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Abstract. MASON is a widely-used open-source agent-based simulation
toolkit that has been in constant development since 2002. MASON’s
architecture was cutting-edge for its time, but advances in computer
technology now offer new opportunities for the ABM community to scale
models and apply new modeling techniques. We are extending MASON
to provide these opportunities in response to community feedback. In this
paper we discuss MASON, its history and design, and how we plan to
improve and extend it over the next several years. Based on user feedback
will add distributed simulation, distributed GIS, optimization and sen-
sitivity analysis tools, external language and development environment
support, statistics facilities, collaborative archives, and educational tools.
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1 Introduction

MASON is an open source single-process simulation core and visualization toolkit
in Java, designed to be used for a wide range of models, but with a special
emphasis on agent-based models involving up to millions of agents. MASON has
support for geographical information systems (GIS) and social networks, among
other areas. Agent-based models (or ABMs) have taken hold not just in the
sciences [17, 18, 10], but also in engineering areas such as distributed systems,
swarm robotics, multiagent learning, and artificial life: for example, swarms of
drones, driverless cars, air traffic control, and factory floor robots [11, 19, 16].
MASON was designed to serve both of these worlds.

Swarm-style multiagent simulation toolkits have developed along two lines.
The first line to emerge were libraries geared for easy development of simple
models. These toolkits usually were single-threaded, generally tied the model to
its visualization and other facilities, and often deemphasized efficiency. Examples
include SWARM [9], NetLogo [5], and perhaps early versions of Repast [7].
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Fig.1: Model of impact of climate Fig.2: MASON running on-board col-
change on Canadian communities [14].  laborative real time soccer robots [22].

The second line consisted of tools meant for large, complex simulations that
might be run many times. These toolkits emphasized efficiency and extensibility
more heavily, but were still generally single-process. MASON was among the first
toolkits in this second line, and introduced many (for ABMs) unique features,
including multithreaded models, separation of model and visualization, fully
self-contained models, model serialization and migration, 3D visualization, and
an orthogonal, consistent, and small design emphasizing efficiency. Other toolkits
(for example Repast) have also advanced in many of these areas since then.

As computational cost decreases and models become more complex, we think
that a new trend is emerging in ABM models: a third generation of simulation tools
which give multiagent systems researchers access to high performance distributed
simulation and the capabilities made possible by it: such as distributed GIS
models and automated model validation and optimization. Some high-profile
tools have made strides in some of these directions (such as FLAME [4] and
Repast HPC [8], among others). At the same time, these third-generation toolkits
must be clean, easily customized, and provide significant coding support. It would
be desirable, though challenging, to marry these features with the traditional
ease of use and accessibility afforded by some earlier systems.

Following the recommendations of a 2013 MASON community workshop [20],
we are extending MASON to a full-featured third-generation toolkit. In this
paper we discuss MASON’s history, its architecture, where we think it needs
improvement, and our plans for enhancing MASON over the next few years.

2 Development History

Though it has found use in the social science and computational biology ABM
fields, MASON was originally meant for multirobotics and multiagent learning,
and to evaluate evolved swarm behaviors produced by the ECJ evolutionary
computation toolkit [3]. However after discussion with the GMU Center for Social
Complexity, MASON’s team realized that the modeling overlap between swarm
robotics, Al, and ABMs in the social sciences was unusually high, and so decided
to create a general-purpose library to serve the ABM community writ large.
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Fig. 3: Modeling the spread of cholera in the Fig.4: Box-pulling model
Dadaab refugee camp complex in Kenya [15]. with 625 swarm robots [21].

MASON had several design goals from the very beginning. First, MASON
was designed to have a small, high-performance, self-contained simulation core
so that many models could be run in parallel, or could involve up to millions of
agents. Second, MASON was designed to produce guaranteed identical results
regardless of architecture when possible. Third, MASON was created with a
Model-View-Controller (MVC) architecture with complete separation between
the model and the visualization, and with model serialization. Fourth, as it came
from the robotics community, MASON was meant to support a wide range of
visualization facilities, including both 2D and 3D support. Fifth, MASON was
designed to be very easily modified and extended.

