
A Coding Scheme for Reliable In-Memory

Hamming Distance Computation

Zehui Chen*, Clayton Schoeny*, Yuval Cassuto>, and Lara Dolecek*

*Department Electrical Engineering, University of California, Los Angeles
>Department of Electrical Engineering, Technion - Israel Institute of Technology

chen1046@ucla.edu, cschoeny@ucla.edu, ycassuto@ee.technion.ac.il, dolecek@ee.ucla.edu

Abstract—Computation-in-memory is a technique that has
shown great potential in reducing the burden of massive data
processing. Allowing for ultra-fast Hamming distance computa-
tions to be performed in-memory will drastically speed up many
modern machine-learning algorithms. However, these in-memory
calculations have not been studied in the presence of process
variabilities. In this paper, we develop coding schemes to reliably
compute, in-memory, the Hamming distances of pairs of vectors
in the presence of write-time errors. Using an inversion coding
technique, we establish error-detection guarantees as a function
of the number of errors and the non-ideality of the resistive
array memory in which the data is stored. To correct errors in
the vector similarity comparison, we propose codes that achieve
error correction and useful techniques for bit level data access
and error localization. We demonstrate the effectiveness of our
coding scheme on a simple example using the k-nearest neighbors
algorithm.

I. INTRODUCTION

With the current data deluge, it is imperative to have the

means to store and process vast amounts of high-dimensional

data. In order to tackle this challenge, novel memory mediums

with high density and low latency have been created, but

the bottleneck between memory and processor stile largely

persists [1]. In order to bypass this bottleneck, a revolutionary

idea of computation-in-memory has been proposed, in which

certain computations are performed in the physical memory

itself [2]. Computing similarity metrics between vectors is a

critical component in machine-learning algorithms used for

applications such as image recognition and natural language

processing [3], [4]. Recently, resistive memory has been shown

to have natural properties conducive to efficiently performing

Hamming distance calculations in-memory with low-level con-

ductance measurements [5].

Existing techniques for the computation of in-memory

Hamming distances have assumed that the data is stored

error-free [5]. Furthermore, although in-memory Hamming

distance computation offers promise of unprecedented latency

performance, data can only be accessed at vector level, not

the bit level. Thus, traditional coding theory based on bit

level information does not apply. It is necessary to rethink

code design and the role of coding when addressing the

robustness issue of in-memory Hamming distance computa-

tion. We propose coding techniques that enable in-memory

similarity computations in the presence of write-time errors;

thus our coding framework provides a promising alternative

to power hungry physical-level methods of protecting against

write-time errors. Our work will pave the way for future

practical implementation of in-memory Hamming distance

computation.

The content of this paper is organized as follows. Our

goal is first to provide a coding scheme to detect incorrect

Hamming distance calculation while still using low-level mea-

surements between vectors; then to provide coding scheme

to correct those incorrect calculations. In Section II, we

provide the necessary background about resistive memories,

in-memory Hamming distance calculations, and the source

of error. In Section III we establish the in-memory error-

detection capabilities based on inversion coding. In Section

IV, we construct a coding scheme for error correction along

with techniques for bit level data access and error localization.

We also demonstrate the effectiveness of our code on a simple

machine-learning example.

II. BACKGROUND

A. In-Memory Hamming Distance Computation

In resistive memory, memristors are placed at the intersec-

tions of a crossbar structure. The resistance of memristors,

high or low, represent two logical states [6], where the

Low/High conductance ratio is characterized by ✏. In this

work, we limit our operation with the resistive memory to

simply measuring the conductance between pairs of rows (and

pairs of sub-rows in Section IV).

We briefly review how to compute the Hamming distance in-

memory between pairs of vectors using a technique presented

in [5]. Let x and y be binary vectors of length n. The

normalized conductance measurement, G(x,y), can be viewed

as the output of a deterministic multiple-access channel with

binary vectors x and y as inputs. G(x,y) is calculated by

summing the outputs of the function f , detailed in Table I,

over each bit of x and y, i.e., G(x,y) =
Pn

i=1 f(xi, yi).

