — Wy (x).

In order to facilitate the variance analysis of our randomized multilevel Monte Carlo
estimator, we further consider a sequence (A,l (x))n> , of independent random vari-
ables so that A, (x) and A, (x) are equal in distribution.

We let L be a random variable taking values on n > 1, independent of everything
else. Moreover, we let g (n) = P (L > n) and assume that

gm) =n""(log(n+e—1)""(log (log (n + ¢ — 1)))*1 ) (13)

Then, the final form of our estimator is

.-
A (x)

Vix)= E —_— . (14)
= &k

The randomized multilevel Monte Carlo idea applied formally yields that

A ()T (L >k = Ay ()T (L >k
E(V(x))=E<Z—k(X)g(1(<) - )>=ZE<—"(X)8(]E) = )> ()

k=1 k=1

=Y E(A@)=EWx)—EWx)=EW(x)=f(x).
k=1

In order to make the previous manipulations rigorous, we must justify exchanging
the summation in (15). In addition, we also need to guarantee that V (x) has finite
variance. These and other properties will be used to obtain confidence intervals for
our estimates, given a computational budget via CLT for renewal processes. In turn,
it suffices to make sure the following two conditions hold:

(€1 Xt E (|4 (0]) < 00

€y, 00

g(n)

We shall summarize the properties of V (x) in our main result given in the next
section. In particular, we will show that (C1) and (C2) hold with our choice of §,, and
g(n). We also provide a discussion of the running time analysis, which is affected
by the choice of g (n).
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3 Main Result

Our main contribution is summarized in the following result, which is fully proved
in [1]. Our objective now is to give the gist of the technical development in order
to have at least an intuitive understanding of the choices behind the design of our
estimator (14). We measure computational cost in terms of the elementary random
variables simulated.

Theorem 1 Let p be the cost required to generate M so that V (x), defined in (14),
has a computational cost equal to C = ZiL:I pi + 1 (where L is independent of
P1, P2, . .., Which are i.i.d. copies of p). Let (Vi (x),Cy), (V2 (x), Cy), ... beiid.
copiesof (V (x),C)andsetT, = Ci + ---+ C, withTy = 0. Foreachb > 0 define,
B (b) = max{n > 0: T, < b}, then we have that

f(x)=E(V (x)) and Var (V (x)) < 0. (16)
Moreover,
b 1 B(b)
\/E (or) - Togloglog (&) <B @ ; Vi) — f (x)> = N (0, Var (V (x))).

Before we discuss the analysis of the proof of Theorem 1, it is instructive
to note that the previous result can be used to obtain confidence intervals for
the value of the density f (x) with precision ¢ at a computational cost of order
0 (8’2 logloglog (1/ 8)), given a fixed confidence level (see Sect.4 for an example
of how to produce such a confidence interval).

The quantity B (b) denotes the number of i.i.d. copies of V (x) which can be sim-
ulated with a computational budget b, so the pointwise estimator given in Theorem 1
simply is the empirical average of B (b) i.i.d. copies of V (x) .

The rate of convergence implied by Theorem 1 is, for all practical purposes, the
same as the highly desirable canonical rate O (8’2), which is rarely achieved in
complex density estimation problems, such as the one that we consider in this paper.

3.1 Sketching the Proof of Theorem 1

At the heart of the proof of Theorem 1 lies a bound on the size of |4, (x)|. For
notational simplicity, let us concentrate on |4, (0)| and note that for any 8 > 1

-1 B
1A, 0)F < ” <Z X ||> (17)

‘ IM]| IM]| P
M+ [[M|[8,41 [IM][9 + ||M]|5,
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We have argued that, because N has finite moments of any order, the random variable
vazl || Xk|l, is easily seen to have finite moments of any order. So, after applying
Holder’s inequality to the right-hand-side of (17), it suffices to concentrate on esti-

mating, for any g > 1,
ﬁq> 1/

Bq 1/q

1 1
E —
(‘IIMlld1 + 81 M1+ 6,

(Sn - 5n+1
(M 19=1 4 8, 11) (IIM][4=" + 5,)

Let us define )

= 5}1 - 8” ~ 52 '
a(n) +l1 "loglog (n) - log (n) - n

(18)

and focus on

B 1/q
1 q

‘ (MU= + 8pr) (1M1= + 8,)

D,p(0):=E (19)