These goals are hardly unusual in the general simulation community. However
to our knowledge, among the major ABM toolkits at the time (such as SWARM,
Repast, NetLogo and Ascape [1]) MASON’s combination of design goals was
original. MASON was released at Agent 2003, and we think it has had a significant
impact on both the design and implementation of ABM tools since then.

Because of its emphasis on customization, efficiency, and generality, MASON
has been used in a wide range of models, from small to very large, and in fields
from robotics to the social sciences. As illustration, Figures 1-4 show four uses
drawn from our own experience. For example, we have used MASON to build a
10-million agent model of permafrost thawing and its consequences on Canadian
communities [14] (Figure 1); and we have also used MASON running on-board
cooperative soccer-playing robots during RoboCup [22] (Figure 2).

3 MASON’s Design

As a roughly MVC architecture, MASON is broken into two pieces, as shown in
Figure 5. The first part is the model (the simulation proper) and the second part
is the visualization. Unless one chooses to have model objects display themselves,
the model and visualization are entirely separated, enabling model serialization
and the removal or reinstatement of the visualization mid-run.
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Fig. 5: Illustration of MASON’s Top-Level Architecture

Model and Visualization A MASON simulation is encapsulated in a top-level
model object which contains a simple real-valued time schedule on which are
registered one or more agents to be called at some time in the future. Additionally,
the model may hold one or more fields to represent space. MASON provides
many fields, such as square or hex grids of objects or values, continuous space,
and graphs or multigraphs. Many fields can be 2D or 3D; bounded, toroidal, or
unbounded; and sparse or dense; and you can create your own as you see fit. Last
but not least, MASON provides utilities for multithreading and a high-quality
random number generator. Models can be fully serializable, self-contained, and
capable of running side-by-side in multiple threads or in the same thread.

MASON provides 2D and 3D visualization tools, plus plug-in visualization
facilities such as for GIS. Model visualization is encapsulated in a special top-
level object. This contains a controller whose job is to start, stop, and otherwise
manipulate the schedule. The most common controller is a window called a
console. The controller also manages some number of windows called displays
that handle 2D or 3D visualization. A display helps the user manipulate and
visualize various fields by stacking together one or more field portrayals. A field
portrayal often portrays individual objects or values in fields by calling forth
a custom simple portrayal designed to visualize that particular object or value.
Objects may choose to portray themselves as well. If the user selects portrayed
objects with the mouse, a simple portrayal may create inspectors to provide
object details, trace the objects through charts and graphs, and so on.

Utilities and Extensions MASON has many utilities to support model design.
These include random number distributions, Java Bean Properties inspectors, GUI
widgets, movie and picture generation, and chart creation. Several of MASON’s
utility objects have since found their way into other ABM toolkits (like NetLogo).
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Finally, MASON is often extended to serve special functions. Foremost is
GeoMASON, which adds high-quality GIS capabilities to MASON, including
first-in-class raster and vector data model integration, standardized data and file
formats, query algorithms, visualization, and integration with external GIS tools.
GeoMASON sits atop the Java Topology Suite (JTS).

MASON is also integrated with ECJ [3], a popular, massively distributed
evolutionary computation toolkit with which MASON was intended to dovetail.
ECJ can be used to optimize ABM models in parallel, which are then assessed
on-the-fly in MASON. MASON also has extension libraries for social networks
and for 2D rigid body kinematics, among other tools.

Finally but critically, D-MASON [13] extends MASON into a distributed
model toolkit intended to run over a large number of machines. When developing
D-MASON, the University of Salerno chose MASON as its target platform largely
because of its emphasis on ease of extensibility.

Coding Style MASON was written in Java because ECJ was in Java. This is not a
controversial decision: Ascape, Repast, and NetLogo also target the Java Virtual
Machine. Java has enabled MASON to be portable, provide replicable code,
and be efficient. But MASON lacks certain hallmarks of modern Java, such as
generics, annotations, and lambdas. Some of this is cargo-cult programming, but
much of it is due to efficiency considerations. For example, MASON has a special
replacement for java.util.ArrayList, because until recently ArrayList’s get(),
set(), and add() methods had flaws which prevented them from being inlined.
HotSpot has since worked around these errors, and so going forward we may adopt
ArrayList, along with similar workarounds obviated by recent Java improvements.