TABLE I: MAC output function

xi yi f

0 0 ✏

0 1 2✏

1+✏1 0

1 1 1

1713978-1-5386-1823-3/17/$31.00 ©2017 IEEE Asilomar 2017

Note that our information about vectors x and y is limited

solely to the normalized conductance measurement G(x,y).
Cassuto and Crammer showed that—with knowledge of the

Hamming weights—one can calculate the Hamming distance

between x and y as follows [5]:

D(x,y) =
1 + ✏

(1� ✏)2
[(1�✏)(W (x)+W (y))+2n✏�2G(x,y)],

(1)

where ✏ is a real-valued constant less than one greater than

zero, W (x), W (y) are the Hamming weights of x,y, respec-

tively, and D(x,y) is the Hamming distance between x and y.

The standard definitions of Hamming distance and Hamming

weight are used. Additionally, by using a reference vector, the

all-1s vector, it was shown in [5] that the Hamming weight of

a vector is found by evaluating

W (x) =
(1 + ✏)G(x,1)� 2n✏

1� ✏

.

Furthermore, coding strategies to calculate D(x,y) for a

variety of ✏ ranges and known weight conditions are derived

in [5].

B. Memory Error Source

In this paper, we consider errors due to process variability

in the write operation. The switching time of a memristor

follows a log-normal distribution with an exponential median

switching time dependent on the external voltage [7]. Two

common techniques used to mitigate write uncertainty are

increasing the voltage of the write and using a feedback

writing scheme [8]; however, these approaches are usually not

energy efficient [9]. Unsuccessful write operations will lead

to bit-errors when the former state of a memristor is different

from the data to be written.

In the following sections that provide analysis for the case

of t bit-errors, using the insights from [9], we assume the

locations of the bits in error are independent and uniformly

distributed. Specifically, in Section V, we use a binary sym-

metric channel (BSC) as our model for the bit-errors.

III. CODING FOR ERROR DETECTION

Let x̂ and ŷ be the (possibly noisy) vectors actually written

to the device when we intend to store vectors x and y,

respectively. The discrepancy between x̂, ŷ and x, y are

related through the number of bit errors t.
In this section, our goal is to determine the conditions

in which we can detect an erroneous D(x̂, ŷ) result based

on G(x̂, ŷ). The key to detecting the error is as follows.

We restrict the information written to be vectors with known

weight. That is, W (x) and W (y) are known and we further

assume them to be constants, wx and wy . We define an

augmented version of equation (1) in which we a priori know

the Hamming weights of x and y:

D̃(x̂, ŷ) =
1 + ✏

(1� ✏)2
[(wx+wy)(1�✏)+2n✏]�

2(1 + ✏)G(x̂, ŷ)

(1� ✏)2
.

(2)

It is useful to denote the difference in conductance mea-

surements between the noisy and the noise-free case as

∆G(x,y, x̂, ŷ) = G(x̂, ŷ)�G(x,y).

Similarly, let us define ∆D(x,y, x̂, ŷ), which is later used to

characterize bit errors, as follows:

∆D(x,y, x̂, ŷ) = D̃(x̂, ŷ)�D(x,y)

= D̃(x̂, ŷ)� D̃(x,y)

= �
2(1 + ✏)∆G(x,y, x̂, ŷ)

(1� ✏)2
, (3)

noting that D̃(x,y) = D(x,y) by definition.

For two vectors x, y, we define N00 to be the number of

element pairs that have xi = yi = 0 for i 2 {1, ..., n} and

similarly for N01, N10 and N11. Then by the definition of

G(x,y) we have

G(x,y) = N11 + (N10 +N01)
2✏
1+✏

+N00✏,

and similar expression can be derived for G(x̂, ŷ).

