A Coding Scheme for Reliable In-Memory
Hamming Distance Computation

Zehui Chen”, Clayton Schoeny”, Yuval Cassuto', and Lara Dolecek”

“Department Electrical Engineering, University of California, Los Angeles
TDepartment of Electrical Engineering, Technion - Israel Institute of Technology
chenl046@ucla.edu, cschoeny@ucla.edu, ycassuto@ee.technion.ac.il, dolecek@ee.ucla.edu

Abstract—Computation-in-memory is a technique that has
shown great potential in reducing the burden of massive data
processing. Allowing for ultra-fast Hamming distance computa-
tions to be performed in-memory will drastically speed up many
modern machine-learning algorithms. However, these in-memory
calculations have not been studied in the presence of process
variabilities. In this paper, we develop coding schemes to reliably
compute, in-memory, the Hamming distances of pairs of vectors
in the presence of write-time errors. Using an inversion coding
technique, we establish error-detection guarantees as a function
of the number of errors and the non-ideality of the resistive
array memory in which the data is stored. To correct errors in
the vector similarity comparison, we propose codes that achieve
error correction and useful techniques for bit level data access
and error localization. We demonstrate the effectiveness of our
coding scheme on a simple example using the k-nearest neighbors
algorithm.

I. INTRODUCTION

With the current data deluge, it is imperative to have the
means to store and process vast amounts of high-dimensional
data. In order to tackle this challenge, novel memory mediums
with high density and low latency have been created, but
the bottleneck between memory and processor stile largely
persists [1]. In order to bypass this bottleneck, a revolutionary
idea of computation-in-memory has been proposed, in which
certain computations are performed in the physical memory
itself [2]. Computing similarity metrics between vectors is a
critical component in machine-learning algorithms used for
applications such as image recognition and natural language
processing [3], [4]. Recently, resistive memory has been shown
to have natural properties conducive to efficiently performing
Hamming distance calculations in-memory with low-level con-
ductance measurements [5].

Existing techniques for the computation of in-memory
Hamming distances have assumed that the data is stored
error-free [5]. Furthermore, although in-memory Hamming
distance computation offers promise of unprecedented latency
performance, data can only be accessed at vector level, not
the bit level. Thus, traditional coding theory based on bit
level information does not apply. It is necessary to rethink
code design and the role of coding when addressing the
robustness issue of in-memory Hamming distance computa-
tion. We propose coding techniques that enable in-memory
similarity computations in the presence of write-time errors;
thus our coding framework provides a promising alternative

978-1-5386-1823-3/17/$31.00 ©2017 IEEE

1713

to power hungry physical-level methods of protecting against
write-time errors. Our work will pave the way for future
practical implementation of in-memory Hamming distance
computation.

The content of this paper is organized as follows. Our
goal is first to provide a coding scheme to detect incorrect
Hamming distance calculation while still using low-level mea-
surements between vectors; then to provide coding scheme
to correct those incorrect calculations. In Section II, we
provide the necessary background about resistive memories,
in-memory Hamming distance calculations, and the source
of error. In Section IIl we establish the in-memory error-
detection capabilities based on inversion coding. In Section
IV, we construct a coding scheme for error correction along
with techniques for bit level data access and error localization.
We also demonstrate the effectiveness of our code on a simple
machine-learning example.

II. BACKGROUND

A. In-Memory Hamming Distance Computation

In resistive memory, memristors are placed at the intersec-
tions of a crossbar structure. The resistance of memristors,
high or low, represent two logical states [6], where the
Low/High conductance ratio is characterized by e. In this
work, we limit our operation with the resistive memory to
simply measuring the conductance between pairs of rows (and
pairs of sub-rows in Section IV).

We briefly review how to compute the Hamming distance in-
memory between pairs of vectors using a technique presented
in [5]. Let and y be binary vectors of length n. The
normalized conductance measurement, G(x, y), can be viewed
as the output of a deterministic multiple-access channel with
binary vectors x and y as inputs. G(x,y) is calculated by
summing the outputs of the function f, detailed in Table I,
over each bit of z and y, i.e., G(z,y) = > f(zi,vi).