4 Where is MASON Going?

Taking a critical look at MASON, there are many opportunities for improvement.
It is now over 15 years old, and was originally developed for Java 1.3, and so has
warts and misfeatures stemming from its age. While reasonably high performance,
it is also still fundamentally a non-distributed toolkit. And it is missing important
functionality, such as good statistics tools, a testing facility, and so on. Going
forward, we will be making many improvements to the system.

In 2013 we organized an NSF-sponsored workshop [20] that proposed nine
community recommendations for how MASON could be enhanced to assist in
cutting edge research in the future:

1. Give MASON better external language support and plugins for integrated
development environments (IDEs).

Add advanced output and statistics architectures.

Add parallel and distributed facilities.

Upgrade MASON to reflect recent Java language changes.

Add a testing regimen.

S Gk LN

Identify facilities to make MASON more useful to the science and technology
education community.
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7. Add collaborative archives for the MASON community to share models.
8. Add automated validation and parameter sweeping.
9. Improve MASON’s GIS support and integrate it with distributed capabilities.

After the workshop, we applied for and received a three-year NSF grant
(1727303) to improve MASON along these lines, and are now in its second year.
Following the recommendations above, our plans to improve MASON fall into
four areas. First, we are making MASON more robust. Second, we are building a
distributed version of the software (including distributed GIS support) that runs
over MPI on cloud computing platforms. Third, we are adding a variety of tools
to make MASON more friendly to coders. Fourth, we intend to make MASON
more friendly to the ABM community at large. We discuss these goals below.

4.1 Making MASON More Robust

Like much open source research software, MASON was built with few tests or
automated quality control checks. Fortunately MASON has exhibited few serious
bugs over the years, but it badly needs a testing harness. This is an interesting
challenge for stochastic models because of the semi-random nature of the results
generated. When results differ from expected results, is this because of a bug (or
bug-fix) or is it due to the vagaries of the random number generator?

We are constructing a test harness that will run MASON through a battery of
parameters and compare them with expected outputs. This will take advantage
of MASON'’s replicability such that, given a fixed set of parameters and random
number generator seeds, the outputs should be identical. We are building unit
tests for MASON, and are devising stochastic distribution-based tests using
common MASON models. These tests will be run many times over a large
number of random number generator seeds. If changes cause distributions (mean,
variance, etc.) to deviate significantly, this will raise a flag.

4.2 Making MASON Distributed

This task will consume the majority of our efforts over the next few years, and
entails an integrated distributed model facility, distributed and improved GIS,
and both large- and small-scale model optimization and validation. To support
massively scaled agent-based models, we want MASON to take advantage of
many compute cores by distributing agents and allowing them to run in parallel.
The potentially high degree of coupling (due to arbitrary and dense agent-agent
interaction) in ABM scenarios like social networks poses a challenge to distributed
simulation as the interprocess communication can overwhelm the work done on
individual cores. However many ABM models are distributed spatially, which
can be straightforwardly distributed. We will target distributed spatial scenarios
but aim to make it possible to distribute social networks, etc. when feasible.
We also recognize that distributing simulations presents a brittle abstraction
to the model developer: to achieve increasing speedups, he generally must cater
more and more to the specifics of the underlying distribution system. Many
modelers will not wish to do this. Our goal will be to provide multiple APT layers,
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whereby a modeler can choose to make his model distributed with few changes
to the original, or (if he wishes) delve deeper into the details of distributed
simulation in order to achieve higher performance.

Approach Our work builds on D-MASON, which partitions the simulation space
into regions, and assigns to agents in each region a worker to manage their
scheduling, migration, and regional synchronization. A multicast channel (or
topic) is assigned to each region, and workers subscribe to topics associated with
the regions that overlap with their interest areas in order to receive relevant
messages. Although D-MASON is an important first step towards a distributed
MASON, it uses a simple space partitioning approach that is efficient for local
communication, but inefficient for global communication.