A. Single Error Analysis and Detection with Fixed Weight

Vectors

We now calculate how ∆G(x,y, x̂, ŷ) and ∆D(x,y, x̂, ŷ)
are affected by a single bit error, i.e. t = 1. Due to symmetry in

the function f , there are only four different fundamental types

of errors for a pair of elements xi and yi, (0, 0) ! (0, 1),
(0, 1) ! (0, 0), (0, 1) ! (1, 1) and (1, 1) ! (0, 1) which

we call them error types A, B, C, and D, respectively.

All other error types are expressed in terms of these four

error types. Each of these error types affects the value of

{N00, N01, N10, N11}. For example, an error that changes

(0, 0) into (0, 1) will increase N01 by 1, decrease N00 by 1

(and leave N10, N11 intact). Table II lists the resulting values

of ∆G(x,y, x̂, ŷ) and ∆D(x,y, x̂, ŷ) for each error type.

TABLE II: The 4 Types of Errors

Error Type (xi, yi) ! (x̂i, ŷi) ∆G(x,y, x̂, ŷ) ∆D(x,y, x̂, ŷ)

A (0,0) ! (0,1)
2✏

1 + ✏

� ✏

�2✏

1� ✏

B (0,1) ! (0,0) �

✓

2✏

1 + ✏

� ✏

◆

2✏

1� ✏

C (0,1) ! (1,1) �

✓

2✏

1 + ✏

� 1

◆

�2✏

1� ✏

� 2

D (1,1) ! (0,1)
2✏

1 + ✏

� 1
2✏

1� ✏

+ 2

Lemma 1. If one of x̂ or ŷ contains a single bit-error, i.e.,

D(x, x̂) + D(y, ŷ) = 1, then we determine that D(x̂, ŷ) 6=
D(x,y) for known W (x) and W (y) if 0 < ✏ < 1

3 .

Proof. If no error is present, we have D(x,y) =
D(x̂, ŷ) = D̃(x̂, ŷ), i.e ∆D(x,y, x̂, ŷ) = 0. As a re-

sult, ∆D(x,y, x̂, ŷ) 6= 0 implies D(x,y) 6= D(x̂, ŷ). For

0 < ✏ < 1
3 , each error type will have ∆D(x,y, x̂, ŷ)

assuming a non-integer value and in turns lead to non-

integer D̃(x̂, ŷ) because D(x,y) is always an integer and

1714

D̃(x̂, ŷ) = D(x,y) +∆D(x,y, x̂, ŷ). A single bit error can

thus be detected by first computing D̃(x̂, ŷ) and checking

whether it is an integer or not. ⌅

This process of error detection is later referred to as an

integer check. When error-free, D̃(x̂, ŷ) = D(x,y) provides

the desired output.

B. Inversion Coding

The single error detection capability is an inherent property

of the in-memory Hamming distance computation as described

in the previous section and requires no coding if the Hamming

weights of vectors are known. However, in most applications,

knowledge about the Hamming weights are not a priori

known. We use the following coding technique to force every

vector to have the same Hamming weight, thus enabling single

error detection for most applications [5].

Auxiliary Code 1. We define an inversion encoding of the

vector x to be xc = [x|¬x], where ¬x is the bitwise

complement of x and | denotes concatenation.

With Auxiliary Code 1, we have WH(xc) = wh = n for

x 2 {0, 1}n. The notation x and y from this point throughout

the paper is saved for general vectors with unknown weights

and the corresponding xc and yc are used to denote the

coded message with known weights wh = n constructed from

Auxiliary Code 1. Based on Lemma 1, single error detection

is achieved for the computation of D(x̂c, ŷc). After error

correction, which is discussed in Section IV, the resulting

D(xc,yc) can be used to recover the desired output D(x,y)
by noting the relation D(xc,yc) = 2D(x,y).
C. Multiple-Error Detection Capability

So far we have shown that single bit error can be detected

with the help of Auxiliary Code 1 by checking whether

D̃(x̂c, ŷc) is an integer or not. Next, we generalize the idea

of an integer check to multiple errors.