TABLE I: MAC output function

Tq Yi f
0 0 €
0 1 2
1 0 1+e
1 1 1

Asilomar 2017

Note that our information about vectors « and y is limited
solely to the normalized conductance measurement G(x,y).
Cassuto and Crammer showed that—with knowledge of the
Hamming weights—one can calculate the Hamming distance
between x and y as follows [5]:

G Sl (V@)W () +2ne-26 (@),

D

where € is a real-valued constant less than one greater than

zero, W (x), W (y) are the Hamming weights of x, y, respec-

tively, and D(x, y) is the Hamming distance between « and y.

The standard definitions of Hamming distance and Hamming

weight are used. Additionally, by using a reference vector, the

all-1s vector, it was shown in [5] that the Hamming weight of
a vector is found by evaluating

(1+€)G(x,1) — 2ne

1—c¢ '
Furthermore, coding strategies to calculate D(x,y) for a
variety of e ranges and known weight conditions are derived
in [5].
B. Memory Error Source

D(:l:,y) =

W(x) =

In this paper, we consider errors due to process variability
in the write operation. The switching time of a memristor
follows a log-normal distribution with an exponential median
switching time dependent on the external voltage [7]. Two
common techniques used to mitigate write uncertainty are
increasing the voltage of the write and using a feedback
writing scheme [8]; however, these approaches are usually not
energy efficient [9]. Unsuccessful write operations will lead
to bit-errors when the former state of a memristor is different
from the data to be written.

In the following sections that provide analysis for the case
of t bit-errors, using the insights from [9], we assume the
locations of the bits in error are independent and uniformly
distributed. Specifically, in Section V, we use a binary sym-
metric channel (BSC) as our model for the bit-errors.

III. CODING FOR ERROR DETECTION

Let & and y be the (possibly noisy) vectors actually written
to the device when we intend to store vectors x and y,
respectively. The discrepancy between &, y and x, y are
related through the number of bit errors ¢.

In this section, our goal is to determine the conditions
in which we can detect an erroneous D(,) result based
on G(&,9). The key to detecting the error is as follows.
We restrict the information written to be vectors with known
weight. That is, W (x) and W (y) are known and we further
assume them to be constants, w, and w,. We define an
augmented version of equation (1) in which we a priori know
the Hamming weights of = and y:

D(3.9) = Gsglluwtu,) (1= +2nd -2 IS

2

(1+9G(@,9)

It is useful to denote the difference in conductance mea-
surements between the noisy and the noise-free case as

Similarly, let us define AD(x,y, &, §), which is later used to
characterize bit errors, as follows:

AD(x,y,%,9) = D(&,§
D

noting that D(x,y) = D(x,y) by definition.

For two vectors x, y, we define Ny to be the number of
element pairs that have x; = y; = 0 for ¢ € {1,...,n} and
similarly for Ngi, Nig and Np;. Then by the definition of
G(x,y) we have

G(z,y) = Nu1 + (Nio + No) 125 + Nooe,
and similar expression can be derived for G(&, §).
A. Single Error Analysis and Detection with Fixed Weight
Vectors

We now calculate how AG(x,y,&,9) and AD(x,y,&,9)
are affected by a single bit error, i.e. ¢ = 1. Due to symmetry in
the function f, there are only four different fundamental types
of errors for a pair of elements z; and y;, (0,0) — (0,1),
(0,1) — (0,0), (0,1) — (1,1) and (1,1) — (0,1) which
we call them error types A, B, C, and D, respectively.
All other error types are expressed in terms of these four
error types. Each of these error types affects the value of
{Noo, No1, N1g, N11}. For example, an error that changes
(0,0) into (0,1) will increase Npy; by 1, decrease Ny by 1
(and leave Njg, Ny; intact). Table II lists the resulting values
of AG(x,y,&,9) and AD(x,y,&,g) for each error type.

TABLE II: The 4 Types of Errors

Error Type (‘rwyl) - (j’bvgl) AG(:c,y, z, ’g) AD(Evyvia'g)
A 0,0) = (0,1) 2¢ —2¢
s s — €
1+ € 1—¢
2e 2e
B 0,1) = (0,0 _ _
0,1) — (0,0) (1+€ 6) T
2e —2€
c 0,1) = (1,1 - —1 —2
¢h—~ @b (1+e) 1—e
2 2
D (L1) = (0,1) S | € 40

1+4+e€ 1—e€

Lemma 1. If one of & or y contains a single bit-error, i.e.,
D(x,z) + D(y,y) = 1, then we determine that D(&,q) #
D(x,y) for known W(x) and W(y) if 0 < e < 3.