The new distributed version of MASON maintains much of the publish-
subscribe approach of D-MASON. Our current efforts are based on Parallel
Discrete Event Simulation (PDES), a robust and scalable approach for distributed
situation [12]. A PDES simulation consists of a distributed set of logical processes
(LPs) executing in parallel. LPs generate events that often need to be processed
by other LPs. The LP abstraction provides a clean and modular method for
achieving scalable performance.

Two major components in MASON’s distributed architecture are data sharing
between LPs and load balancing. In terms of data sharing, in distributed MASON,
the simulation field is partitioned into several axis-aligned (hyper)rectangular
regions. Each LP holds one region and processes all the agents that are located
in that region. The basic idea is to assign, when possible, each LP its own CPU
core. For performance reasons we use peer-to-peer message passing via MPI.

For many models, and notably spatially distributed models, MASON agents
most often need to access nearby data, known as their area of interest (AOI). To
support quick access of data within the AOI, each LP not only stores the data
in its own region, but also maintains a cache of some data from its neighbors,
called the halo area. Part of the LP’s own data is cached by its neighbor LPs.
This cache is called the shared area. The sizes of these two areas are defined by
AOI. After each simulation step, each LP will pull the data from its neighbors
into its halo area and at the same time send the data in the shared area to its
corresponding neighbors, in a process called halo exchange. Access of data outside
an agent’s AOI is supported via remote procedure calls (RPCs) between LPs.
Data is provided in a synchronous fashion, meaning the caller will get the value
once the RPC call returns.

Load balancing among active processors, where each LP tries to balance the
workload among its immediate members, is critical for performance. This is done
as follows. Each node measures its runtime every step, and when a node performs
load-balancing, it collects the runtimes from its neighbors. Based on the runtimes,
it chooses a neighbor and expands or shrinks its region such that the variance of
runtimes among the node and its neighbors is minimized. For speed in making
load-balancing decisions, we assume the runtime is linear in the size of the region.

Each partition adjustment can only shift the border by at most its own AOI to
avoid additional data exchange between nodes, since each node already has part
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of its neighbors’ data in its halo area. This restriction might seem to slow down
the load balancing, but we think that this is preferable because by limiting the
adjustment and avoiding additional data exchange, the overhead is minimized and
therefore the local load balancing can be done more frequently, better adapting to
the change in workload. Another optimization is to avoid expensive coordination
and synchronization activities by not allowing two neighboring LPs to perform
load-balancing at the same time. To enforce this, we have implemented a graph
coloring algorithm in the system so that at each step only the LPs with a
designated color may balance their loads with neighbors.

Purely local load balancing runs the risk of getting caught in a local optimum.
For this reason we plan to implement a hybrid local-global load balancing policy,
using a hierarchy of LPs in a tree-structure, such as a K-D tree or a Quad Tree.

Distributed GIS Support As part of making MASON distributed, it is crucial to
also make GeoMASON distributed. However GIS presents unique and difficult
challenges. Geospatial data generally comes in raster (grid) or wvector form.
GeoMASON raster data maps straightforwardly to MASON grid data structures
and so is easy to apply in a distributed fashion. But vector data can span large
areas: for example, assuming we are distributing spatially, a river or a road might
span our entire network of machines. We tackle this by breaking the vector data
into three kinds. Point data can be easily distributed using standard MASON
data structures. Most non-point data is static and immutable (roads, rivers): we
can simply give copies of it to every single processor. Finally, mutable non-point
data is typically static and ideally less common, so we may distribute it with the
non-point data but embed each such object with a pointer to a secondary object
located on a specific (distributed) machine where mutable information is held.

Distributed Optimization, Automated Model Validation, and Parameter Sweeping
A major challenge faced by multiagent simulation is the complexity of validating
models. MAS involves many heterogeneous variables, agents, agent behaviors,
and interactions, and the model developer only knows the proper settings for
some of these. To validate the model, one must optimize the remaining variables
so as to match known ground truth, a laborious task. Model validation is often
an optimization problem: the researcher hunts for parameter settings resulting in
a model with low output error, and which is insensitive to certain parameters.