Lemma 2. If together x̂ and ŷ contain an odd number of bit-

errors t, i.e., D(x, x̂)+D(y, ŷ) = t, t odd, then we determine

that D(x̂, ŷ) 6= D(x,y) for the following constraint on ✏:

0 < ✏ <
1

2t+ 1
.

Proof. Define ei,p, i 2 {1, ..., t}, p 2 {xc,yc} to be the error

vectors corresponding to the i-th error in the vector indexed by

p. For example, if the i-th bit flip is at the j-th position of xc,

ei,xc
is the all zero vector with 1 at the j-th position and ei,yc

is an all zero vector. (We permit error at the j-th position in yc

but there will be another pair of error vectors corresponding

to it.) We further define ∆D(ei) to be the change in output

induced by ei,xc
and ei,yc

, i.e., ∆D(x,y,x+ei,xc
,y+ei,yc

).
The following relation is observed:

∆D(xc,yc, x̂c, ŷc)

=
t

X

i=1

[D̃(xc + ei,xc
,yc + ei,yc

)�D(xc,yc)]

=

t
X

i=1

∆D(ei).

Each ∆D(ei) can be viewed as the change of the output

for a single bit error, thus assuming the same value as the

last column in Table II. For 0 < ✏ <
1

2t+ 1
, D̃(x̂c, ŷc)

is non-integer because any odd t choices from those val-

ues of D(ei) will be summed to ∆D(xc,yc, x̂c, ŷc) where

0 < |∆D(xc,yc, x̂c, ŷc)| (mod 1) < 1. Here and elsewhere,

the operation x (mod 1) is defined as the fraction part of x.

As a result, any odd number of bit-errors can be detected by

integer check. ⌅

We now present the result for an even t number of errors.

Lemma 3. We denote the fraction of errors that are detectable

as rd(t). If together x̂ and ŷ contain an even number of bit-

errors t, i.e., D(x, x̂)+D(y, ŷ) = t, t even, and the channel

parameter satisfies 0 < ✏ <
1

2t+ 1
, then

rd(t) = 1�

�

t
t/2

�

2t
, t even.

Proof. For an even number of errors, some error patterns are

undetectable. We define tA,C to be the number of errors with

either type A or C and similarly for tB,D. Notice that error

type A and C have same non-integer parts in ∆D(ei) thus

contribute equally to ∆D(xc,yc, x̂c, ŷc), so do error type B

and D. The analysis on tA,C and tB,D thus covers all the

possible error combinations. The error pattern is undetectable

when tA,C = tB,D = t/2. By viewing this error detection

problem as a fair-coin flipping problem in which t/2 heads

and t/2 tails occur in t trials, we calculate the probability of

undetectable pattern occurring to be
�

t
t/2

�

/2t. When tA,C 6=

tB,D, let t0 = |tA,C � tB,D|. We have |∆D(xc,yc, x̂c, ŷc)|

(mod 1) = 2✏t0

1�✏
, 0 < t0  t. With 0 < ✏ <

1

2t+ 1
,

0 < |∆D(xc,yc, x̂c, ŷc)| (mod 1) < 1 which leads to error

detection. ⌅

IV. CODING FOR ERROR CORRECTION

Now that we have a coding scheme for detecting errors in

the calculation of D(x̂c, ŷc). Our final objective is to recover

D(xc,yc) correctly and then to recover D(x,y) (error correc-

tion). We first provide a technique that can narrow each errors

to two positions and then propose code schemes that have the

capability to further determine the exact location. Based on

another technique of bit value reading, error correction can be

achieved by knowing the location and value for each error.

A. Error Localization and Single Bit Value Reading

Our error detection is based on the recognition of non-

integer D̃(x̂c, ŷc). However, this doesn’t uniquely determine

the error type. For example, error type B and C both have non-

integer part 2✏
1�✏

but error type B increases D(x,y) by one

where error type C decreases D(x,y) by one. In principle, we

need bit-level information in order to recover D(x,y). This

section provides methods to access bit-level information while

still using the conductance measurement between two vectors.