Assuming that M has a continuous density in a neighborhood of the origin (a fact
which can be shown, for example, from (2), using the Gaussian property of the X,,s),
we can directly analyze (19) using a polar coordinates transformation, obtaining that
for some k > 0

g > f@a-o)ri!
D, ,0) <« drd?, (20)
B Bq Bq
0 Joerit (rdat 4 8,00)" (r! +8,)

where .#?~! represents the surface of the unit ball in d dimensions. Further study of
the decay properties of f (r - §) as r grows large, uniformly over 6 € .7¢~1, allows
us to conclude that

rdfl

o0
DY, (0) <’ f
B 0 (rd_l + 5”+1)ﬁ[1 (rd_l 4 8”)5‘1

dr, 1)

for some «’ > 0. Applying the change of variables r = u8,1,/ “= (o the right-hand
side of (21), allows us to conclude, after elementary algebraic manipulations, that

D, () = 0 (32/4-051)

therefore concluding that
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B 8n = Sn ! d/(qd—1)-28
E(Aa, O)=0(|—F5—) 8/ . (22)

Setting B = 1 we have (from (18) and the definition of §,) that

Y ElA,Oh=0 (Z 1 aj/(‘”d“”) <oo, (23)

= = loglog (n) - log (n) - n

because d/(d — 1) > 1 and g > 1 can be chosen arbitrarily close to one. This esti-
mate justifies the formal development in (15) and the fact that EV (x) = f (x).
Now, the analysis in [14] states that Var (V (x)) < oo if

2

n>1

E|4, )

24
g (n) 9

Once again, using (22) and our choice of g (n), we find that (24) holds because of
the estimate

Z n -log (n) - loglog (n) §/@@-1)

560 < 00, 25)
(loglog (n) - log (n) - n)

n>1

which is, after immediate cancellations, completely analogous to (23).

Finally, because the cost of sampling M (in terms of the number of elementary
random variables, such as multivariate Gaussian random variables) has been shown
to have finite moments of any order [11, Theorem 2.2], one can use standard results
from the theory of regular variation (see [16, Theorem 3.2]) to conclude that

L
P (Z pi+1> r) ~ P (L >1t/E(p) ~ E (p1) 1" log (1) loglog (",

i=1

ast — 00. Now, the form of the Central Limit Theorem is an immediate application
of Theorem 1 in [18].

4 Numerical Examples

In this section, we implement our estimator and compare it against a conventional
kernel density estimator. We measure the computational cost in terms of the num-
ber of independent samples drawn from Algorithm M. This convention translates
into assuming that E(p;) = 1 in Theorem 1. Given a computational budget b, the
estimated density is given by
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Fig. 1 The estimated three-dimensional joint density of a max-stable process using our algorithm

2OV (x)

fo(x) = B0

According to Theorem 1, we can construct the confidence interval for underlying
density f(x) with significance level « as

(o) = 2up$va®), o) + zapiv/a®)).

where z,/, is the quantile corresponding to the 1 — «/2 percentile,

N 2
S (Vi = foo)
B(b)

§7 =

’

and
logloglog (b)

a(b) = 3

We perform our algorithm to estimate the density of the max-stable process. We
assume that 7 = [0, 1] and X,,(-) is a standard Brownian motion. We are interested
in estimating the density of M = (M (1/3), M(2/3), M(1))T. That is, the spatial
grid is (1/3,2/3, 1). The graph in Fig. 1 shows a plot of the density on the set {x €
R3:x,€(=2,2),x3 € (=2,2),x3 = 0}. Our estimation of this three-dimensional
density has a computation budget of B = 10° samples from Algorithm M.
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Table 1 Density estimation with our algorithm

Values (x) 0,0,0) (0,0.5,0) (0.5,0,0) (0, —0.5,0) (—0.5,0,0)
est. density 0.2126 0.106 0.1292 0.1039 0.1439
frx)

Lower CI 0.1916 0.0971 0.1180 0.0947 0.1311
Upper CI 0.2336 0.1149 0.14036 0.1131 0.1567
Relative error |5.05% 4.29% 4.41% 4.54% 4.53%

Table 2 Density estimation with KDE

Values (x) (0,0,0) (0,0.5,0) (0.5,0,0) (0,—0.5,0) (-0.5,0,0)
est. density 0.2163 0.0846 0.1143 0.0938 0.1084
fK DE ()

Lower CI 0.1953 0.0712 0.0999 0.0800 0.0934
Upper CI 0.2373 0.0980 0.1287 0.1076 0.1234
Relative error |4.94% 8.07% 6.43% 7.51% 7.05%

We calculate the 95% confidence interval of the density on several selected values
of the process M (-).