Proof. If no error is present, we have D(x,y) =
D(&,9) = D(&,9), ie AD(x,y,&,9) = 0. As a re-
sult, AD(z,y,&,9) # 0 implies D(z,y) # D(&,9). For
0 < e < 3, each error type will have AD(x,y,Z,9)
assuming a non-integer value and in turns lead to non-
integer D(&,%) because D(x,y) is always an integer and

1714

D(&,9) = D(z,y) + AD(z,y,%,9). A single bit error can

thus be detected by first computing D(@,g) and checking

whether it is an integer or not. |
This process of error detection is later referred to as an

integer check. When error-free, D(&,4) = D(x,y) provides

the desired output.

B. Inversion Coding

The single error detection capability is an inherent property
of the in-memory Hamming distance computation as described
in the previous section and requires no coding if the Hamming
weights of vectors are known. However, in most applications,
knowledge about the Hamming weights are not a priori
known. We use the following coding technique to force every
vector to have the same Hamming weight, thus enabling single
error detection for most applications [5].

Auxiliary Code 1. We define an inversion encoding of the
vector x to be x. = [x|-x|, where —x is the bitwise
complement of x and | denotes concatenation.

With Auxiliary Code 1, we have Wg(x.) = wy, = n for
x € {0,1}". The notation x and y from this point throughout
the paper is saved for general vectors with unknown weights
and the corresponding x. and y. are used to denote the
coded message with known weights w;, = n constructed from
Auxiliary Code 1. Based on Lemma 1, single error detection
is achieved for the computation of D(&.,9§.). After error
correction, which is discussed in Section IV, the resulting
D(x.,y.) can be used to recover the desired output D(x,y)
by noting the relation D(x.,y.) = 2D(x,y).

C. Multiple-Error Detection Capability

So far we have shown that single bit error can be detected
with the help of Auxiliary Code 1 by checking whether
D(:%C,QC) is an integer or not. Next, we generalize the idea
of an integer check to multiple errors.

Lemma 2. If together & and y contain an odd number of bit-
errors t, i.e., D(x, &)+ D(y,y) = t,t odd, then we determine
that D(&,9) # D(x,y) for the following constraint on e:

0<e<

20+1°

Proof. Define e; p,i € {1,...,t},p € {x.,y.} to be the error
vectors corresponding to the ¢-th error in the vector indexed by
p. For example, if the ¢-th bit flip is at the j-th position of x.,
e; .z, is the all zero vector with 1 at the j-th position and e; 4,
is an all zero vector. (We permit error at the j-th position in y,.
but there will be another pair of error vectors corresponding
to it.) We further define AD(e;) to be the change in output
induced by €; 5. and e; 4, i.e., AD(z,y, T+€; ., y+e€; 4.).
The following relation is observed:

AD(xC7 yC7 iC? gC)

[D(wc + ei,wwyc + ei,yc) - D(wa yc)]

I
M“

-
Il
—

D(ez)

I
M*
>

Il
—_

Each AD(e;) can be viewed as the change of the output
for a single bit error, thus assuming the same value as the
1 P@e,ye)
is non-integer because any odd ¢ choices from those val-
ues of D(e;) will be summed to AD(x.,y., &, Y.) Where
0 < |AD(z.,Yc, &, Ye)| (mod 1) < 1. Here and elsewhere,
the operation « (mod 1) is defined as the fraction part of x.
As a result, any odd number of bit-errors can be detected by
integer check. |

last column in Table II. For 0 < € <

We now present the result for an even ¢ number of errors.

Lemma 3. We denote the fraction of errors that are detectable
as rq(t). If together & and g contain an even number of bit-
errors t, i.e., D(x, &)+ D(y,y) = t,t even, and the channel

t ti O0<e< _——, th
parameter satisfies €< gy hen
(i72)
ra(t)=1-— o ,t even.