1715

1) Error Localization: To recover D(xc,yc), we first need

to know the location of each bit flip. This can be achieved by

comparing the corrupted vector with other preset vectors and

infer information from the results.

Claim 1. Define L to be the set of vectors li 2 {0, 1}2n, 1 

i  n whose all bits are one except the the i-th and the (i+n)-
th bits. Also define 1 to be the all-1s vector with length 2n.

With n + 1 pairwise measurements between x̂c and vectors

in L [1, we can narrow the location of each error to two

positions, i and i+ n.

With the measurement of G(x̂c,1), we compute D̃(x̂c,1).
We perform n measurements between x̂c and each of the

vectors in L to get G(x̂c, li). Then D̃(x̂c, li) is computed

for all 1  i  n. Error localization is achieved by computing

∆Di(x̂c,1, x̂c, li) = D̃(x̂c, li)� D̃(x̂c,1) for all 1  i  n.

Let Ierror = {i 2 I|∆Di(x̂c,1, x̂c, li) =
4✏

1� ✏

+ 4} [{i 2

I|∆Di(x̂c,1, x̂c, li) =
4✏

1� ✏

}. There is an error either at

position i or at position i+ n for each i 2 Ierror.

By Auxiliary Code 1, for a given li, if both the i-th
and the (i + n)-th positions of x̂c are error-free, the error

patterns are (1,1) ! (0,1) and (0,1) ! (0,0) which result

in ∆Di(x̂c,1, x̂c,di) = 2✏
1�✏

+ 2. If a bit error occurs at

either the i-th or the (i + n)-th position of x̂c, then the

corresponding error patterns are two (1,1) ! (0,0) which lead

to ∆Di(x̂c,1, x̂c,di) = 4✏
1�✏

+ 4 for bit flip from 1 to 0 or

two (0,1) ! (0,0) with ∆Di(x̂c,1, x̂c,di) =
4✏
1�✏

for bit flip

from 0 to 1. If errors occur at both the i-th or the (i+ n)-th
positions of x̂c, we are unable to localize those two errors.

These error patterns are analyzed in later section.

2) Bit Value Reading: Since D(xc,yc) depends on both

vectors, xc and yc, we also need to have knowledge of the

corresponding bit values in ŷc. Next we propose a method to

infer bit value in vector, i.e., ŷc, using measurements between

vectors.

Claim 2. Define B to be the set of vectors bi 2 {0, 1}2n, 1 

i  2n whose bits are all one except the i-th bit. The i-th bit

value of a given vector ŷc can be inferred from two pairwise

measurements between, ŷc and bi; ŷc and 1.

Two measurements, G(ŷc,1) and G(ŷc, bi), are taken and

the corresponding D̃(ŷc,1) and D̃(ŷc, bi) are computed.

The inference of the i-th bit value in ŷc is based on

∆Di(ŷc,1, ŷc, bi) = D̃(ŷc, bi) � D̃(ŷc,1). For yc,i = 1,

the error pattern is (1,1) ! (1,0) with ∆Di(ŷc,1, ŷc, bi) =
2✏

1� ✏

+ 2 and for yc,i = 0, the error pattern is (0,1) ! (0,0)

with ∆Di(ŷc,1, ŷc, bi) =
2✏

1� ✏

.

B. Multiple Parity Check Codes for Error Correction

Using error localization and bit value reading, the two

possible error locations can be computed for a vector (say

xc), as well as the value at the corresponding positions of the

other vector (say yc). We then propose a code to reconcile

the ambiguity between the two positions. The goal of this

code is to correct a single bit error but we also leave rooms

for multiple error correction by design. We note that the exact

location for each error can be determined by an error detection

code that contains one of the locations.