As a comparison, we also calculate the 95% confidence interval of the density
using the plug-in kernel density estimation (KDE) method with the same amount
(b = 10°) of i.i.d. samples of M. We use the normal density function as the kernel
function and select the bandwidth according to [17]. The estimator is obtained as
follows. Sample MV, M@ ... M@ ii.d. copies of M, let h,, = b~/24+D and
compute the sample covariance matrix, 3, based on (M, M@, ... M@). Then,

let
f (x) = E ¢ ( 1 (1)>
d ’

bl] b

where A = ¥ /det|2|. We apply the method from [6] to evaluate the corresponding
confidence interval, thereby obtaining the estimates shown in Tables 1 and 2.

From the above tables, we can see that our algorithm provides similar estimates to
those obtained using the KDE. However, our estimator also has a smaller relative error
when the estimated value is relatively small. Also, as discussed in [6], KDE is biased,
and one must carefully choose the bandwidth to obtain the optimal convergence rate
of mean squared error. In contrast, the construction of confidence intervals with our
estimator is straightforward, with a significantly better convergence rate.
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5 Appendix: A Detailed Algorithmic Implementation

In order to make this paper as self-contained as possible, we reproduce here the
algorithms from [11] which allow us to simulate the random variables Nx, N4, and
N,, jointly with (A,),<y and (X,,),<n-

5.1 Simulating Last Passage Times of Random Walks

Define the random walk S, = yn — A, forn > 0. Note that ES,, < 0, by our choice
of y < E (A}). The authorsin [11], argue that the choice of y is not too consequential
so we shall assume that y = 1/2.

Here we review an algorithm from [11] for finding a random time N such that
S, < Oforall n > Ng. Observe that Ng = Ny4.

The algorithm is based on alternately sampling upcrossings and downcrossings
of the level 0. We write S&’ = 0 and, for i > 1, we recursively define

£ = inf{n > gﬁ_l 1 S, <0} ifgltl < 00
! 00 otherwise

together with

S'Jr _ infiln > &7 :S, >0} if§ <oo
' 00 otherwise.
As usual, in these definitions, the infimum of an empty set should be interpreted as
0o. Writing
Ns =sup{§, :§, < oo},

we have by construction S, < 0 for n > Ng. The random variable Ng — 1 is an
upward last passage time:

Ng—1=sup{fn >0:S5, >0}

Note that 0 < Ng < oo almost surely under P since (S,),>¢ starts at the origin and
has negative drift. We will provide pseudo-codes for simulating (Si, ..., Syy+¢) for
any fixed ¢ > 0, but first we need a few definitions.

First, we assume that the Cramér’s root, 6 > 0, satisfying E (exp(0S;)) = 1 has
been computed. We shall use P, to denote the measure under which (4,),-; are
arrivals of a Poisson process with unit rate and Sy = x. Then, we define P? through an
exponential change of measure. In particular, on the o -field generated by S, ..., S,

we have
X

Py

= eXP(—G(Sn —X)).



92 J. Blanchet and Z. Liu

It turns out that under P?, (Ay),>1 corresponds to the arrivals of a Poisson process
with rate 1 — 0 and the random walk (S,,),> has a positive drift.

To introduce the algorithm to sample (Sj, ..., Sy,+¢) we first need the following
definitions:

" =inf(n>0:S5,<0}, tF=inf{n>0:S, >0}

Forx > 0,itis immediate that we can sample a downcrossing segment Sy, . .., S;-
under P, due to the negative drift, and we record this for later use in a pseudocode
function. Throughout our discussion, ‘sample’ in pseudocode stands for ‘sample inde-
pendently of anything that has been sampled already’.

Function SAMPLEDOWNCROSSING(x): Samples (Si, ..., S;-) under P, for x
>0

Step 1:  Return sample Sy, ..., S;- under P,.

Step 2: EndFunction

Sampling an upcrossing segment is more interesting because it is possible that
T = 00. So, an algorithm needs to be able to detect this event within a finite amount
of computing resources. For this reason, we understand sampling an upcrossing
segment under P, for x < 0 to mean that an algorithm outputs S, ..., Sz+ if t+ <
00, and otherwise it outputs ‘degenerate’. The following pseudo-code samples an
upcrossing under P, for x < 0.