Proof. For an even number of errors, some error patterns are
undetectable. We define 4 ¢ to be the number of errors with
either type A or C and similarly for ¢t p. Notice that error
type A and C have same non-integer parts in AD(e;) thus
contribute equally to AD(x¢, Y., &c, Ye), S0 do error type B
and D. The analysis on t4 ¢ and tp p thus covers all the
possible error combinations. The error pattern is undetectable
when t4 ¢ = tpp = t/2. By viewing this error detection
problem as a fair-coin flipping problem in which ¢/2 heads
and t/2 tails occur in t trials, we calculate the probability of
undetectable pattern occurring to be (t;Z) /2t When tc #
tp.p, let t' = |tac —tp,p|. We have \AD(wc,yc,ﬁ:c,fQC)\
2¢t’

(mod 1) = 176,0 <t <t With 0 < € < m,

0 < |AD(zc,Yc, &, Ye)| (mod 1) < 1 which leads to error
detection. |

IV. CODING FOR ERROR CORRECTION

Now that we have a coding scheme for detecting errors in
the calculation of D(&., §.). Our final objective is to recover
D(x.,y.) correctly and then to recover D(x,y) (error correc-
tion). We first provide a technique that can narrow each errors
to two positions and then propose code schemes that have the
capability to further determine the exact location. Based on
another technique of bit value reading, error correction can be
achieved by knowing the location and value for each error.

A. Error Localization and Single Bit Value Reading

Our error detection is based on the recognition of non-
integer ﬁ(afcc, 9.). However, this doesn’t uniquely determine
the error type. For example, error type B and C both have non-
integer part % but error type B increases D(x,y) by one
where error type C decreases D(x, y) by one. In principle, we
need bit-level information in order to recover D(x,y). This
section provides methods to access bit-level information while
still using the conductance measurement between two vectors.

1715

1) Error Localization: To recover D(x.,y.), we first need
to know the location of each bit flip. This can be achieved by
comparing the corrupted vector with other preset vectors and
infer information from the results.

Claim 1. Define L to be the set of vectors ; € {0,1}?",1 <
i < n whose all bits are one except the the i-th and the (i+n)-
th bits. Also define 1 to be the all-1s vector with length 2n.
With n + 1 pairwise measurements between &. and vectors
in L U1, we can narrow the location of each error to two
positions, © and i + n.

With the measurement of G(&., 1), we compute D(&., 1).
We perform n measurements between . and each of the
vectors in L to get G(&,l;). Then ﬁ(ic,li) is computed
for all 1 < ¢ < n. Error localization is achieved by computing
ADy(&¢,1, &, 1;) = D(&e,1;) — D(&.,1) for all 1 <i < n.
Let Lerror = {i € I|ADi(@e,1,8c,1) = C t4yufie

4e

— €

I|ADZ(QA:C7 17 5367 lz) =
position ¢ or at position ¢ + n for each i € Iopror-

By Auxiliary Code 1, for a given [;, if both the i-th
and the (i + n)-th positions of &. are error-free, the error
patterns are (1,1) — (0,1) and (0,1) — (0,0) which result
in AD;(&.,1,&.,d;) = % + 2. If a bit error occurs at
either the i-th or the (i + n)-th position of &., then the
corresponding error patterns are two (1,1) — (0,0) which lead
to AD;(&.,1,&.,d;) = 14_56 + 4 for bit flip from 1 to 0 or
two (0,1) — (0,0) with AD;(&., 1, &.,d;) = 14f€ for bit flip
from O to 1. If errors occur at both the i-th or the (i 4+ n)-th
positions of &., we are unable to localize those two errors.
These error patterns are analyzed in later section.

2) Bit Value Reading: Since D(x.,y.) depends on both
vectors, . and y., we also need to have knowledge of the
corresponding bit values in g.. Next we propose a method to
infer bit value in vector, i.e., Y., using measurements between
vectors.

}. There is an error either at

Claim 2. Define B to be the set of vectors b; € {0,1}?",1 <
1 < 2n whose bits are all one except the i-th bit. The i-th bit
value of a given vector y. can be inferred from two pairwise
measurements between, 4. and b;; y. and 1.