Auxiliary Code 2. For vector x 2 {0, 1}n, the Multiple Parity

Check Coding with parameter nr (nr divides n) is constructed

as [x|r(x)] where r(x) 2 {0, 1}nr and the i-th element of

r(x) is r(x)i =
Pni/nr

k=n(i�1)/nr+1 xk for all 1  i  nr with

modulo 2 summation.

This code can be interpreted as a single parity check code

for each block xn(i�1)/nr+1, ..., xni/nr
with parity bit r(x)i,

thus single bit error is detectable per block. If this code is

applied on x (the first half of xc), the exact location of the

error is determined and the error is corrected. In order to read

bit values from r(x), we also append the inverse of r(x).

Code 1. To achieve error correction, we encode vector x 2

{0, 1}n to be [x|¬x|r(x)|¬r(x)] where r(x) is defined in

Auxiliary Code 2. This encoding of x is denoted as c(x).

This encoding is equivalent to [xc|r(xc)] where xc is

defined in Auxiliary Code 1. The caveat here is that although

c(x) = [xc|r(x)|¬r(x)] is the codeword stored in the resistive

memory, only xc is used in nominal operation of in-memory

Hamming distance computation (the parity parts r(x) are

only read when an error is already detected). As a result,

error correction capability requires the ability to measure the

conductance between two sub-vectors in the resistive memory

(assumed feasible for this subsection). The necessity of this

sub-vector measurement is shown in Lemma 4.

Lemma 4. Let c(x) = [xc|r(xc)] and c(y) = [yc|r(yc)]
where r is arbitrary an encoding that map xc, yc to

r(xc), r(yc). For dim(r(xc)) < dim(xc), D(c(x), c(y)) 6=
f(D(x,y)) for any bijective function f .

Proof. This lemma is proved by contradiction. Assume there

exist r and f such that D(c(x), c(y)) = f(D(x,y)). By

D(xc,yc) = 2D(x,y), we have

D(r(xc), r(yc)) = f(D(xc,yc))

Now consider the case where x = y, we have 0 = f(0) be-

cause xc = yc and r(xc) = r(yc). Then since dim(r(xc)) <
dim(xc), there exists r(xc) = r(yc), with xc 6= yc. This pair

of x and y lead to 0 = f(D(xc,yc)) with D(xc,yc) 6= 0,

which contradicts the notion that f is a bijective function. ⌅

Because of Lemma 4, in the nominal error-free case,

the desired output D(x,y) can not be computed from

D(c(x), c(y)). If only xc and yc are used for nominal op-

eration, by noting D(xc,yc) = 2D(x,y), the desired output

can be computed.

C. Multiple Error Correction Capability

We have shown Code 1 can correct a single error, now we

present the multiple error correct capability of Code 1. We

only consider the case that all t errors occur in xc. At the error

localization step, given t errors in xc, t pairs of possible error

1716

locations can be correctly located except for the specific case

in which two errors are exactly n apart. Denote the fraction

of error patterns that we can correctly localize by rl(t),

rl(t) =

Qt�1
k=0 2n� 2k

Qt�1
k=0 2n� k

, t < nr. (4)

After the location of each error is narrowed down to two

locations, the exact location can be determined using the parity

bits in r(x). However, Auxiliary Code 2 only provides single

error detection in each block, i.e., if two or more errors occurs

in the same block, we are unable to resolve the ambiguity of

the two locations and error correction can not be done. In

xc 2 {0, 1}2n, the subvectors xc,n(i�1)/nr+1, ..., xc,ni/nr
and

xc,n(i�1)/nr+1+n, ..., xc,ni/nr+n are considered to be in the

same block for 1  i  nr since they both rely on the parity

bit r(x)i. Define rc(t) to be the fraction of t error patterns

that are correctable given that the errors can be detected and

localized. We have

rc(t) =

Qt�1
k=0(2n�

2nk

nr
)

�

2n
t

�

t!
, t < nr (5)

Combining the discussions above with the rd(t) in section

III.C and define rd(t) = 1 for odd t, we have the following

claim.