Function SAMPLEUPCROSSING(x): Samples (S, ..., S;+) under P, for x < 0
Step 1: § < sample Sy, ..., S;+ under Pf

Step 2: U < sample a standard uniform random variable

Step 3: If U < exp(—0(S;+ — x))

Step4: Return S

Step 5: Else

Step 6:  Return ‘degenerate’

Step 7: EndIf

Step 8: EndFunction

We next describe how to sample (Si)i=1....., from P, conditionally on t+ = oo
for x < 0. Since T+ = oo is equivalent to sup;_, Sy < 0 and sup,., Sy < O for any
€ > 1, after sampling S, ..., S;, by the Markov property we can use SAMPLE-
UPCROSSING(S;) to verify whether or not sup,. , Sy < 0.

Function SAMPLEWITHOUTRECORDS (x, £): Samples (S;)r—1
tt=ooforf>1,x <0

Step 1: Repeat

Step 2: S < sample (Sg)k=1... under P,

Step 3: Until sup; ; ., Sk < 0 and SAMPLEUPCROSSING (S;) is ‘degenerate’

Step 4: Return §

Step 5: EndFunction

¢ from P, given

.....
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We summarize our discussion with the full algorithm for sampling (S, . . . , Sng+¢)
under P given some £ > 0.

Algorithm S: Samples S = (So, ..., Sng+¢) under P for £ > 0
# We use S.nq to denote the last element of S.
Step 1: § < [0]
Step 2: Repeat
Step 3:  DowncrossingSegment <— SAMPLEDOWNCROSSING (Senqg)
Step4: S <« [S,DowncrossingSegment]
Step 5:  UpcrossingSegment <—SAMPLEUPCROSSING (S¢pq)
Step 6:  If UpcrossingSegment is not ‘degenerate’
Step 7: S < [§, upcrossingSegment]
Step 8: EndIf
Step 9:  Until UpcrossingSegment is ‘degenerate’
Step 10: If £ > 0
Step 11: S <« [S,SAMPLEWITHOUTRECORDS (Seng, £)]
Step 12: EndIf

5.2 Simulating Last Passage Times for Maxima of Gaussian
Vectors

The technique is similar to the random walk case using a sequence of record-breaking
times. The parameter a € (0, 1) can be chosen arbitrarily, but [11] suggests selecting
a such that

_ o, N
exp (Za—‘ (am"’(f/“)) n ff_) e [(Al exp(uxnoo)) } |
a do /a a? y

where @ (-) is the cumulative distribution function of a standard Gaussian random
variable and @ = 1 — .

Now, assume that iy > 0 is given (we will choose it specifically in the sequel).
Let (X,)n>1 bei.i.d. copies of X and define, fori > 1, a sequence of record breaking
times (1);) through

_Jinf{n > mi—y @ [ Xullee > alogn} if n;—y < 00
"7 oo otherwise.

We provide pseudo-codes which ultimately will allow us to sample (Xi, ...,
X ny+¢) for any fixed £ > 0, where

Nx = max{n; : n; < oo}.
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First, we shall discuss how to sample (X,,) up to a ;. In order to sample n;, 9 = ng
needs to be chosen so that P (|| X ||, > alogn) is controlled for every n > ng. Given
the choice of a € (0, 1), select ng such that

d5(alogn0 3 E) - l zc/)(&/a).

o a) 2V 2 0o/a
Define
T,, = inf{k > 1 : || X¢llo > alog(ng + k)}. (26)
We describe an algorithm that outputs ‘degenerate’ if 7,,, = oo and (X1, ..., X7, )
if T, < oo.

First, we describe a simple algorithm to simulate from X conditioned on || X || o, >
alogn. Our algorithm makes use of a probability measure P™ defined through

dP™ o S 1(|x()] > a logn) .
dP >4 P(IX (1) > a logn)

It turns out that the measure P approximates the conditional distribution of X
given that || X ||, > alogn for n large.

Now, define w/ (1) = Cov(X (¢), X (1;))/Var (X (¢;)) and note that X (-) — w" (-)
X (t,) is independent of X (¢,) given v. This property is used in [11] to show that the
following algorithm outputs from P . We will let U be a uniform random variable
in (0, 1) and J is independent of U and suchthat P (J =1)=1/2= P (J = —1).)