Two measurements, G(g., 1) and G (., b;), are taken and
the corresponding D(§.,1) and D(g.,b;) are computed.
The inference of the i-th bit value in g. is based on
ADi(g6717g67bi) - D(gmbl) - D(y&l) For yc,i - 1’
the error pattern is (1,1) — (1,0) with AD;(9g.,1,9.,b;) =

2
1—€ + 2 and for y.; = 0, the error pattern is (0,1) — (0,0)

—€

2
with AD;(ge, 1, §e, b;) = ——

—€
B. Multiple Parity Check Codes for Error Correction

Using error localization and bit value reading, the two
possible error locations can be computed for a vector (say
x.), as well as the value at the corresponding positions of the
other vector (say y.). We then propose a code to reconcile
the ambiguity between the two positions. The goal of this

code is to correct a single bit error but we also leave rooms
for multiple error correction by design. We note that the exact
location for each error can be determined by an error detection
code that contains one of the locations.

Auxiliary Code 2. For vector x € {0,1}", the Multiple Parity
Check Coding with parameter n,. (n, divides n) is constructed
as [x|r(x)] where r(x) € {0,1}"" and the i-th element of
r(x) is r(x); = ZZZS&.AV”PH xy, for all 1 < i < n, with
modulo 2 summation.

This code can be interpreted as a single parity check code
for each block ,,(;_1)/n, 41, --+s Tnisn, With parity bit r(x);,
thus single bit error is detectable per block. If this code is
applied on x (the first half of x.), the exact location of the
error is determined and the error is corrected. In order to read
bit values from r(x), we also append the inverse of 7(x).

Code 1. To achieve error correction, we encode vector x €
{0,1}" to be [x|—x|r(x)|-r(x)] where r(x) is defined in
Auxiliary Code 2. This encoding of x is denoted as c(x).

This encoding is equivalent to [z.|r(x.)] where x. is
defined in Auxiliary Code 1. The caveat here is that although
c(x) = [x.|r(x)|-r(x)] is the codeword stored in the resistive
memory, only x. is used in nominal operation of in-memory
Hamming distance computation (the parity parts r(x) are
only read when an error is already detected). As a result,
error correction capability requires the ability to measure the
conductance between two sub-vectors in the resistive memory
(assumed feasible for this subsection). The necessity of this
sub-vector measurement is shown in Lemma 4.

Lemma 4. Let c(x) = [z |r(z.)] and c(y) = [yc|r(y.)]
where r is arbitrary an encoding that map x. Y. to
r(xc), 7(Ye). For dim(r(z.)) < dim(x.), D(c(x),c(y)) #
f(D(x,v)) for any bijective function f.

Proof. This lemma is proved by contradiction. Assume there
exist 7 and f such that D(c(x),c(y)) = f(D(xz,y)). By
D(z.,y.) = 2D(x,y), we have

D(r(wc), r(ye)) = f(D(xe, yc))

Now consider the case where = y, we have 0 = f(0) be-
cause . = Y. and r(x.) = 7(y.). Then since dim(r(x.)) <
dim(z.), there exists r(z.) = r(y.), with . # y.. This pair
of and y lead to 0 = f(D(zx.,y.)) with D(z.,y.) # 0,
which contradicts the notion that f is a bijective function. W

Because of Lemma 4, in the nominal error-free case,
the desired output D(x,y) can not be computed from
D(c(x),c(y)). If only x. and y. are used for nominal op-
eration, by noting D(x.,y.) = 2D(x,y), the desired output
can be computed.

C. Multiple Error Correction Capability

We have shown Code 1 can correct a single error, now we
present the multiple error correct capability of Code 1. We
only consider the case that all ¢ errors occur in x.. At the error
localization step, given ¢ errors in &, ¢ pairs of possible error

1716

locations can be correctly located except for the specific case
in which two errors are exactly n apart. Denote the fraction
of error patterns that we can correctly localize by r;(t),
t—1
~ Il—g2n — 2k

n(t) = ST

t < n,. “4)
i—1
o 21 — k

After the location of each error is narrowed down to two
locations, the exact location can be determined using the parity
bits in 7(x). However, Auxiliary Code 2 only provides single
error detection in each block, i.e., if two or more errors occurs
in the same block, we are unable to resolve the ambiguity of
the two locations and error correction can not be done. In
x. € {0,1}%", the SUBVECLOrS T y(i—1)/n,+15 -5 Te,ni/n, and
Ten(i=1)/ny+14n> s Teni/n.+n are considered to be in the
same block for 1 < ¢ < n,. since they both rely on the parity
bit r(x);. Define r.(t) to be the fraction of ¢ error patterns
that are correctable given that the errors can be detected and
localized. We have

_ 2nk
2:10(2” - T)

Combining the discussions above with the r4(¢) in section
II.C and define r4(t) = 1 for odd t, we have the following
claim.