Claim 3. Suppose t bit errors occurs in xc and r(xc) is error-

free, define R̄(t) to be the fraction of all error patterns that

we can correctly recover the original D(x,y). We have:

R̄(t) = rd(t)⇥ rl(t)⇥ rc(t).

R̄(t) can be viewed as the probability of recovery given

t errors in xc and no error in r(x). Our goal is to find the

probability of recovery given t errors in the whole sequence

c(x), denoted as R(t). We have

R(t) =
t

X

k=0

R̄(t� k)⇥

P{t� k errors in xc \ k errors in r(xc)}⇥

P{k errors in r(xc) not used for correction}

(6)

where we define R̄(0) = 1. The latter two probabilities,

denoted as P1(n, nr, t, k) and P2(nr, t, k), can be computed

as

P1(n, nr, t, k) =

�

2n
t�k

��

2nr

k

�

�

2n+2nr

t

� ,

and

P2(nr, t, k) =
k

X

j=0

�

nr

j

��

nr�t+k
k�j

�

�

2nr

k

� .

For example, when n = 64, nr = 8, we can calculate R(2) =
0.5435 and R(3) = 0.5932 which means our code can correct

more than half of double and triple errors. The multiple error

correction capability provided by our proposed code will make

in-memory Hamming distance computation more robust.

D. Benefits on a kNN Classifier

We test our coding scheme on the simple application of digit

recognition using k-nearest neighbor classifier. The testing and

training data sets are 64-bit bitmap images processed from

computer generated digits. We corrupt both the testing and

training sets by implementing a BSC channel with various

crossover probability p. The kNN classifier performs clas-

sification using Hamming as the distance metric with and

without the protection of our code. Experimental results have

shown the same performance of recognition under 3 times

higher crossover probability with the protection of our code.

This preliminary result shows that our code is promising

for error-tolerant in-memory Hamming distance computation

application.

ACKNOWLEDGMENT

Research supported in part by a grant from UC MEXUS

and an NSF-BSF grant no.1718389.

V. CONCLUSION

This paper provides coding schemes for error detection

and error correction in order to facilitate reliable in-memory

Hamming distance computation under write noise due to

power constrains. Future efforts includes the analysis when

the channel parameter ✏ is not a fixed constant and extended

analysis on other machine learning algorithms.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Inf. Sciences, vol.
275, pp. 314–347, Aug. 2014.

[2] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in Proc. DATE, Grenoble, France,
Mar. 2015, pp. 1718–1725.

[3] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. NIPS, Vancouver, Canada, Dec. 2009, pp. 1042–
1050.

[4] M. Norouzi et al., “Fast search in hamming space with multi-index
hashing,” in Proc. IEEE CVPR, Providence, RI, July 2012, pp. 3108–
3115.

[5] Y. Cassuto and K. Crammer, “In-memory hamming similarity compu-
tation in resistive arrays,” in Proc. IEEE ISIT, Hong Kong, China, June
2015, pp. 819–823.

[6] P. O. Vontobel et al., “Writing to and reading from a nano-scale crossbar
memory based on memristors,” Nanotechnology, vol. 20, no. 42, p.
425204, Sep. 2009.

[7] A. A. Adeyemo et al., “Exploring error-tolerant low-power multiple-
output read scheme for memristor-based memory arrays,” in Proc. IEEE

DFT, Amherst, MA, Nov. 2015, pp. 17–20.
[8] W. Yi et al., “Feedback write scheme for memristive switching devices,”

Appl. Phys. A: Materials Science & Processing, vol. 102, no. 4, pp. 973–
982, Jan. 2011.

[9] D. Niu et al., “Low power memristor-based reram design with error
correcting code,” in Proc. IEEE ASP-DAC, Sydney, Australia, Jan./Feb.
2012, pp. 79–84.

[10] G. Medeiros-Ribeiro et al., “Lognormal switching times for titanium
dioxide bipolar memristors: origin and resolution,” Nanotechnology,
vol. 22, no. 9, p. 095702, Jan. 2011.

1717