Function CONDITIONEDSAMPLEX (a, 7): Samples X from P
Step 1: v <— sample with probability mass function

P(|X(t))| > alogn)
B Z?=1 P(|X ()| > alogn)

P =)

Step 2: U < sample a standard uniform random variable

Step3: X (t,) < o(t,)-J - @ (U + (1 —U)® (a (logn) /o(t,)))#Conditions
on |X(t,)| > alogn

Step 4: Y < sample of X under P

Step 5: Return Y () —w' ()Y (t,) + X (1)

Step 6: EndFunction

We now explain how CONDITIONEDSAMPLEX is used to sample 7,,, . Define, for
k>1,
Sy & (@log(no + 5)) /5)ds

Jo° #((alog(ng + 5))/o)ds

8no (k) =
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where ¢ (x) = d®(x)/dx. Note that g,,,(-) > 0 defines the probability mass function
of some random variable K. It turns out that if U ~ U (0, 1) then we can sample

o7 T—1 — (alogny o
K = |exp a—2+;(p Uo > _Z —no | .

The next function samples (X1, ..., XTn]) for ny > no.

Function SAMPLESINGLERECORD (a, ng, n1): Samples (X, ..., XTnl) for a €
0,1),n1 2 no =0

Step 1: Sample K

Step 2: [ X1, ..., Xk—1] < i.i.d. sample from P

Step 3: Xx <« CONDITIONEDSAMPLEX (a, n; + K)

Step 4: U < sample a standard uniform random variable

Step 5: If [|Xill<alog(n,+k) for k=1,...,K—1 and U g,,(K) <
dP/dP"+E (X k)

Step 6: Return (X4, ..., Xk)

Step 7: Else

Step 8: Return ‘degenerate’

Step 9: EndIf

Step 10: EndFunction

We next describe how to sample (X )i=1. ...,
simple task because the X,,s are independent.

» conditionally on 7,,, = oo. Thisis a

Function SAMPLEWITHOUTRECORDX (n1, £): Samples (X;)i—;
allyon 7, =ocoforf > 1

Step 1: Repeat

Step 2: X < sample (Xy)i=1,.. ¢ under P

Step 3: Until sup; ., ., [Xx —alog(n; +k)] <0

Step 4: Return X

Step 5: EndFunction

¢ condition-

.....

We now can explain how to sample (X1, ..., Xn,+¢) under P given some £ > 0.
The idea is to successively apply SAMPLESINGLERECORD to generate the sequence
(n; : 1 > 1) defined at the beginning of this section. Starting from ny = n¢, then n;
is replaced by each of the subsequent 7;s.

Algorithm X: Samples (X, ..., Xn,+¢) givena € (0,1),5 > 0,¢£ >0
Step 1: X <[], n < ng
Step 2: X <« sample (Xj)i=1
Step 3: Repeat

Step 4: segment <— SAMPLESINGLERECORD (a, ng, 1)

» under P

yeeey

Step 5: If segment is not ‘degenerate’
Step 6: X <« [X, segment]
Step 7: n < length(X)

Step 8: EndIf
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Step 9: Until segment is ‘degenerate’

Step 10: If £ > 0

Step 11: X <« [X, SAMPLEWITHOUTRECORDX (77, £)]
Step 12: EndIf

5.3 Algorithm to Sample X1,...,Xn, N

The final algorithm for sampling M, X, ..., Xy, N is given next.

Algorithm M: Samples M, X, ..., Xy, N givena € (0,1),y < E(A|),ando
Step 1: Sample Ay, ..., Ay, using Steps 1-9 from Algorithm S with S, = yn —
A,.
Step 2: Sample X, ..., Xy, using Steps 1-9 from Algorithm X.
Step 3: Calculate N, with (9) and set N = max(Ny4, Nx, N,).
Step4: If N > Ny
Step 5: Sample Ay, 41, ..., Ay as in Step 10-12 from Algorithm S with
S, =yn—A,.
Step 6: EndIf
Step 7: If N > Ny
Step 8: Sample Xy, +1, ..., Xn asin Step 10-12 from Algorithm X.
Step 9: EndIf
Step 10: Return M (#;) = max;<,<y {—log A, + X,,(t;) + n(t;)}fori = 1,...,d,
and X, ..., Xy, N.
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