Te (t) =

Claim 3. Suppose t bit errors occurs in x. and r(x.) is error-
free, define R(t) to be the fraction of all error patterns that
we can correctly recover the original D(x,y). We have:

R(t) = rq(t) x mi(t) x 7o(t).

R(t) can be viewed as the probability of recovery given
t errors in @. and no error in r(x). Our goal is to find the
probability of recovery given ¢ errors in the whole sequence
¢(x), denoted as R(t). We have

R(t)=> R(t—k)x
k=0

P{t — k errors in x. Nk errors in r(x.)}x

(6)

P{k errors in r(x.) not used for correction}

where we define R(0) = 1. The latter two probabilities,
denoted as Py (n,n.,t, k) and Py(n,,t, k), can be computed

as 9 5
n Ny
(%) C77)
(2n+t2n,.> ’

Pi(n,ng,t, k) =

and . ek
(M)

P2(”T7 t7 k) = Z (27Lr)
k

§=0
For example, when n = 64, n,. = 8, we can calculate R(2) =
0.5435 and R(3) = 0.5932 which means our code can correct
more than half of double and triple errors. The multiple error
correction capability provided by our proposed code will make
in-memory Hamming distance computation more robust.

D. Benefits on a kNN Classifier

We test our coding scheme on the simple application of digit
recognition using k-nearest neighbor classifier. The testing and
training data sets are 64-bit bitmap images processed from
computer generated digits. We corrupt both the testing and
training sets by implementing a BSC channel with various
crossover probability p. The kNN classifier performs clas-
sification using Hamming as the distance metric with and
without the protection of our code. Experimental results have
shown the same performance of recognition under 3 times
higher crossover probability with the protection of our code.
This preliminary result shows that our code is promising
for error-tolerant in-memory Hamming distance computation
application.

ACKNOWLEDGMENT

Research supported in part by a grant from UC MEXUS
and an NSF-BSF grant no.1718389.
V. CONCLUSION

This paper provides coding schemes for error detection
and error correction in order to facilitate reliable in-memory
Hamming distance computation under write noise due to
power constrains. Future efforts includes the analysis when
the channel parameter ¢ is not a fixed constant and extended
analysis on other machine learning algorithms.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Inf. Sciences, vol.
275, pp. 314-347, Aug. 2014.

[2] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in Proc. DATE, Grenoble, France,
Mar. 2015, pp. 1718-1725.

[3] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. NIPS, Vancouver, Canada, Dec. 2009, pp. 1042—
1050.

[4] M. Norouzi et al., “Fast search in hamming space with multi-index
hashing,” in Proc. IEEE CVPR, Providence, RI, July 2012, pp. 3108-
3115.

[5] Y. Cassuto and K. Crammer, “In-memory hamming similarity compu-
tation in resistive arrays,” in Proc. IEEE ISIT, Hong Kong, China, June
2015, pp. 819-823.

[6] P. O. Vontobel et al., “Writing to and reading from a nano-scale crossbar
memory based on memristors,” Nanotechnology, vol. 20, no. 42, p.
425204, Sep. 2009.

[71 A. A. Adeyemo et al., “Exploring error-tolerant low-power multiple-
output read scheme for memristor-based memory arrays,” in Proc. IEEE
DFT, Amherst, MA, Nov. 2015, pp. 17-20.

[81 W.Yi et al., “Feedback write scheme for memristive switching devices,”
Appl. Phys. A: Materials Science & Processing, vol. 102, no. 4, pp. 973—
982, Jan. 2011.

[9]1 D. Niu et al., “Low power memristor-based reram design with error

correcting code,” in Proc. IEEE ASP-DAC, Sydney, Australia, Jan./Feb.

2012, pp. 79-84.

G. Medeiros-Ribeiro et al., “Lognormal switching times for titanium

dioxide bipolar memristors: origin and resolution,” Nanotechnology,

vol. 22, no. 9, p. 095702, Jan. 2011.

(10]

1717