As a massively parallel stochastic optimization tool, ECJ is designed for
exactly this task: the researcher defines known parameters and their values,
then optimizes the remaining variables by running many models in parallel on
back-end machines. MASON was designed from the ground-up to work with ECJ
in this regard, but at present the two can be integrated only with considerable
knowledge of both. We are working to make using MASON + ECJ for validation
as simple as writing some code to assign a fitness to a simulation result, and
then pressing a button on the MASON GUI. This is possible because MASON
models are entirely self-contained and serializable. When a model is started, it is
presented with a vector of parameters to use, and when it is done, it returns an
assessment of the resulting run. ECJ will do the rest of the work.
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Another common modeling task is sensitivity analysis. To address this, we will
soon be releasing a parameter-sweep facility in MASON in which you can specify
independent and dependent variables, then do parameter sweeps through the
independent variables while logging dependent variable results. This is available
in other tools (such as NetLogo): our goal is to initially permit parallelism and
ultimately cloud distribution of the simulations during the sweep.

4.3 Making MASON More Coder-Friendly

IDE Support We are building MASON tools for Eclipse, and potentially NetBeans.
First, we are adding code templates that allow users to generate code skeletons
for common MASON patterns. The goal is to reduce the drudgery in dealing
with MASON?’s high degree of boilerplate. Second, we are adding several wizards
that walk the user through the process of creating a model, where he can choose
from common model scenarios, parameters, and visualization options, and finally
generate easily modifiable model code. We currently have this working in-house.

External Language Support A common request has been to provide some degree
of external language support for MASON;, particularly for languages which target
the Java virtual machine (such as Jython, Scala, Clojure, and so on). This is
not difficult given that these languages have Java function call support. But the
primary difficulty is that many of these languages are slow in accessing Java data
directly, as they would need to do when working with MASON. We can at least
provide API support for the languages as a first step, then consider how we might
encapsulate common ABM coding patterns in MASON utility functions so as to
spend as much of the application runtime on the pure-Java side, where it is often
much more efficient. We have proof-of-concept support for several languages.

Output and Statistics MASON can make charts and graphs and track variables in
the GUI, but does not have library support to output statistics. We are remedying
this. We think the best way for an experimenter to do this is to have MASON
dump statistics into files designed to be directly entered into a tool such as
R [6]. But we will also consider integrating well-vetted implementations of basic
statistical analyses, such as descriptive statistics, difference tests, and confidence
intervals, perhaps from a library such as Apache Commons Math [2].

4.4 Making MASON More Community-Friendly

Collaborative Archives and Facilities One major goal in MASON is to allow people
to easily distribute and collaborate on public models. We presently offer several
ways to do this, including a contributions section in the MASON repository.
However, we want to go further. We hope to develop a special online repository
to enable researchers to distribute models as jar files. We are exploring how to
enhance MASON to advertise available models from this repository and enable
users to download and run them (taking a cue from similar facilities such as
in NetBeans). This would enable researchers to distribute models more easily,
and also give educators and new users immediate access to a large and useful
collection of educational demos and tutorials.
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Education Aids and Examples Building on the collaborative archive and improved
external language support, we hope to make MASON friendlier to science and
engineering education by extending MASON’s GUI to be more friendly to begin-
ning users, creating a “simple” restricted Java API to MASON for students to
use in lieu of the full APT (for building simple models), and adding a significant
number of new educational examples drawn from several disciplines.

4.5 Development Plan

Our three-year development plan is as follows. In all three years we will develop
distributed MASON and distributed GIS facilities. In the first year we have also
focused on automated model validation and GUI facilities. In the second year
we will work on the test harness and unit and integration tests, as well as the
collaborative archive. In the final year we will work on statistics utilities, external
language support, and educational aids.

5 Conclusion

Since its introduction in 2003 MASON has proven to be a successful open-source
agent-based modeling toolkit, with a particular emphasis on high performance,
flexibility, and ease of customization. But MASON can be improved in many
areas, including making it fully distributed, adding optimization and sensitivity
analysis, and making the tool more friendly to newcomers. These plans are
ambitious but achievable, and we hope that they will serve to make MASON a
strong foundation for ABM development over the next decade.

A critical part of this project is ABM community involvement. We are forming
a group of MASON power-users and critics to help us revise our approach, and
we invite interested modelers and developers to participate in the effort.
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